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Abstract: Let D be a finite and simple digraph with vertex set V (D). For a
vertex v ∈ V (D), the degree of v, denoted by d(v), is defined as the minimum

value of its out-degree d+(v) and its in-degree d−(v). Now let D be a digraph

with minimum degree δ ≥ 1 and edge-connectivity λ. If α is real number,
then, analogously to graphs, we define the zeroth-order general Randić index

by
∑
x∈V (D)(d(x))α. A digraph is maximally edge-connected if λ = δ. In

this paper, we present sufficient conditions for digraphs to be maximally edge-
connected in terms of the zeroth-order general Randić index, the order and the

minimum degree when α < 0, 0 < α < 1 or 1 < α ≤ 2. Using the associated

digraph of a graph, we show that our results include some corresponding known
results on graphs.
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1. Terminology and introduction

Let G be a finite and simple graph with vertex set V (G). The order of G is

defined by n = n(G) = |V (G)|. If N(v) = NG(v) is the neighborhood of the

vertex v ∈ V (G), then we denote by d(v) = |N(v)| the degree of v and by

δ = δ(G) the minimum degree of the graph G. An edge-cut of a connected

graph G is a set of edges whose removal disconnects G. The edge connectivity

λ = λ(G) of a connected graph G is defined as the minimum cardinality of an
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edge-cut over all edge-cuts of G. The inequality λ(G) ≤ δ(G) is immediate.

We call a connected graph maximally edge-connected, if λ(G) = δ(G).

The zeroth-order general Randić index is defined for a connected graph G of

order n ≥ 2 by

R0
α(G) =

∑
v∈V (G)

(d(v))α,

where α is any real number. In 2005, Li and Zheng [8] proposed this index

and named it first general Zagreb index. But nowadays, most authors refer

to it as to the zeroth-order general Randić index. At this point it is worth

mentioning that R0
2 and R0

−0,5 correspond to the first Zagreb index, introduced

by Gutman and Trinajstić [5], and zeroth-order Randić index, defined by Kier

and Hall [7], respectively. The special case α = −1 is known as the inverse

degree. The inverse degree first attracted attention through conjectures of the

computer program Graffiti [3]. In [2], the authors present sufficient conditions

for connected graphs to be maximally edge-connected in terms of the inverse

degree, the order and the minimum degree.

In this paper, we are concerned with the zeroth-order general Randić index for

digraphs. Let D be a finite and simple digraph with vertex set V (D). For any

vertex v of a digraph D, we denote the set of out-neighbors and in-neighbors

of v be N+(v) = N+
D (v) and N−(v) = N−D (v), respectively. For a vertex

v ∈ V (D), the degree of v, denoted by d(v), is defined as the minimum value

of its out-degree d+(v) = |N+(v)| and its in-degree d−(v) = |N−(v)|. The

minimum out-degree and minimum in-degree of a digraph D are denoted by

δ+(D) and δ−(D). In addition, let δ = δ(D) = min{δ+(D), δ−(D)} be the

minimum degree of D. If X and Y are two subsets of V (D), then we denote

by (X,Y ) the set of arcs with tail in X and head in Y . We write K∗n for the

complete digraph of order n. A digraph is strongly connected or simply strong

if for every pair u, v of distinct vertices there exists a directed path from u to

v. A digraph D is k-edge-connected if for any set S of at most k − 1 arcs the

subdigraph D−S is strong. The edge-connectivity λ = λ(D) of a digraph D is

defined as the largest value k such that D is k-edge-connected. The inequality

λ(D) ≤ δ(D) is immediate. We call a digraph D maximally edge-connected,

if λ(D) = δ(D). Sufficient conditions for graphs or digraphs to be maximally

edge-connected were given by several authors, see for example the survey paper

by Hellwig and Volkmann [6]. The associated digraph D(G) of a graph G is

obtained by replacing each edge of G by a pair of mutually opposite oriented

arcs. The following observation is simple but useful.

Observation 1. If G is a graph and D(G) its associated digraph, then λ(G) =
λ(D(G)).
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Now let D be a digraph with minimimum degree δ ≥ 1. If α is real number,

then, analogously to graphs, we define the zeroth-order general Randić index

of D by

R0
α(D) =

∑
x∈V (D)

(d(x))α.

Inspired by the results in [2, 10, 11], we give in this paper sufficient conditions

for strongly connected digraphs to be maximally edge-connected in terms of the

zeroth-order general Randić index, the order and the minimum degree when

α < 0, 0 < α < 1 or 1 < α ≤ 2. Examples will show that these conditions

are best possible. Using Observation 1, we show that our results include some

corresponding known results on graphs.

2. Preliminary results

In this section we present some basic lemmas, which we use in the proof of our

main results. The first one is easy to prove and can be found in [9].

Lemma 1. If x− 2 ≥ y ≥ 1 and t < 0 or t > 1, then

(x− 1)t + (y + 1)t < xt + yt.

Lemma 2. Let α < 0 or 1 < α be a real number, and let a1, a2, . . . , ap and A
be positive reals such that

∑p
i=1 ai ≤ A. If in addition, a1, a2, . . . , ap, A are positive

integers, and a, b are integers with A = ap+ b and 0 ≤ b < p, then

p∑
i=1

aαi ≥ (p− b)aα + b(a+ 1)α.

Proof. We can assume that the ai are chosen such that
∑p
i=1 a

α
i is minimum.

If no of the ai differ by more than 1, then p− b of the ai are equal to a and the

remaining b of the ai are equal to a + 1. I this case the desired inequality is

immediate. So assume that two of the ai, say a1 and a2, differ by more than 1.

Assume, without loss of generality, that a1 > a2. Let b1 = a1 − 1, b2 = a2 + 1

and bi = ai for i ≥ 3. Then Lemma 1 implies

p∑
i=1

bαi −
p∑
i=1

aαi = (a1 − 1)α + (a2 + 1)α − aα1 − aα2 < 0,

a contradiction to the choice of the ai.

The next one can be found in [10].
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Lemma 3. Let 0 < α < 1 be a real number, and let a1, a2, . . . , ap and A be
positive reals such that

∑p
i=1 ai ≤ A. If in addition, a1, a2, . . . , ap, A are positive

integers, and a, b are integers with A = ap+ b and 0 ≤ b < p, then

p∑
i=1

aαi ≤ (p− b)aα + b(a+ 1)α.

The next two lemmas follow from the definitions of convex and concave func-

tions and can be found in [2, 10].

Lemma 4. Let f be a convex function on an interval [L,R]. If `, r ∈ [L,R] with
`+ r = L+R, then

f(L) + f(R) ≥ f(`) + f(r).

Lemma 5. Let f be a concave function on an interval [L,R]. If `, r ∈ [L,R] with
`+ r = L+R, then

f(L) + f(R) ≤ f(`) + f(r).

3. Main results

Theorem 1. Let D be a strongly connected digraph of order n ≥ 3, minimum
degree δ and edge-connectivity λ, and let α be a real number. If

R0
α(D) < 2δα + δα+1 + (δ − 1)(n− δ − 1)α

+(δ − 1)(δ + 1)α − (δ − 2)(n− δ − 2)α

for −1 ≤ α < 0, then λ = δ. If

R0
α(D) < 2δα − δα+1 + 2(n− δ − 2)α+1 + (δ − 1)(n− δ − 1)α

+(δ − 1)(δ + 1)α − (δ − 2)(n− δ − 2)α

for α ≤ −1, then λ = δ. If

R0
α(D) < 3δα + δα+1 + (δ − 1)(n− δ − 1)α

+(δ − 1)(δ + 1)α − (δ − 1)(n− δ − 2)α

for 1 < α ≤ 2, then λ = δ.

Proof. If δ = 1, then λ = δ in every case. Thus assume in the following that

δ ≥ 2. Suppose to the contrary that λ ≤ δ − 1. Then there exist two disjoint

sets X,Y ⊂ V (D) such that X ∪ Y = V (D) and |(X,Y )| = λ. We first show
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that δ + 1 ≤ |X|, |Y | ≤ n− δ − 1. Suppose that X contains at most δ vertices.

Since every vertex in X has at most |X| − 1 out-neighbors in X and there are

at most λ arcs from X to Y , we obtain the contradiction

δ|X| ≤
∑
x∈X

d+(x) ≤ |X|(|X| − 1) + λ ≤ δ(|X| − 1) + δ − 1 = δ|X| − 1.

Therefore |X| ≥ δ + 1. Similarly one can show that |Y | ≥ δ + 1.

The digraph D contains a vertex v of minimum degree. Assume, without loss

of generality, that v ∈ X. As above, we see that∑
y∈Y

d(y) ≤
∑
y∈Y

d−(y) ≤ |Y |(|Y | − 1) + λ.

Applying Lemma 2, we deduce that∑
y∈Y

(d(y))α ≥ (|Y | − λ)(|Y | − 1)α + λ|Y |α

= (|Y | − 1)α + (|Y | − 1)α+1 − λ[(|Y | − 1)α − |Y |α].

Analogously, we observe that∑
x∈X−{v}

d(x) ≤
∑

x∈X−{v}

d+(x) ≤ (|X| − 1)2 + λ.

In view of Lemma 2, we conclude that∑
x∈X

(d(x))α ≥ δα + (|X| − λ− 1)(|X| − 1)α + λ|X|α

= δα + (|X| − 1)α+1 − λ[(|X| − 1)α − |X|α].

Adding the inequalities above, we obtain

R0
α(D) =

∑
y∈Y

(d(y))α +
∑
x∈X

(d(x))α

≥ δα + (|Y | − 1)α + (|Y | − 1)α+1 + (|X| − 1)α+1 (1)

−λ[(|Y | − 1)α − |Y |α + (|X| − 1)α − |X|α].

If −1 ≤ α < 0, then (|X| − 1)α+1, (|Y | − 1)α+1 ≥ δα+1 and (|Y | − 1)α ≥
(n− δ − 2)α and therefore it follows from (1) that

R0
α(D) ≥ δα + (n− δ − 2)α + 2δα+1

−λ[(|Y | − 1)α − |Y |α + (|X| − 1)α − |X|α]. (2)
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If α ≤ −1, then (|X| − 1)α+1, (|Y | − 1)α+1 ≥ (n− δ − 2)α+1 and (|Y | − 1)α ≥
(n− δ − 2)α and so (1) leads to

R0
α(D) ≥ δα + (n− δ − 2)α + 2(n− δ − 2)α+1

−λ[(|Y | − 1)α − |Y |α + (|X| − 1)α − |X|α]. (3)

If 1 < α ≤ 2, then (|X| − 1)α+1, (|Y | − 1)α+1 ≥ δα+1 and (|Y | − 1)α ≥ δα and

thus (1) yields

R0
α(D) ≥ 2δα + 2δα+1 − λ[(|Y | − 1)α − |Y |α + (|X| − 1)α − |X|α]. (4)

To minimize the right hand side of the inequalities (2, 3) or (4), consider the

function g(t) = (t−1)α− tα for t > 1. It is easy to verify that g′′(t) > 0, and so

g is convex when α < 0 or 1 < α ≤ 2. Because of δ + 1 ≤ |X|, |Y | ≤ n− δ − 1,

|X|+ |Y | = n and Lemma 4 applied to the function g, we obtain

(|Y |−1)α−|Y |α+(|X|−1)α−|X|α ≤ δα−(δ+1)α+(n−δ−2)α−(n−δ−1)α.

Applying this to (2) if −1 ≤ α < 0, in conjunction with λ ≤ δ − 1, we deduce

that

R0
α(D) ≥ δα + (n− δ − 2)α + 2δα+1

−(δ − 1)[δα − (δ + 1)α + (n− δ − 2)α − (n− δ − 1)α]

= 2δα + δα+1 + (δ − 1)(n− δ − 1)α

+(δ − 1)(δ + 1)α − (δ − 2)(n− δ − 2)α,

a contradiction to the hypothesis. Applying this to (3) if α ≤ −1, in conjunction

with λ ≤ δ − 1, we conclude that

R0
α(D) ≥ δα + (n− δ − 2)α + 2(n− δ − 2)α+1

−(δ − 1)[δα − (δ + 1)α + (n− δ − 2)α − (n− δ − 1)α]

= 2δα − δα+1 + 2(n− δ − 2)α+1 + (δ − 1)(n− δ − 1)α

+(δ − 1)(δ + 1)α − (δ − 2)(n− δ − 2)α,

a contradiction to the hypothesis. Applying this to (4) if 1 < α ≤ 2, in

conjunction with λ ≤ δ − 1, we have

R0
α(D) ≥ 2δα + 2δα+1 − (δ − 1)[δα − (δ + 1)α + (n− δ − 2)α − (n− δ − 1)α]

= 3δα + δα+1 + (δ − 1)(n− δ − 1)α

+(δ − 1)(δ + 1)α − (δ − 1)(n− δ − 2)α,

a contradiction to the hypothesis. Therefore λ = δ in all cases.
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The next example will show that the sufficient conditions in Theorem 1 are

best possible.

Example 1. Let n and δ be integers such that n = 2δ + 2 ≥ 6. Furthermore,
let H1 = K∗δ+1 with vertex set V (H1) = {x1, x2, . . . , xδ+1}, and let H2 = K∗δ+1

with vertex set V (H2) = {y1, y2, . . . , yδ+1}. Define the digraph H by the union
of H1 and H2 together with the 2δ − 2 arcs x1y1, x2y2, . . . , xδ−1yδ−1 as well as
y1x1, y2x2, . . . , yδ−1xδ−1. Then n(H) = n, δ(H) = δ and

R0
α(H) = 4δα + (2δ − 2)(δ + 1)α.

Therefore

R0
α(H) = 2δα + δα+1 + (δ − 1)(n− δ − 1)α

+(δ − 1)(δ + 1)α − (δ − 2)(n− δ − 2)α,

when −1 ≤ α < 0,

R0
α(H) = 2δα − δα+1 + 2(n− δ − 2)α+1 + (δ − 1)(n− δ − 1)α

+(δ − 1)(δ + 1)α − (δ − 2)(n− δ − 2)α,

when α ≤ −1 and

R0
α(H) = 3δα + δα+1 + (δ − 1)(n− δ − 1)α

+(δ − 1)(δ + 1)α − (δ − 1)(n− δ − 2)α,

when 1 < α ≤ 2. But it is easy to see that λ(H) = δ(H)− 1.

Corollary 1. Let G be a connected graph of order n ≥ 3, minimum degree δ and
edge-connectivity λ, and let α be a real number. If

R0
α(G) < 2δα + δα+1 + (δ − 1)(n− δ − 1)α

+(δ − 1)(δ + 1)α − (δ − 2)(n− δ − 2)α,

for −1 ≤ α < 0, then λ = δ. If

R0
α(G) < 2δα − δα+1 + 2(n− δ − 2)α+1 + (δ − 1)(n− δ − 1)α

+(δ − 1)(δ + 1)α − (δ − 2)(n− δ − 2)α,

for α ≤ −1, then λ = δ. If

R0
α(G) < 3δα + δα+1 + (δ − 1)(n− δ − 1)α

+(δ − 1)(δ + 1)α − (δ − 1)(n− δ − 2)α,

for 1 < α ≤ 2, then λ = δ.
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Proof. Since NG(v) = N+
D(G)(v) = N−D(G)(v), for each vertex v ∈ V (G) =

V (D(G)), we observe that n(G) = n(D(G)), δ(G) = δ(D(G)) and R0
α(G) =

R0
α(D(G)). Thus Theorem 1 and Observation 1 imply the desired results.

If α ≤ −1, then Corollary 1 can be found in [11], and the special case α = −1

is one of the main results in [2].

Theorem 2. Let D be a strongly connected digraph of order n ≥ 3, minimum
degree δ and edge-connectivity λ, and let 0 < α < 1 be a real number. If

R0
α(D) > 2δα + (δ − 1)(δ + 1)α + (δ − 1)(n− δ − 1)α + (n− 2δ)(n− δ − 2)α,

then λ = δ.

Proof. If δ = 1, then λ = δ in every case. Thus assume in the following that

δ ≥ 2. Suppose to the contrary that λ ≤ δ − 1. Then there exist two disjoint

sets X,Y ⊂ V (D) such that X ∪Y = V (D) and |(X,Y )| = λ. As we have seen

in the proof of Theorem 1, the inequalities δ + 1 ≤ |X|, |Y | ≤ n − δ − 1 are

valid.

As in the proof of Theorem 1, we observe that

∑
x∈X

d(x) ≤
∑
x∈X

d+(x) ≤ |X|(|X| − 1) + λ

and ∑
y∈Y

d(y) ≤
∑
y∈Y

d−(y) ≤ |Y |(|Y | − 1) + λ.

Applying Lemma 3, we deduce that

∑
x∈X

(d(x))α ≤ (|X| − λ)(|X| − 1)α + λ|X|α

= [(|X| − 1) + (1− λ)](|X| − 1)α + λ|X|α

= (|X| − 1)α+1 + (|X| − 1)α + λ[|X|α − (|X| − 1)α],

and

∑
y∈Y

(d(y))α ≤ (|Y | − λ)(|Y | − 1)α + λ|Y |α

= [(|Y | − 1) + (1− λ)](|Y | − 1)α + λ|Y |α

= (|Y | − 1)α+1 + (|Y | − 1)α + λ[|Y |α − (|Y | − 1)α].
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Adding these two inequalities, we obtain

R0
α(D) =

∑
x∈X

(d(x))α +
∑
y∈Y

(d(y))α

≤ (|X| − 1)
α+1

+ (|X| − 1)α + (|Y | − 1)α+1 + (|Y | − 1)α

+λ[|X|α − (|X| − 1)α + |Y |α − (|Y | − 1)α]. (5)

To maximize the right side of the last inequality, we consider the functions

g(t) = tα − (t− 1)α and h(t) = (t− 1)α+1 + (t− 1)α. It is easy to verify that

g′′(t) > 0 and h′′(t) > 0 for 0 < α < 1 and t ≥ 2, and thus g and h are convex.

Using δ + 1 ≤ |X|, |Y | ≤ n− δ − 1, |X|+ |Y | = n and Lemma 4, we obtain

|X|α−(|X|−1)α+|Y |α−(|Y |−1)α ≤ (δ+1)α−δα+(n−δ−1)α−(n−δ−2)α, (6)

and

(|X| − 1)α+1 + (|X| − 1)α

+(|Y | − 1)α+1 + (|Y | − 1)α ≤ δα+1 + δα (7)

+(n− δ − 2)α+1 + (n− δ − 2)α.

Noting that λ ≤ δ − 1, the inequalities (5-7) lead to

R0
α(D) ≤ δα+1 + δα + (n− δ − 2)α+1 + (n− δ − 2)α

+(δ − 1)[(δ + 1)α − δα + (n− δ − 1)α − (n− δ − 2)α]

= 2δα + (δ − 1)(δ + 1)α

+(δ − 1)(n− δ − 1)α + (n− 2δ)(n− δ − 2)α,

a contradiction to the hypothesis. Therefore λ = δ.

The next example will demonstrate that Theorem 2 is sharp.

Example 2. Let n and δ be integers such that n ≥ 2δ + 2 ≥ 6. Furthermore,
let H1 = K∗δ+1 with vertex set V (H1) = {x1, x2, . . . , xδ+1}, and let H2 = K∗n−δ−1

with vertex set V (H2) = {y1, y2, . . . , yn−δ−1}. Define the digraph H by the union
of H1 and H2 together with the 2δ − 2 arcs x1y1, x2y2, . . . xδ−1yδ−1 as well as
y1x1, y2x2, . . . yδ−1xδ−1. Then n(H) = n, δ(H) = δ and

R0
α(H) = 2δα + (δ − 1)(δ + 1)α + (δ − 1)(n− δ − 1)α + (n− 2δ)(n− δ − 2)α,

and therefore equality in the inequality of Theorem 2. However, λ(H) = δ(H)− 1.
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Using Theorem 2 and Observation 1, we obtain the following sufficient condition

for graphs to be maximally edge-connected.

Corollary 2. Let G be a connected graph of order n ≥ 3, minimum degree δ and
edge-connectivity λ, and let 0 < α < 1 be a real number. If

R0
α(G) > 2δα + (δ − 1)(δ + 1)α + (δ − 1)(n− δ − 1)α + (n− 2δ)(n− δ − 2)α,

then λ = δ.

A classical result of Chartrand [1] says that λ(G) = δ(G) when n(G) ≤
2δ(G) + 1. However, in the remaining case n(G) ≥ 2δ(G) + 2, Corollary 2

is an improvement of the following result, given by Su, Xiong and Su [10] in

2014.

Theorem 3. ([10]) Let G be a connected graph of order n ≥ 3, minimum degree
δ and edge-connectivity λ, and let 0 < α < 1 be a real number. If

R0
α(G) > 2δα− δα+1 +(δ−1)(δ+1)α+(δ−1)(n− δ−1)α+(2n−3δ−2)(n− δ−2)α,

then λ = δ.

Using the method of the proof of Theorem 2, we will improve Theorem 1 for

− 1
3 ≤ α < 0 in the interesting case n(D) ≥ 2δ(D)+2. Note that the first 7 lines

of the proof of Theorem 1 show that λ(D) = δ(D) when n(D) ≤ 2δ(D) + 1,

which was first proved by Geller and Harray [4].

Theorem 4. Let D be a strongly connected digraph of order n ≥ 3, minimum
degree δ and edge-connectivity λ, and let − 1

3
≤ α < 0 be a real number. If

R0
α(D) < 2δα + (δ − 1)(δ + 1)α + (δ − 1)(n− δ − 1)α + (n− 2δ)(n− δ − 2)α,

then λ = δ.

Proof. If δ = 1, then λ = δ in every case. Thus assume in the following that

δ ≥ 2. Suppose to the contrary that λ ≤ δ − 1. Then there exist two disjoint

sets X,Y ⊂ V (D) such that X ∪Y = V (D) and |(X,Y )| = λ. As we have seen

in the proof of Theorem 1, the inequalities δ + 1 ≤ |X|, |Y | ≤ n − δ − 1 are

valid.
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As in the proof of Theorem 1, we observe that∑
x∈X

d(x) ≤
∑
x∈X

d+(x) ≤ |X|(|X| − 1) + δ − 1

and ∑
y∈Y

d(y) ≤
∑
y∈Y

d−(y) ≤ |Y |(|Y | − 1) + δ − 1.

Applying Lemma 2, we deduce that∑
x∈X

(d(x))α ≥ (|X| − (δ − 1))(|X| − 1)α + (δ − 1)|X|α

= (|X| − 1)α+1 + (|X| − 1)α + (δ − 1)[|X|α − (|X| − 1)α],

and ∑
y∈Y

(d(y))α ≥ (|Y | − (δ − 1))(|Y | − 1)α + (δ − 1)|Y |α

= (|Y | − 1)α+1 + (|Y | − 1)α + (δ − 1)[|Y |α − (|Y | − 1)α].

Adding these two inequalities, we obtain

R0
α(D) =

∑
x∈X

(d(x))α +
∑
y∈Y

(d(y))α

≥ (|X| − 1)
α+1

+ (|X| − 1)α + (|Y | − 1)α+1 + (|Y | − 1)α

+(δ − 1)[|X|α − (|X| − 1)α + |Y |α − (|Y | − 1)α]. (8)

To minimize the right side of the last inequality, we consider the functions

g(t) = tα − (t− 1)α and h(t) = (t− 1)α+1 + (t− 1)α. It is easy to verify that

g′′(t) < 0 and h′′(t) ≤ 0 for − 1
3 ≤ α < 0 and t ≥ 3, and thus g and h are

concave. Using 3 ≤ δ + 1 ≤ |X|, |Y | ≤ n− δ − 1, |X|+ |Y | = n and Lemma 5,

we obtain

|X|α − (|X| − 1)α + |Y |α

−(|Y | − 1)α ≥ (δ + 1)α − δα (9)

+(n− δ − 1)α − (n− δ − 2)α,

and

(|X| − 1)α+1 + (|X| − 1)α

+(|Y | − 1)α+1 + (|Y | − 1)α ≥ δα+1 + δα (10)

+(n− δ − 2)α+1 + (n− δ − 2)α.
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The inequalities (8-10) lead to

R0
α(D) ≥ δα+1 + δα + (n− δ − 2)α+1 + (n− δ − 2)α

+(δ − 1)[(δ + 1)α − δα + (n− δ − 1)α − (n− δ − 2)α]

= 2δα + (δ − 1)(δ + 1)α

+(δ − 1)(n− δ − 1)α + (n− 2δ)(n− δ − 2)α,

a contradiction to the hypothesis. Therefore λ = δ.

Example 2 also shows the sharpness of Theorem 4. If δ ≥ 3, then we can

improve Theorem 1 analogously to the proof of Theorem 4 for a greater interval

of α when n(D) ≥ 2δ(D) + 2. We omit the proof.

Theorem 5. Let D be a strongly connected digraph of order n, minimum degree
δ ≥ 3 and edge-connectivity λ, and let − δ−1

δ+1
≤ α < 0 be a real number. If

R0
α(D) < 2δα + (δ − 1)(δ + 1)α + (δ − 1)(n− δ − 1)α + (n− 2δ)(n− δ − 2)α,

then λ = δ.
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