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Abstract: Let G = (V,E) be a simple graph. A set D ⊆ V is a dominating
set of G if every vertex in V \D has at least one neighbor in D. The distance

dG(u, v) between two vertices u and v is the length of a shortest (u, v)-path in

G. An (u, v)-path of length dG(u, v) is called an (u, v)-geodesic. A set X ⊆ V is
convex in G if vertices from all (a, b)-geodesics belong to X for any two vertices

a, b ∈ X. A set X is a convex dominating set if it is convex and dominating

set. The convex domination number γcon(G) of a graph G equals the minimum
cardinality of a convex dominating set in G. The convex domination subdivision

number sdγcon (G) is the minimum number of edges that must be subdivided

(each edge in G can be subdivided at most once) in order to increase the convex
domination number. In this paper we initiate the study of convex domination
subdivision number and we establish upper bounds for it.

Keywords: convex dominating set, convex domination number, convex dom-

ination subdivision number.
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1. Introduction

Throughout this paper, G is a simple connected graph with vertex set V (G)

and edge set E(G) (briefly V and E). For every vertex v ∈ V (G), the open

neighborhood of v is the set N(v) = {u ∈ V (G) | uv ∈ E(G)} and the closed
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neighborhood of v is the set N [v] = N(v)∪{v}. The open neighborhood of a set

S ⊆ V is the set N(S) = ∪v∈SN(v), and the closed neighborhood of S is the

set N [S] = N(S) ∪ S. The degree of a vertex v is degG(v) = |NG(v)|. A leaf is

a vertex of degree one and a universal vertex is a vertex of degree |V (G)| − 1.

We denote the number of leaves in a graph G by `(G). The minimum and

maximum degree of G are denoted by δ(G) and ∆(G), respectively. The private

neighborhood of a vertex u with respect to a set D ⊆ V , where u ∈ D, is the

set PNG[u,D] = NG[u] − NG[D − {u}]. If v ∈ PNG[u,D], then we say that

v is a private neighbor of u with respect to D. For a set S of vertices of G

we denote by G[S] the subgraph induced by S in G. The distance dG(u, v)

between two vertices u and v in a connected graph G is the length of a shortest

(u, v)–path in G. A (u, v)–path of length dG(u, v) is called (u, v)–geodesic. The

greatest distance between any pair of vertices u, v in G is the diameter of G,

denoted by diam(G). The girth of a graph G, denoted by g(G), is the length

of its shortest cycle. The girth of a graph with no cycle is defined ∞. The

edge-connectivity κ′(G) of G is the minimum number of edges whose removal

results in a disconnected graph. Clearly for every graph G, κ′(G) ≤ δ(G).

Consult [14] for the notation and terminology which are not defined here.

A set A ⊂ V (G) is a dominating set ofG ifNG[A] = V . The domination number

γ(G) is the minimum cardinality of a dominating set of G, and a dominating

set of minimum cardinality is called a γ(G)–set. A set X is weakly convex in

G if for any two vertices a, b ∈ X there exists an (a, b)–geodesic such that all

of its vertices belong to X. A set X ⊆ V is a weakly convex dominating set

if it is weakly convex and dominating. The weakly convex domination number

γwcon(G) of a graph G equals the minimum cardinality of a weakly convex

dominating set in G.

A set X ⊂ V (G) is convex in G if vertices from all (a, b)-geodesics belong to X

for any two vertices a, b ∈ X. A set X is a convex dominating set if it is convex

and dominating. The convex domination number of a graph G, denoted by

γcon(G), equals the minimum cardinality of a convex dominating set in G and

a convex dominating set of minimum cardinality is called a γcon(G)–set. The

(weakly) convex domination number was first investigated in [15], and since

then has been studied by several authors [4, 16, 17].

Let us denote by Guv or Ge the graph obtained from a graph G by subdividing

an edge e = uv ∈ E(G). The following result was proved in [7].

Proposition 1. The difference between γcon(G) and γcon(Guv) and between
γcon(Guv) and γcon(G) can be arbitrarily large.

It means that subdividing an edge can arbitrarily increase or decrease the

convex domination number.
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The (weakly convex, convex) domination subdivision number sdγ(G)

(sdγwcon
(G), sdγcon(G)) of a graph G is the minimum number of edges that

must be subdivided (where each edge in G can be subdivided at most once) in

order to increase the (weakly convex, convex) domination number. (An edge

uv ∈ E(G) is subdivided if the edge uv is deleted, but a new vertex x is added,

along with two new edges ux and vx. The vertex x is called a subdivision ver-

tex). Since the (weakly convex, convex) domination number of the graph K2

does not change when its only edge is subdivided, we will always assume that

when we discuss sdγcon(G) all graphs involved are connected with ∆(G) ≥ 2.

The domination subdivision number, defined in Velammal’s thesis [18], has

been studied be several authors (see for instance [1, 9, 11, 13]). A similar

concept related to connected domination in [10], to Roman domination in [2],

to rainbow domination in [5, 8], and to 2–domination in [3].

The purpose of this paper is to initialize the study of the convex domination

subdivision number sdγcon(G). Since subdividing an edge may decrease the

convex domination number (Proposition 1), it may not be immediately obvious

that the convex domination subdivision number is defined for all connected

graphs with ∆(G) ≥ 2. We will show this shortly.

We make use of the following results in this paper.

Proposition 2. [15] IfG is a connected graph of order n, then γwcon(G) ≤ γcon(G).

Proposition 3. [4] If G 6= Kn and D is a γcon(G)-set, then every cut-vertex
belongs to D.

2. Basic properties of convex domination subdivision
number

In this section, we investigate the basic properties of the convex domination

subdivision number of a graph.

Theorem 1. Let G be a connected graph on at least three vertices, let ES be
a set of edges of G, let H be obtained from G by subdividing the edges in ES , and
let S be the set of subdivision vertices. If DH is a convex dominating set of H, but
D := DH −S is not a convex dominating set of G, then there exists a cycle of length
at most 4 in G through some vertex of D.

Proof. We first show that D is a dominating set of G. If v is an arbitrary

vertex of G, then either (i) v ∈ D, or (ii) v ∈ NH(w) for some vertex w ∈
DH − S, or (iii) v ∈ NH(w) for some vertex w ∈ S. In case (i) or (ii) it is

immediate the v is dominated by D, and in case (iii) w is the subdivision vertex
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of an edge e of H that is incident with v, and that it follows by the convexity

of DH that the other end of e is contained in DH and thus is D, so v is also

dominated by D.

Since D is a dominating set of G, it follows that D is not convex in G. Let

a, b ∈ D be two vertices of G such that there exists an (a, b)-geodesic P in G

containing vertices of V (G)−D. We assume that a and b have been chosen so

that d(a, b) is minimal with this property. Then

V (P ) ∩D = {a, b}. (1)

Let P = a, a1, a2, . . . , ak, where ak = b. Clearly, k ≥ 2. Now P corresponds

to an (a, b)-path PH in H. None of the edges of P , except possibly aa1 and

ak−1b, are in ES , since otherwise P would contain vertices of D in its interior,

contradicting (1). Since DH is convex in H, it follows that PH is not an (a, b)-

geodesic in H. Hence PH is longer than P , so at least one of the edges of P ,

without loss of generality aa1, is in ES . Let u be the subdivision vertex of aa1.

Now a1 is dominated in H by some vertex b1 ∈ DH (possibly b1 = b). We claim

that b1 6= u. Suppose, to the contrary, that b1 = u. Since DH is convex and

since a1 6∈ DH , we conclude that every (u, b)-geodesic in H passing through

a. Hence, uPHb is a (u, b)-path in H of length at most k + 1 which is not a

(u, b)-geodesic. Let P ′H be a (u, b)-geodesic in H. Clearly, the length of P ′H is

at most k. Now aP ′Hb corresponds to an (a, b)-path P ′ in G of length at most

k − 1 which contradicts d(a, b) = k. Thus b1 6= u. Since b1, a1, u, a is a path

joining two vertices in DH that contains vertices not in DH , it follows by the

convexity of DH that there exists a (b1, a)-path Q in H of length at most two.

The paths a, u, a1, b1 and Q form a cycle of length at most five in H, which

corresponds to a cycle of length at most four in G containing a, as desired.

A closer look at the proof of Theorem 1 leads to the next result.

Corollary 1. Let G be a connected graph on at least three vertices, let ES be
a set of edges of G, let H be obtained from G by subdividing the edges in ES , and
let S be the set of subdivision vertices. If DH is a convex dominating set of H, then
D := DH − S is a dominating set of G.

Theorem 2. For any connected graphG of order n ≥ 3 and sizem, sdγcon(G) ≤ m.

Proof. Let H be the graph obtained from G by subdividing all edges of G, let

T be the set of all subdivision vertices and let DH be a convex dominating set

of H. Clearly, H is a bipartite graph with partite sets V (G) and T . It follows

that γcon(H) ≥ 2. Since for any two vertices x, y ∈ V (G), every (x, y)-geodesic

in H contains at least one subdivision vertex, we conclude that DH∩T 6= ∅. By
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Corollary 1, D := DH − T is a dominating set of G. Now, let a, b ∈ D be two

arbitrary vertices. If P is an (a, b)-geodesic in G, then clearly P corresponds to

an (a, b)-geodesic PH in H. Since DH is convex in H, we deduce that V (P ) ⊆ D
and so D is convex. Thus D is a convex dominating set of G of size smaller

than of γcon(H). This yields sdγcon(G) ≤ m and the proof is completed.

A consequence of Theorem 2 is that sdγcon(G) is defined for every connected

graph G of order n ≥ 3.

Given S, T ⊆ V (G), we write [S, T ] for the set of edges having one end–point

in S and the other in T . An edge cut is an edge set of the form [S, S] , where

S is a nonempty proper subset of V (G) and S denotes V (G)− S.

Theorem 3. For any connected triangle-free graph G of order n ≥ 3, sdγcon(G) ≤
κ′(G).

Proof. Assume ET = [S, S] is an edge cut of G of size κ′(G), G1 and G2 are

the components of G−ET , and H is the graph obtained from G by subdividing

the edges of ET . Let T be the set of all subdivision vertices and let DH be a

convex dominating set of H and Di = DH ∩V (Gi) for i = 1, 2. If DH ∩T = ∅,
then Di 6= ∅ for i = 1, 2, and DH = D1 ∪ D2. Now for vertices x1 ∈ D1 and

x2 ∈ D2, any (x1, x2)-geodesic path intersect T implying that DH∩T 6= ∅ which

leads to a contradiction. Therefore DH ∩T 6= ∅. By Corollary 1, D := DH −T
is a dominating set of G. Now we show that D is convex in G. Assume, to the

contrary, that D is not a convex set in G. Let a, b ∈ D be two vertices of G

such that there exists an (a, b)-geodesic P in G containing vertices of V (G)−D.

We suppose that a and b have been chosen so that d(a, b) is minimal with this

property. Then

V (P ) ∩D = {a, b}. (2)

Let P = a, a1, a2, . . . , ak, where ak = b. Clearly, k ≥ 2. Now P corresponds

to an (a, b)-path PH in H. None of the edges of P , except possibly aa1 and

ak−1b, are in ET , since otherwise P would contain vertices of D in its interior,

contradicting (2). Since DH is convex in H, we conclude that PH is not an

(a, b)-geodesic in H. Hence PH is longer than P , so at least one of the edges

of P , without loss of generality aa1, is in ET . Assume that a ∈ V (G1) and

a1 ∈ V (G2). Let u be the subdivision vertex of aa1. Now a1 is dominated

in H by some vertex b1 ∈ DH (possibly b1 = b). As in the proof of Theorem

1, we have b1 6= u. Since b1, a1, u, a is a path joining two vertices in DH that

contains vertices not in DH , it follows by the convexity of DH that there exists

a (b1, a)-path Q in H of length at most two. Since ET is an edge-cut of G, we

deduce that the (b1, a)-path Q in H has length two. Let Q = b1ya. If b1 ∈ D,

then b1 ∈ V (G2) and y is the subdivision vertex of the edge b1a and this implies
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that aa1b1 is a triangle in G, a contradiction. If b1 ∈ T , then y ∈ V (G1) and

so aa1y is a triangle in G, a contradiction again. Thus D is a convex set in G

and hence D is a convex dominating set of G of size smaller than of γcon(H).

This yields sdγcon(G) ≤ κ′(G) and the proof is completed.

A closer look at the proof of Theorem 3 shows that if ET = [S, S] is an edge-

cut of size one, then b1, a1, u, a is the unique (b1, a)-geodesic in H which is

impossible. Hence we obtain the next result.

Corollary 2. For any connected graph G of order at least 3 with a cut edge,
sdγcon(G) = 1.

The next results are immediate consequences of Theorem 3.

Corollary 3. For any connected triangle-free graph G of order n ≥ 3, sdγcon(G) ≤
δ(G).

Corollary 4. For any connected triangle-free graph G with a cut vertex v,

sdγcon(G) ≤ bdeg(v)/2c.

Theorem 4. If G is a connected graph of order n with g(G) ≥ 5, then sdγcon(G) =
1. In particular, for every edge e ∈ E(G), γcon(Ge) > γcon(G).

Proof. Let e = u1u2 be an arbitrary edge of G. If e is a cut edge, then clearly

γcon(Ge) > γcon(G). Let C = (u1u2 . . . uk) be a cycle containing e. Assume Ge
is obtained from G by subdividing the edge e with subdivision vertex w and

let D be a γcon(Ge)–set. First let {u1, u2} ⊆ D. Then we have w ∈ D. Since

g(G) ≥ 5, we conclude from Theorem 1 that D − {w} is a convex dominating

set of G of size smaller than of γcon(Ge) as desired. Now, let {u1, u2} 6⊆ D.

Assume, without loss of generality, that u2 6∈ D. To dominate w, we must have

u1 ∈ D. If w ∈ D, then as above D − {w} is a convex dominating set of G of

size smaller than of γcon(Ge), as desired. Suppose that w 6∈ D. To dominate

u2, we must D ∩ NG(u2) 6= ∅. Suppose v ∈ D ∩ NG(u2). Since g(G) ≥ 5, we

deduce that dGe
(u1, v) = 3. Since D is a convex dominating set for Ge, we

must have u1, w, u2, v ∈ D, a contradiction. It follows that γcon(Ge) > γcon(G)

and hence sdγcon(G) = 1. This completes the proof.

Corollary 5. For any connected graph G of order n ≥ 6 with g(G) = 4,

sdγcon(G) ≤ bn/2c.
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Proof. Let C = (v1v2v3v4) be a cycle of G and let without loss of generality

that deg(v1) = min{deg(vi) | 1 ≤ i ≤ 4}. Since g(G) = 4, N(v1) ∩N(v2) = ∅.
It follows that δ(G) ≤ deg(v1) ≤ deg(v1)+deg(v2)

2 ≤ n
2 and the result follows

from Corollary 3.

It could be of ample interest if one could find the bound for sdγcon(G) posed in

the following open problems:

Problem 1. Let G be a connected graph of girth four. Is there a constant c

such that sdγcon(G) ≤ c.
Problem 2. Let G be a connected graph of girth three. Is there a constant c

such that sdγcon(G) ≤ c.
Let α′(G) be the maximum number of edges in a matching in G.

Proposition 4. Let G be a connected triangle-free graph of order n ≥ 3. If
α′(G) < n−1

2
, then sdγcon(G) ≤ α′(G).

Proof. Let M = {u1v1, . . . , uα′vα′} be a maximum matching of G and let

X be the independent set of M -unsaturated vertices. Since α′(G) < n−1
2 , we

have |X| ≥ 2. Assume y and z are vertices of X such that deg(y) ≤ deg(z). If

yui ∈ E(G), then since the matching M is maximum, zvi /∈ E(G). Therefore,

for all i ∈ {1, 2, . . . , α′} there are at most two edges between the sets {ui, vi}
and {y, z}. So 2 deg(y) ≤ deg(y) + deg(z) ≤ 2α′ and the result follows by

Corollary 3.

Proposition 5. Let G be a connected graph of order n ≥ 3. If α′(G) > γcon(G),
then sdγcon(G) ≤ α′(G).

Proof. Let M = {u1v1, . . . , uα′vα′} be a maximum matching of G and let G′

be obtained by subdividing every edge of M . Each convex dominating set of

G′ has order at least |M |. Hence γcon(G′) > γcon(G) and thus sdγcon(G) ≤
α′(G).

3. Graphs with small convex domination subdivision
number

In this section, we consider graphs with small convex domination subdivision

number.

Proposition 6. Let G be a connected graph of order n ≥ 3. If G satisfies one of
the following properties:
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(i) γcon(G) = 1;

(ii) γcon(G) = 2 and G contains a γcon(G)–set {a, b} such that N(a) ∩N(b) = ∅;

then sdγcon(G) = 1.

Proof. (i) Since n ≥ 3, the graph Ge obtained by subdividing any edge e of G

has no universal vertex. Hence γcon(Ge) > 1 = γcon(G) and so sdγcon(G) = 1.

(ii) Let G′ be the graph obtained from G by subdividing the edge ab with

subdivision vertex x. Obviously every convex dominating set of G′ contains

at least one of a, b, say a, and either two vertices in N(a) ∪N(b), or x and b.

Hence γcon(G′) ≥ 3 > γcon(G).

Proposition 7. For any connected graph G of order n ≥ 3 with γcon(G) = 2,

sdγcon(G) ≤ 2.

Proof. Since γcon(G) = 2, ∆(G) ≤ n − 2. Let S = {u, v} be a γcon(G)–set.

Assume u′ is a private neighbor of u with respect to S and v′ is a private

neighbor of v with respect to S. Let G′ be the graph obtained from G by

subdividing the edges uu′, vv′ with subdivision vertices x and y, respectively,

and let D be a γcon(G′)-set. We show that |D| ≥ 3 which implies sdγcon(G) ≤
2. Suppose to the contrary that |D| ≤ 2. To dominate x, y, we must have

|D∩{u, u′}| ≥ 1 and |D∩{v, v′}| ≥ 1. Since |D| ≤ 2, we have |D∩{u, u′}| = 1

and |D ∩ {v, v′}| = 1. Since G[D] is connected and since uv′ 6∈ E(G) and

vu′ 6∈ E(G), we deduce that either D = {u, v} or D = {u′, v′}. In each case, D

is not a dominating set of G′ which is a contradiction. Hence γcon(G′) = |D| ≥
3 > γcon(G) and the proof is complete.

Proposition 8. Let k ≥ 2 be an integer. For the complete k-partite graph
G = Kp1,p2,...pk with 2 ≤ p1 ≤ p2 ≤ · · · ≤ pk,

sdγcon(G) =

{
1 if k = 2
2 otherwise.

Proof. It is clear that any two adjacent vertices form a minimum convex

dominating set of G which implies γcon(G) = 2. If k = 2, the result follows from

Proposition 6 (ii). Let k ≥ 3 and let V1, V2, . . . , Vk be the partite sets of G. By

Proposition 7, sdγcon(G) ≤ 2. For any edge e = ab, where a ∈ Vi, b ∈ Vj (i 6= j),

the set {a, v} for each v ∈ Vk (k 6∈ {i, j}) forms a minimum convex dominating

set of G. It follows that sdγcon(G) ≥ 2. Thus sdγcon(G) = 2 and the proof is

complete.
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Proposition 8 shows that the bound in Proposition 7 is sharp.

Proposition 9. Let G be a connected graph of order n ≥ 3 with γcon(G) = 3 or 4.
If G has a triangle, then sdγcon(G) ≤ 3.

Proof. Assume uvw is a triangle in G and let H be the graph obtained from G

by subdividing the edges uv, uw, vw by subdivision vertices x, y, z, respectively.

Let DH be a γcon(H)-set. To dominate the subdivision vertices, we must have

|DH ∩ {u, v, w}| ≥ 2. Assume without loss of generality that u, v ∈ D. Since

DH is convex, we must have x ∈ DH . Hence {u, v, x} ⊆ DH . We show that

|DH | ≥ 5 which implies sdγcon(G) ≤ 3. Suppose to the contrary that |DH | ≤ 4.

To dominate w, we must have DH∩NH [w] 6= ∅. Assume a ∈ DH∩NH [w]. Then

{u, v, x, a} ⊆ DH . If γcon(G) = 3, then we deuce that sdγcon(G) ≤ 3 as desired.

Let γcon(G) = 4. If a = y (the case a = z is similar), then we deduce from

dH(a, v) = 3 that w, z ∈ DH which is a contradiction. Assume that a 6∈ {y, z}.
If a = w, then we must have y, z ∈ DH which leads to a contradiction again.

Hence a 6= w. It follows from |DH | = 4 that au, av ∈ E(G). Hence uva is a

triangle in G. It follows that D := DH−{x} = {u, v, a} is a convex dominating

set of G contradicting γcon(G) = 4. Thus |DH | ≥ 5 and so sdγcon(G) ≤ 3. This

completes the proof.

Next we show that the bound in Proposition 9 is sharp when γcon(G) = 4. The

following graph was introduced by Haynes et al. in [12].

Let X = {1, 2, . . . , 3(k − 1)} and let Y = {Y ⊂ X : |Y | = k}. Thus, Y
consists of all k–subsets of X, and so |Y| =

(
3(k−1)
k

)
. Let Gk be the graph with

vertex set X ∪Y and with edge set constructed as follows: add an edge joining

every two distinct vertices of X and for each x ∈ X and Y ∈ Y, add an edge

joining x and Y if and only if x ∈ Y . Then, Gk is a connected graph of order

n =
(
3(k−1)
k

)
+3(k−1). The set X induces a clique in Gk, while the set Y is an

independent set and each vertex of Y has degree k in Gk. Therefore δ(Gk) = k.

Dettlaff et al. [6] proved that γwcon(Gk) = 2(k − 1).

Proposition 10. For any integer k ≥ 3, γcon(Gk) = 2(k − 1).

Proof. It is easy to see that any subset of X of cardinality 2(k−1) is a convex

dominating set of G, and so γcon(Gk) ≤ 2(k − 1). It follows from Proposition

2 that γcon(Gk) = γwcon(Gk) = 2(k − 1) and the proof is complete.

Proposition 11. For any integer k ≥ 3, sdγcon(Gk) ≥ 3.



52 The convex domination subdivision number of a graph

Proof. Assume e1, e2 are two arbitrary edges of Gk and let G′k be the graph

obtained from Gk by subdividing the edges e1, e2. We show that γcon(G′k) ≤
γcon(Gk) = 2(k − 1). Assume ei = uivi for i = 1, 2. Since every edge of G is

incident with at least one vertex of X, we may assume that ui ∈ X for i = 1, 2.

If vi ∈ Y for i = 1, 2, then let wi be a neighbor of vi in X −{u1, u2}. If v1 ∈ Y
and v2 ∈ X (the case v2 ∈ Y and v1 ∈ X is similar), then let w2 = v2 and

w1 be a neighbor of v1 in X − {u1, u2}. If vi ∈ X for i = 1, 2, then let wi be

any vertex of X − {ui, vi | i = 1, 2}. Assume that D = {u1, u2, w1, w2}. Then

|D| ≤ 4. Now extend D to a set D′ of size 2(k − 1) by adding 2(k − 1) − |D|
vertices of X − {ui, vi | i = 1, 2}. Clearly D′ is a convex dominating set of G′k,

and so γcon(G′k) ≤ 2(k − 1) = γcon(Gk). This implies that sdγcon(Gk) ≥ 3 and

the proof is complete.

In the case k = 3, Propositions 10 and 11 demonstrate that the bound of

Proposition 9 is sharp when γcon(G) = 4.

Proposition 12. For every connected triangle-free graph G with γcon(G) = 3,
sdγcon(G) ≤ 2.

Proof. Let G be triangle-free and let D = {u1, u2, u} be a γcon(G)-set. Since

G[D] is connected and since G is triangle-free, G[D] is a path. Suppose G[D] =

u1uu2. It follows from convexity of D that

NG(u1) ∩NG(u2) = {u}. (3)

If ui has no private neighbor with respect to D for some i, then clearly D−{ui}
is a convex dominating set of G which is a contradiction. Hence, assume ui has

a private neighbor, say vi, with respect to D, for i = 1, 2. It follows that

u 6∈ NG(v1) ∪NG(v2). (4)

Let G′ be the graph obtained from G by subdividing the edges u1v1, u2v2
with vertices x1, x2, respectively, and let D′ be a γcon(G′)-set. We show that

|D′| ≥ 4. Suppose to the contrary that |D′| ≤ 3. To dominate xi, we must

have D′ ∩ {ui, vi} 6= ∅ for i = 1, 2. If {ui, vi} ⊆ D′ for some i, then xi ∈ D′
implying that |D′| ≥ 4, a contradiction. Let |{ui, vi} ∩ D′| = 1 for each i. If

u1, u2 ∈ D′, then clearly u ∈ D′ and so D′ = {u, u1, u2}. But then v1 is not

dominated by D′ since v1 is a private neighbor of u1 with respect to D in G,

a contradiction. If u1, v2 ∈ D′ (the case u2, v1 ∈ D′ is similar), then u1 and

v2 must have a common neighbor, say w, such that D′ = {u1, v2, w}. Now to

dominate u2, we must have wu2 ∈ E(G) which is a contradiction because G is
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triangle-free. Let v1, v2 ∈ D′ and let D′ = {v1, v2, w}. By (4), we have w 6= u.

On the other hand, w 6= ui for some i, say i = 1. Since D′ is a dominating

set, we must have wu,wu1 ∈ E(G) which leads to a contradiction because G

is triangle-free. This completes the proof.

Theorem 5. For every connected graph G with γcon(G) = 4, sdγcon(G) ≤ 3.

Proof. If G has a triangle, then the result follows by Proposition 9. Hence-

forth, let G be triangle-free. Let D = {u1, u2, u3, u4} be a γcon(G)-set such

that the size of G[D] is as large as possible. Since the induced subgraph G[D]

is connected, we consider three cases.

Case 1. G[D] = C4 = (u1, u2, u3, u4).

Since D is a convex set, we deduce that NG(u1) ∩ NG(u3) = {u2, u4} and

NG(u2) ∩ NG(u4) = {u1, u3}. Let G′ be the graph obtained from G by sub-

dividing the edges u1u2, u2u3, u3u4 with subdivision vertices x1, x2, x3, respec-

tively. Suppose D1 is a γcon(G′)-set. To dominate x1, we must have u1 ∈ D1

or u2 ∈ D1, to dominate x2, u2 ∈ D1 or u3 ∈ D1, and to dominate x3, u3 ∈ D1

or u4 ∈ D1. Consider the following subcases.

Subcase 1.1. u1, u3 ∈ D1 (the case u2, u4 ∈ D1 is similar).

Since NG(u1) ∩NG(u3) = {u2, u4} and P = u1u4x3u3 is a path of length 3 in

G′, we deduce that dG′(u1, u3) = 3. This implies that u1, u4, x3, u3 ∈ D1. Now

to dominate u2, we must have NG′(u2) ∩D1 6= ∅. Since G is triangle-free, we

deduce that |D1| ≥ 5 as desired.

Subcase 1.2. u2, u3 ∈ D1.

Since D1 is a convex set, we have x2 ∈ D1. If x1, x3 ∈ D1, then |D1| ≥ 5

as desired. Let without loss of generality that x1 6∈ D1. This implies that

u1 6∈ D1. To dominate u1, we must have NG′(u1)∩D1 6= ∅. Let w ∈ NG′(u1)∩
D1. Since G is triangle-free and since NG(u1) ∩ NG(u3) = {u2, u4}, we have

dG′(w, {u2, x2, u3}) ≥ 2. It follows from the convexity of D1 that |D1| ≥ 5 and

we are done.

Case 2. G[D] = P4 = u1u2u3u4.

Then u1u4 6∈ E(G). It follows from the convexity of D that dG(u1, u4) = 3,

NG(u1)∩NG(u3) = {u2} and NG(u2)∩NG(u4) = {u3}. Suppose G′ is the graph

obtained from G by subdividing the edges u1u2, u2u3, u3u4 with subdivision

vertices x1, x2, x3, respectively. Assume D2 is a γcon(G′)-set. It now will be

shown that |D2| ≥ 5. To dominate x2, we must have D2∩{u2, u3} 6= ∅. Assume

without loss of generality that u2 ∈ D2. Now to dominate x3, we must have

D2 ∩ {u3, u4} 6= ∅. Consider two subcases.

Subcase 2.1. u3 ∈ D2.

Since D2 is a convex set, x2 ∈ D2. If x1, x3 ∈ D2, then |D2| ≥ 5 and we
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are done. Assume without loss of generality that x1 6∈ D2. Now to dominate

u1, we must have D2 ∩ NG′(u1) 6= ∅. Let w ∈ D2 ∩ NG′(u1). Therefore

{u2, x2, u3, w} ⊆ D2. Since D2 is a convex set and since G is triangle-free, u4
is not dominated by the set {u2, x2, u3, w} implying that |D2| ≥ 5 as desired.

Subcase 2.2. u4 ∈ D2.

Since G is triangle-free and NG(u2)∩NG(u4) = {u3}, we have dG′(u2, u4) ≥ 3.

If dG′(u2, u4) ≥ 4, then it follows from convexity of D2 that |D2| ≥ 5 and we

are done. Let dG′(u2, u4) = 3 and let Q = u2w1w2u4 is a path with length 3 in

G′. Then {u2, w1, w2, u4} ⊆ D2. Since u1u4 6∈ E(G), dG(u1, u4) = 3 and G is

triangle-free, we deduce that u1 is not dominated by {u2, w1, w2, u4} implying

that |D2| ≥ 5 as desired.

Case 3. G[D] = K1,3.

Assume u is the center of G[D] = K1,3 and u1, u2, u3 are leaves adjacent to

u. If ui has no private neighbor with respect to D for some i, then clearly

D−{ui} is a convex dominating set of G which is a contradiction. Henceforth,

assume ui has a private neighbor with respect to D, say vi, for each i. Let G′

be the graph obtained from G by subdividing the edges u1v1, u2v2, u3v3 with

vertices x1, x2, x3, respectively, and let D3 be a γcon(G′)-set. We show that

|D3| ≥ 5. Assume, to the contrary, that |D3| ≤ 4. To dominate xi, we must

have D3 ∩ {ui, vi} 6= ∅ for each i. If {ui, vi} ⊆ D3 for some i, then xi ∈ D3

implying that |D3| ≥ 5, a contradiction. Let |{ui, vi}∩D3| = 1 for each i. Now

we consider the following subcases.

Subcase 3.1. ui, uj ∈ D3.

Assume without loss of generality that u1, u2 ∈ D3. Since d(u1, u2) = 2,

we must have u ∈ D3 because D3 is a convex set. If u3 ∈ D3, then

D3 = D = {u, u1, u2, u3} and v1 is not dominated by D3 since v1 is a pri-

vate neighbor of u1 with respect to D, a contradiction. Let v3 ∈ D3. Then

D3 = {u, u1, u2, v3}. Since v3 is a private neighbor of u3 with respect to D,

we deduce that dG′(v3, {u, u1, u2}) ≥ dG(v3, {u, u1, u2}) ≥ 2. Hence, v3 is an

isolated vertex in G′[D3] which contradicts the connectedness of G′[D3].

Subcase 3.2. ui, vj , vk ∈ D3 where {j, k} = {1, 2, 3} − {i}.
Assume without loss of generality that i = 1. Since v2 is a private neighbor of

u2 with respect to D, dG′(u1, v2) ≥ dG(u1, v2) ≥ 2. First let dG′(u1, v2) = 2.

Assume w ∈ N(u1)∩N(v2). Then D3 = {u1, w, v1, v2} and w must dominate u2
which leads to a contradiction because G is triangle-free. Now let dG′(u1, v2) ≥
3. Similarly, we may assume dG′(u1, v3) ≥ 3. It follows from the convexity of

D3 that |D3| ≥ 5, a contradiction again.

Subcase 3.3. v1, v2, v3 ∈ D3.

LetD3 = {v1, v2, v3, w}. Then w must be adjacent to ui for each i. SinceG′[D3]

is connected, we may assume that wv1 ∈ E(G). This leads to a contradiction

because G is triangle-free and the proof is complete.
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We conclude this paper with an open problem.

A connected graph G is called convex domination subdivision critical if subdi-

viding every edge of G increases the convex domination number of G.

Problem 3. Characterize the convex domination subdivision critical graphs.
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