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Abstract: Let G be a connected graph. Let f be a proper k-coloring of G and
Π = {R1, R2, . . . , Rk} be an ordered partition of V (G) into color classes. For

any vertex v of G, define the color code cΠ(v) of v with respect to Π to be a k-
tuple (d(v,R1), d(v,R2), . . . , d(v,Rk)), where d(v,Ri) = min{d(v, x)|x ∈ Ri}.
If distinct vertices have distinct color codes, then we call f a locating coloring

of G. The locating-chromatic number of G is the minimum number k such that
G admits a locating coloring with k colors. In this paper, we determine a lower

bound of the locating-chromatic number of Halin graphs. We also give the
locating-chromatic number of a Halin graph of a double star.
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1. Introduction

Let G be a connected graph. Let f be a proper k-coloring of G and Π =

{R1, R2, . . . , Rk} be an ordered partition of V (G) into color classes. For any

vertex v of G, define the color code cΠ(v) of v with respect to Π to be a k-tuple

(d(v,R1), d(v,R2), . . . , d(v,Rk)), where d(v,Ri) = min{d(v, x) | x ∈ Ri}. If

distinct vertices have distinct color codes, then we call f a locating coloring of

G. The locating-chromatic number of G, denoted by χL(G), is the minimum

number k such that G admits a locating coloring with k colors. Two distinct

vertices x and y in G are resolved by a vertex z if d(x, z) 6= d(y, z). Without

loss of generality, if f(x) = t 6= f(y), then the tth-element of color code of x is

0 but the tth-element of color code of y is at least 1. So, in this case, we only

need to consider two distinct vertices in G which have same color.

The locating-chromatic number of graphs was initially studied by Chartrand et

al. in [9]. They established some bounds on the locating-chromatic number of

a graph and determined values of this parameter for some well known classes

of graphs such as path, cycle, and double star. They also studied the locating-

chromatic number of trees. However, the locating-chromatic number of all

trees are not completely solved. Furthermore, regarding trees, the locating-

chromatic number for the amalgamation of stars is given in [1], and the value

for a firecracker is given in [4]. Baskoro and Asmiati [3] was able to characterize

all trees with locating-chromatic number 3.

Chartrand et al. [10] characterized all non-tree graphs of order n with locating-

chromatic number n − 1. Asmiati and Baskoro [2] gave a characterization of

all non-tree graphs with locating-chromatic number 3. One well-known kind of

non-tree graphs is a Halin graph.

Let T be a tree with no vertices of degree two and having at least four vertices.

A Halin graph H(T ) is a planar graph constructed from a plane embedding

of tree T by connecting all the leaves of the tree (the vertices of degree 1)

with a cycle that passes around the tree in the natural cyclic order defined

by the embedding of the tree [12]. Halin graphs play a vital role in under-

standing the inherent complexity of the problem and a good candidate graph

class between the class of trees and planar graphs. Therefore, there are many

researchers, both from theoretical and application perspective, interested in

studying about Halin graph. The first result was given by Rudolf Halin [12].

He studied minimally n-connected graphs and introduced the Halin graphs as a

class of minimally 3-vertex-connected graphs. Some researchers studied prob-

lems dealing with Halin graphs, including travelling salesman problem [11],

hamiltonian properties [5], coloring [13].

Some researchers also considered on the locating-chromatic number of graphs

produced by a graph operation, i.e., the join of graphs [7], Cartesian product
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[8], and corona product [6].

Based on the results given by Asmiati and Baskoro [2], we know that there

is no Halin graph having locating-chromatic number 3. So, we can make a

conclusion as in the following corollary.

Corollary 1. Let T be a tree with no vertices of degree two and having at least 4
vertices. Then, χL(H(T )) ≥ 4.�

In [7], Behtoei and Anbarloei defined another new parameter which is useful

in finding the locating-chromatic number of some graphs. Let f be a proper

k−coloring of a graph G. If f(NG(u)) 6= f(NG(v)) for each two distinct vertices

u and v with the same color, then we say that f is a neighbor locating coloring

of G. The neighbor locating-chromatic number χL2(G) is the minimum positive

integer k such that G has a neighbor locating k− coloring. They also gave the

following theorem for the neighbor locating-chromatic number of paths.

Theorem 1. [7] For n ≥ 2, χL2(Pn) = m, where m = min{k|k ∈ N, n ≤
1
2
(k3 − k2)}. In particular, there exists a neighbor locating m − coloring f of the

path Pn = u1u2...un such that f(un−1) = 2 and f(un) = 1. Additionally, for n ≥ 9,
f(un−2) = m. Moreover, for n ≥ 9 and n 6= 1

2
(m3−m2)−1, f(u1) = 2 and f(u2) = 1.

For n ≥ 2, let Fn be a fan on n+1 vertices with the hub u, namely Fn = K1+Pn

where K1 = {u} and Pn is a path u1u2...un. By using the neighbor locating

coloring of a path, we can construct a neighbor locating coloring of a fan. By

Theorem 1, there exists a neighbor locating m − coloring f of the path Pn =

u1u2...un where m = χL2(Pn) such that f(un−1) = 2, f(un) = 1. For n ≥ 9,

f(un−2) = m. Moreover, for n ≥ 9 and n 6= 1
2 (m3 −m2) − 1, f(u1) = 2, and

f(u2) = 1. Now define a new coloring f ′ of Fn as f ′(ui) = f(ui), for 1 ≤ i ≤ n,
and f ′(u) = m+1. Since f ′(u) = m+1 6= f ′(ui) for each 1 ≤ i ≤ n then f ′ is a

proper coloring of Fn. Note that E(Fn) = E(Pn)∪ {uiu|1 ≤ i ≤ n}. Hence, for

each integer i with 1 ≤ i ≤ n, we have f ′(NFn
(ui)) = f(NPn

(ui)) ∪ {m + 1}.
Therefore, f ′ is a neighbor locating (m+1)−coloring of Fn where f ′(un−1) = 2,

f ′(un) = 1, f ′(u) = m+ 1. For n ≥ 9, f ′(un−2) = m. Moreover, for n ≥ 9 and

n 6= 1
2 (m3 −m2)− 1, f ′(u1) = 2 and f ′(u2) = 1. Hence, we have the following

observation as a combination of two results in [7].

Observation 1. For n ≥ 2, let Fn = K1+Pn where K1 = {u} and Pn = u1u2...un.
Let m = min{k ∈ N | n ≤ 1

2
(k3 − k2)}. Then, χL(Fn) = m + 1. In particular,

there exists a neighbor locating (m + 1)−coloring f ′ of Fn such that f ′(un−1) = 2,
f ′(un) = 1, f ′(u) = m + 1. Additionally, for n ≥ 9, f ′(un−2) = m. Moreover, for
n ≥ 9 and n 6= 1

2
(m3 −m2)− 1, f ′(u1) = 2 and f ′(u2) = 1.�
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By using the neighbor locating coloring concept, Behtoei and Anbarloei were

able to obtain the locating-chromatic number of wheels in the following theo-

rem.

Theorem 2. [7] For n ≥ 3, let Wn be a wheel of order n + 1. Let m = min{k ∈
N | n ≤ 1

2
(k3 − k2)}. Then,

χL(Wn) =


1 + χL(Cn), if n < 9;
1 +m, if n ≥ 9 and n 6= 1

2
(m3 −m2)− 1;

2 +m, if n ≥ 9 and n = 1
2
(m3 −m2)− 1.

Now, we will derive a lower bound of the locating-chromatic number of a Halin

graph in general. In particular, we determine the locating-chromatic number

of a Halin graph of a double star.

2. Main Results

Let m be an integer with m ≥ 11. In this section, consider a Halin graph

H of order m. Let Fn be a largest fan on n + 1 vertices in H. Obviously,

n < m. Let A := {u, u1, u2, . . . , un} be the vertex set of Fn and f be a locating

coloring on H. Now, let B = {u3, . . . , un−2}. By the definition of H, every

two distinct vertices x and y in B will have the same distance to each vertex

z in V (H) − B − {u2, un−1}, since d(x, z) = d(x, u) + d(u, z) = 1 + d(u, z) =

d(y, u)+d(u, z) = d(y, z). This means that any two vertices in B can be resolved

only by their neighbors. The other fact that we can observe is two distinct

vertices x ∈ {u2, un−1} and y ∈ A can be resolved by a vertex z ∈ V (H) − A
if and only if z has a color different from all vertices in A. If x ∈ {u1, un}
and y ∈ A, then two neighbors of x or two neighbors of y are the only vertices

which can resolve x and y. Therefore, we have the following observation.

Observation 2. For n ≥ 10, let Fn be a largest fan of order n+1 in a Halin graph
H. Let A := {u, u1, u2, . . . , un} be the vertex set of Fn and f be a locating coloring of
H. Then, we have the following facts.

1. Every two distinct vertices in {u3, . . . , un−2} can only be resolved by their neigh-
bors.

2. If x ∈ {u2, un−1} and y ∈ A are resolved only by a vertex z ∈ V (H)− A, then
z has different color with all vertices in A.

3. If x ∈ {u1, un} and y ∈ A are resolved by a vertex z ∈ V (H) − A, and f(z) ∈
f(A), then z is adjacent to x. �

Now, we are ready to prove the following theorem.
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Theorem 3. Let H be a Halin graph. If Fn is a largest fan in H for some n ≥ 2,
then χL(H) ≥ χL(Fn).

Proof. If n ≤ 9, then it is obvious that χL(H) ≥ 4 ≥ χL(Fn) by the Corollary

1 and Observation 1.

Now, assume n ≥ 10. Let A = {u, u1, u2, . . . , un} be the vertex set of the

largest fan subgraph Fn of H and u be the hub (the vertex of degree n) of Fn.

Let χL(Fn) = t. By Observation 1, we have t = m + 1 where m = min{k ∈
N | n ≤ 1

2 (k3−k2)}. Therefore, n ≤ 1
2 (m3−m2) but n > 1

2 ((m−1)3−(m−1)2).

So, n ≥ 1
2 ((t− 2)3− (t− 2)2) + 1. Suppose on the contrary that χL(H) = t− 1.

Then, we have a locating (t− 1)−coloring on H, say f.

Case 1. |f(A)| = t− 1.

Since u is adjacent to all ui, then f(u) 6= f(ui) for all 1 ≤ i ≤ n. So, |f(A′)| =
t−2 where A′ = {u1, . . . , un}. Since all colors are in f(A), then by Observation

2 every two distinct vertices in A′ can be only distinguished by their adjacent

vertices which are not u. Hence, there are at most (t− 2)(t− 3) possible color

codes of x ∈ A′ having exactly two ordinates 1 and there are at most (t −

2)

(
t− 3

2

)
possible color codes of x ∈ A′ having exactly three ordinates 1.

This means that there are at most (t−2)

(
(t− 3) +

(
t− 3

2

))
= 1

2 ((t−2)3−

(t−2)2) distinct color codes. It contradicts the fact n ≥ 1
2 ((t−2)3−(t−2)2)+1.

Case 2. |f(A)| < t− 1.

Since u is adjacent to all ui, then f(u) 6= f(ui) for all 1 ≤ i ≤ n. So, |f(A′)| <
t − 2 where A′ = {u1, . . . , un}. Since all colors, except one color, are in f(A),

then by Observation 2 every two distinct vertices in A′′ = {u3, u4, . . . , un−2}
can be only distinguished by their adjacent vertices which are not u. Hence,

there are at most (t − 3)(t − 4) possible color codes of x ∈ A′′ having exactly

two ordinates 1 and there are at most (t− 3)

(
t− 4

2

)
possible color codes of

x ∈ A′ having exactly three ordinates 1. This means that there are at most

(t − 3)

(
(t− 4) +

(
t− 4

2

))
= 1

2 ((t − 3)3 − (t − 3)2) distinct color codes. It

contradicts the fact n− 4 ≥ 1
2 ((t− 2)3 − (t− 2)2)− 3.

Therefore, χL(H) ≥ t = χL(Fn).

The lower bound in Theorem 3 is sharp for some wheels Wn, i.e. for n ≥ 9 and

n 6= 1
2 (m3 −m2) − 1 where m = min{k ∈ N | n ≤ 1

2 (k3 − k2)}. Next, we will

give the another graph that has the locating-chromatic number in this bound,

i.e. a Halin graph of a double star.

Let Sa,b be a double star with V (Sa,b) = {u, u1, u2, . . . , ua, v, v1, v2, . . . , vb} and

E(Sa,b) = {uui|1 ≤ i ≤ a}∪{vvi|1 ≤ i ≤ b}∪{uv}. Let Wn be a wheel of order
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n+ 1.

Theorem 4. Let a, b be integers such that a ≥ b and a+ b ≥ 10. Let H(Sa,b) be a
Halin graph of a double star Sa,b and m = min{k ∈ N | a ≤ 1

2
(k3 − k2)}. Then,

χL(H(Sa,b)) =

{
m+ 2, if χL(Fa) < χL(Wa+b) and χL(Fa) = χL(Fb);
m+ 1, otherwise.

Proof. Let V (H(Sa,b)) = V (Sa,b) and E(H(Sa,b)) = E(Sa,b) ∪ {uiui+1|1 ≤
i ≤ a− 1} ∪ {vivi+1|1 ≤ i ≤ b− 1} ∪ {u1vb} ∪ {uav1}.
Case 1. χL(Fa) = χL(Wa+b).

Since a ≥ b and a+ b ≥ 10 and m = min{k ∈ N | a ≤ 1
2 (k3− k2)}, by Theorem

3, χL(H(Sa,b)) ≥ χL(Fa) = m + 1. Now, we need to construct a locating

(m+ 1)−coloring of H(Sa,b).

Subcase 1.1. χL(Fa) > χL(Fb).

Let f be a locating (m + 1)−coloring of Fa and f1 be a locating coloring of

Fb. Without loss of generality, by Observation 1 we can choose the colorings f

and f1 such that f(u) = m + 1, f1(v1) 6= f(ua−1) and f1(vb) 6= f(u2). Now,

construct a locating coloring f2 of H(Sa,b) such that

f2(x) =


f(ui), if x = ui for 1 ≤ i ≤ a;

f1(vi), if x = vi for 1 ≤ i ≤ b;
f(u), if x = u;

f1(v), if x = v.

Let Π,Π1, and Π2 be the resulting partitions by the colorings f, f1, and f2,

respectively and Ri be the ith color class induced by f2. Let x, y ∈ V (H(Sa,b))

with f2(x) = f2(y). Since χL(Fa) = χL(Wa+b), by coloring f2, cΠ2
(u) = cΠ(u)

and cΠ2
(ui) = cΠ(ui) for all 1 ≤ i ≤ a. For each x ∈ {v, v1, v2, . . . , vb}, the

ith−element of cΠ2
(x) is the same as the ith−element of cΠ1

(x) for every i, 1 ≤
i ≤ χL(Fb) and the (m+ 1)th−element of cΠ2(x) is 1 if x = v and 2 otherwise.

So, the remaining case to be considered is x = ui and y = vj for 1 ≤ i ≤ a and

1 ≤ j ≤ b. In this case, we have d(x,Rm+1) = 1 6= 2 = d(y,Rm+1). So, f2 is a

locating coloring on H(Sa,b).

Subcase 1.2. χL(Fa) = χL(Fb).

Let V (Wa+b) = {u;u1, u2, · · · , ua, v1, v2, · · · , vb} where u is the hub of Wa+b.

Let f be a locating (m + 1)−coloring of Wa+b such that f(u) = m + 1. Let

A = {vi ∈ V (Wa+b)|f(vi) = m)}. Now, construct a locating coloring f1 for
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H(Sa,b) such that

f1(x) =


f(ui), if x = ui for 1 ≤ i ≤ a;

f(vi), if x = vi for 1 ≤ i ≤ b and x /∈ A;

m, if x = v;

m+ 1, otherwise.

Let Π and Π1 be the resulting partitions by the colorings f and f1, respectively.

By the coloring f1, vertex v becomes a dominant vertex. Now, consider vertex

vi with f1(vi) 6= m. For each j ∈ {1, 2, . . . ,m − 1}, the jth−element of the

color code of vi is the same as before. The mth−element of the color code of vi
under coloring f1 becomes the (m+ 1)th−element of the color code of vi under

coloring f, and vice versa. Then all color codes of ui and vi are different. So,

f1 is a locating coloring on H(Sa,b).

Case 2. χL(Fa) < χL(Wa+b).

Subcase 2.1. χL(Fa) > χL(Fb).

Since a ≥ b and a+ b ≥ 10 and m = min{k ∈ N | a ≤ 1
2 (k3− k2)}, by Theorem

3, χL(H(Sa,b)) ≥ χL(Fa) = m + 1. Now, we need to construct a locating

(m+ 1)−coloring of H(Sa,b).

Let f be a locating (m + 1)−coloring of Fa and f1 be a locating coloring of

Fb. Without loss of generality, by Observation 1 we can choose the colorings f

and f1 such that f(u) = m + 1, f1(v1) 6= f(ua−1) and f1(vb) 6= f(u2). Now,

construct a locating coloring f2 of H(Sa,b) such that

f2(x) =


f(ui), if x = ui for 1 ≤ i ≤ a;

f1(vi), if x = vi for 1 ≤ i ≤ b;
f(u), if x = u;

f1(v), if x = v.

Let Π,Π1, and Π2 be the resulting partitions by the colorings f, f1, and f2,

respectively and Ri be the ith color class induced by f2. Let x, y ∈ V (H(Sa,b))

with f2(x) = f2(y). Since χL(Fa) > χL(Fb), by coloring f2, cΠ2
(u) = cΠ(u) and

cΠ2
(ui) = cΠ(ui) for 1 ≤ i ≤ a. For each x ∈ {v, v1, v2, . . . , vb}, the ith−element

of cΠ2
(x) is the same as the ith−element of cΠ1

(x) for every i, 1 ≤ i ≤ χL(Fb)

and the (m + 1)th−element of cΠ2(x) is 1 if x = v and 2 otherwise. So, the

remaining case to be considered is x = ui and y = vj for 1 ≤ i ≤ a and

1 ≤ j ≤ b. In this case, we have d(x,Rm+1) = 1 6= 2 = d(y,Rm+1). So, f2 is a

locating coloring on H(Sa,b).

Subcase 2.2. χL(Fa) = χL(Fb).

For the lower bound, suppose that χL(H(Sa,b)) = m + 1. Then we have a

locating (m+ 1)−coloring f of H(Sa,b) such that f(u) = m+ 1 and f(v) = m.



8 The locating-chromatic number for Halin graphs

Let A = {vi ∈ V (H(Sa,b))|f(vi) = m + 1)}. Now, construct a coloring f1 on

Wa+b such that

f1(x) =


f(ui), if x = ui for 1 ≤ i ≤ a;

f(vi), if x = vi for 1 ≤ i ≤ b and x /∈ A;

m+ 1, if x = u;

m, otherwise.

It is easy to check that f1 is a locating (m + 1)−coloring on Wa+b. This is a

contradiction with the fact that χL(Fa) < χL(Wa+b).

For the upper bound, let f be a locating (m + 1)−coloring of Fa and f1 be a

locating (m + 1)−coloring of Fb. Without loss of generality, by Observation 1

we can choose the colorings f and f1 such that f(u) = m+1, f1(v1) 6= f(ua−1)

and f1(vb) 6= f(u2). Now, construct a locating coloring f2 of H(Sa,b) such that

f2(x) =


f(ui), if x = ui for 1 ≤ i ≤ a;

f1(vi), if x = vi for 1 ≤ i ≤ b;
f(u), if x = u;

m+ 2, if x = v.

Let Π,Π1, and Π2 be the resulting partitions by the colorings f, f1, and f2, re-

spectively and Ri be a ith color class induced by f2. Let x, y ∈ V (H(Sa,b)) with

f2(x) = f2(y). By coloring f2, for every vertex in V (H(Sa,b)), the ith−element

of cΠ2
(x) is same as the ith−element of cΠ(x) or cΠ1

(x), except on i = m+ 2.

So, if x = ui and y = uj or x = vi and y = vj , then cΠ2(x) 6= cΠ2(y). Therefore,

the remaining case to be considered is x = ui and y = vj for 1 ≤ i ≤ a and

1 ≤ j ≤ b. In this case, we have d(x,Rm+2) = 2 6= 1 = d(y,Rm+2). So, f2 is a

locating coloring on H(Sa,b).
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