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Abstract: A signed graph is a graph where the edges are assigned either

positive or negative signs. Net degree of a signed graph is the difference between
the number of positive and negative edges incident with a vertex. It is said to

be net-regular if all its vertices have the same net-degree. Laplacian energy of
a signed graph Σ is defined as ε(L(Σ)) =

∑n
i=1 |γi −

2m
n
| where γ1, γ2, . . . , γn

are the eigenvalues of L(Σ) and 2m
n

is the average degree of the vertices in Σ.

In this paper, we define net-Laplacian matrix considering the edge signs of a
signed graph and give bounds for signed net-Laplacian eigenvalues. Further, we

introduce net-Laplacian energy of a signed graph and establish net-Laplacian

energy bounds.

Keywords: Net-regular signed graph, net-Laplacian matrix, net-Laplacian en-
ergy.
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1. Introduction

A signed graph is an ordered pair Σ = (G, σ), where G is the underlying graph

of Σ and σ : E → {+1,−1}, called signing (or a signature), is a function from

the edge set E(G) of G into the set {+1,−1}. It is said to be homogeneous if its

edges are all positive or negative otherwise heterogeneous. Negation of a signed

graph is the same graph with all signs reversed. The sign of a cycle in a signed

graph is the product of the signs of its edges. Thus a cycle is positive if and
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only if it contains an even number of negative edges. Signed graph is balanced

(or cycle balanced) if all of its cycles are positive otherwise unbalanced.

The adjacency matrix of a signed graph is the square matrix A(Σ) = (aij)

where (i, j) entry is +1 if σ(vivj) = +1 and −1 if σ(vivj) = −1, 0 otherwise.

The characteristic polynomial of a signed graph Σ is defined as Φ(Σ : λ) =

det(λI − A(Σ)), where I is an identity matrix of order n. The roots of the

characteristic equation Φ(Σ : λ) = 0, denoted by λ1, λ2, . . . , λn are called

the eigenvalues of signed graph Σ. If the distinct eigenvalues of A(Σ) are

λ1 > λ2 > · · · > λt and their multiplicities are m1,m2, . . . ,mt, then the

spectrum of Σ is Sp(Σ) = {λ(m1)
1 , λ

(m2)
2 , . . . , λ

(mt)
n }.

Two signed graphs are cospectral if they have the same spectrum. The spectral

criterion for balance in signed graph is given by B.D.Acharya as follows:

Theorem 1. [1] A signed graph is balanced if and only if it is cospectral with the
underlying graph. i.e. Sp(Σ) = Sp(G).

Theorem 2. [15] Two signed graphs Σ1 = (G, σ1) and Σ2 = (G, σ2) on the same
underlying graph are switching equivalent if and only if they are cycle isomorphic.

In signed graph Σ, the degree of a vertex v is defined as sdeg(v) = d(v) =

d+(v) + d−(v), where d+(v)((d−(v)) is the number of positive(negative) edges

incident with v. The net degree of a vertex v of a signed graph Σ is d±(v) =

d+(v) − d−(v). It is said to be net-regular of degree k if all its vertices have

same net-degree equal to k. Hence net-regularity of a signed graph can be

either positive, negative or zero. We denote dneti for the net degree of a vertex

vi of a signed graph Σ and the vector dnet = (dnet1 , dnet2 , . . . , dnetn ).

Lemma 1. [14] If Σ is a k net-regular signed graph, then k is an eigenvalue of Σ
with j as an eigenvector with all 1’s.

Co-regularity pair of a signed graph is defined as follows:

Definition 1. [6] A signed graph Σ = (G, σ) is said to be co-regular if the
underlying graph G is regular for some positive integer r and Σ is net-regular with
net-degree k for some integer k and the co-regularity pair is an ordered pair of (r, k).

Theorem 3. [11] If Σ is a net-regular signed graph then its underlying graph is
not necessarily a regular graph.
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Definition 2. [4] If λ1, λ2, . . . , λn are the eigenvalues of Σ, then signed energy is
defined as

ε(Σ) =

n∑
i=1

|λi|.

Definition 3. [3] If γ1, γ2, . . . , γn are the eigenvalues of L(Σ), then Laplacian
energy of a signed graph is defined as

ε(L(Σ)) =

n∑
i=1

|γi −
2m

n
|

where 2m
n

is the average degree of the vertices in Σ.

Graph energy is well documented in [9] and signed graph energy is discussed

in [2–4, 10, 12]. For standard terminology and notations in graph theory we

follow D.B. West [13] and for signed graphs we follow T. Zaslavsky [14, 16].

In [8] Hou et. al. extended the concept of Laplacian matrices of a graph

to signed graphs. But, Laplacian matrix in signed graph is defined without

considering the weight of the edges. i.e. L(Σ) = D(Σ)−A(Σ) where D(Σ) is a

diagonal matrix with degrees of vertices of underlying graph of Σ. Main aim of

this paper is to consider the edge signs of a signed graph and define signed net-

Laplacian matrix and also give bounds for signed graph eigenvalues as well as

signed net-Laplacian eigenvalues. Further, we introduce net-Laplacian energy

of a signed graph and establish some upper and lower bounds for net-Lapalcian

energy of signed graphs.

2. Signed eigenvalues and net-Laplacian eigenvalues

In this section, we give bounds for signed graph eigenvalues and signed net-

Laplacian eigenvalues. Rayleigh-Ritz Theorem is used to find upper and lower

bounds for the eigenvalues of a symmetric matrix.

Lemma 2. [7] Let A ∈ Rn×n be symmetric. Then

λmax(A) = max
x∈Rn\{0}

xTAx

xTx

and

λmin(A) = min
x∈Rn\{0}

xTAx

xTx
.
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We denote total number of positive and negative edges in signed graph by m+

and m− respectively. We consider m = m+ +m− and M = m+−m−. Lemma

3 characterizes net-regular signed graphs.

Lemma 3. [11] If Σ = (G, σ) is a connected net-regular signed graph with net
degree k, then k = 2M

n
where M = (m+ −m−).

Following result gives the eigenvalue bounds for adjacency matrix of a signed

graph.

Theorem 4. Let Σ = (G, σ) be a connected signed graph with n vertices and
λ1, λ2, . . . , λn be the eigenvalues of adjacency matrix A(Σ). Then

λn(A(Σ)) ≤ 2M

n
≤ λ1(A(Σ))

where M = m+ −m−.

Proof. Let A(Σ) be an adjacency matrix of a signed graph Σ and let j =

(1, 1, . . . , 1)T . Since each row sum of A(Σ) gives net-degree of each vertex vi
for i = 1, 2, . . . , n, we have

A(Σ)j = (Σn
k=1a1k,Σ

n
k=1a2k, . . . ,Σ

n
k=1ank)

= (dnet1 , dnet2 , . . . , dnetn )

= dnet.

Hence jTA(Σ)j = jT dnet =
∑n

i=1 d
net
i = 2M.

By Lemma 2, we have

λn(A(Σ)) ≤ jTA(Σ)j

jT j
≤ λ1(A(Σ)).

Thus λn(A(Σ)) ≤ 2M
n ≤ λ1(A(Σ)) and the proof is complete.

Now we consider the net degrees of vertices of a signed graph Σ and define

signed net-Laplacian matrix and denote it as Lnet(Σ). We define as follows.

Definition 4. Let µ1, µ2, . . . , µn be the eigenvalues of a signed net-Laplacian
matrix then Lnet(Σ) = Dnet(Σ) − A(Σ), where Dnet(Σ) = diag(dnet

1 , dnet
2 , . . . , dnet

n )
is the diagonal matrix and A(Σ) = [aij ] is the adjacency matrix of Σ.

Observation 1.
∑n

i=1 µi = 2M , where M = m+ −m−.
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Proof. We have
∑n

i=1 µi = trace(Lnet(Σ)) =
∑n

i=1 d
net
i = 2M .

Observation 2. 0 is an eigenvalue of Lnet(Σ) with multiplicity at least p, the
number of components of Σ.

Proof. The sum of each row in Lnet(Σ) is 0, thus 0 is an eigenvalue with

eigenvector (1, 1, . . . , 1).

It is well known that the signed graph eigenvalues satisfy the following relations:

n∑
i=1

λi = 0 and

n∑
i=1

λ2i = 2m.

Next result gives the relation of signed net-Laplacian eigenvalues.

Lemma 4. If µ1, µ2, . . . , µn are the eigenvalues of a signed net-Laplacian matrix,
then

n∑
i=1

µ2
i = 2m+

n∑
i=1

(dnet
i )2.

Proof. We note that
∑

i<j µiµj is equal to the sum of the determinants of all

2× 2 principal submatrices of Lnet(Σ). Hence

∑
i<j µiµj =

∑
i<j det

(
dneti −aij
−aji dnetj

)

=
∑

i<j [(d
net
i )(dnetj )− (aij)

2]

=
∑

i<j(d
net
i )(dnetj )−

∑
i<j(aij)

2

=
∑

i<j(d
net
i )(dnetj )−m.

Therefore ∑
i 6=j

µiµj = 2
∑
i<j

µiµj =
∑
i6=j

(dneti )(dnetj )− 2m.

Since ∑n
i=1 µ

2
i = (

∑n
i=1 µi)

2 −
∑

i 6=j µiµj

= (
∑n

i=1 µi)
2 − [

∑
i6=j(d

net
i )(dnetj )− 2m]

= (
∑n

i=1 d
net
i )2 − [

∑
i 6=j(d

net
i )(dnetj )− 2m],

we obtain
∑n

i=1 µ
2
i =

∑n
i=1(dneti )2 + 2m, as desired.
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Next theorem gives the bounds for net-Laplacian eigenvalues of a signed graph.

Theorem 5. Let Σ = (G, σ) be a connected signed graph and µ1, µ2, . . . , µn be the
eigenvalues of a signed net-Laplacian matrix. Then

µn(Lnet(Σ)) ≤ 0 ≤ µ1(Lnet(Σ)).

Proof. Let Lnet(Σ) be a net-Laplacian matrix of a signed graph Σ and let

j = (1, 1, . . . , 1)T . Then

A(Σ)j = (Σn
k=1a1k,Σ

n
k=1a2k, . . . ,Σ

n
k=1ank) = (dnet1 , dnet2 , . . . , dnetn ) = dnet.

Hence
jT (Lnet(Σ))j = jT (Dnet(Σ)−A(Σ))j

= jT (Dnet(Σ))j − jT (A(Σ))j

=
∑n

i=1 d
net
i −

∑n
i=1 d

net
i

= 0.

By Lemma 2, we have

µn(Lnet(Σ)) ≤ jT (Dnet(Σ)−A(Σ))j

jT j
≤ µ1(Lnet(Σ))

and so

µn(Lnet(Σ)) ≤ jT (Lnet(Σ))j

jT j
≤ µ1(Lnet(Σ)).

Thus µn(Lnet(Σ)) ≤ 0 ≤ µ1(Lnet(Σ)) and the proof is complete.

3. Bounds for the net-Laplacian energy

In this section, we give definition of net-Laplacian energy of a signed graph in

analogous to graph energy and establish net-Laplacian energy bounds.

Definition 5. Let µ1, µ2, . . . , µn be the net-Laplacian eigenvalues of a signed graph
Σ. Then

ε(Lnet(Σ)) =

n∑
i=1

|µi −
2M

n
|

where 2M
n

is the average net-degree of a signed graph.
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Let βi = µi − 2M
n (i = 1, 2, . . . , n), be the auxiliary eigenvalues. Then

n∑
i=1

βi = 0 and

n∑
i=1

β2
i = 2M1

where M1 = m+ 1
2

∑n
i=1(dneti − 2M

n )2.

Hence, M1 = m if and only if Σ is net-regular, otherwise M1 > m.

Lemma 5. If the signed graph Σ = (G, σ) is a net-regular signed graph, then
ε(Lnet(Σ)) = ε(Σ).

Proof. The proof is similar to unsigned graphs [5]. Let Σ = (G, σ) be a

net-regular signed graph and λ1, λ2, . . . , λn be the eigenvalues of Σ. Then by

Lemma 3, k = 2M
n where M = (m+ −m−).

Let µ1, µ2, . . . , µn be the Laplace eigenvalues of Σ. Then µi − 2M
n = −λn−i+1

for all i = 1, 2, . . . , n and the proof follows from the above definition.

Following result characterizes all signed graphs which have the same energy for

their adjacency, Laplacian and net-Laplacian matrices.

Theorem 6. If Σ is a co-regular signed graph, then ε(L(Σ)) = ε(Lnet(Σ)) = ε(Σ).

Proof. Theorem follows from Definition 3 and Lemma 5.

Following inequality that establishes an upper bound for signed energy in terms

of parameters n and m is generalised in [12].

Theorem 7. Let Σ be a signed graph with n vertices and m edges, then

ε(Σ) ≤
√

2mn.

Using Theorem 7, we give the upper bound for the net-Laplacian energy of a

signed graph.

Theorem 8. Let Σ be a signed graph and let dnet
i be the net-degree of the ith

vertex of Σ, i = 1, 2, . . . , n. If µ1, µ2, . . . , µn are the eigenvalues of the net-Laplacian
matrix Lnet(Σ) = Dnet(Σ)− A(Σ), where Dnet(Σ) = diag(dnet

1 , dnet
2 , . . . , dnet

n ) is the
diagonal matrix and A(Σ) = (aij) is the adjacency matrix of Σ, then

ε(Lnet(Σ)) ≤
√

2M1n

where M1 = m+ 1
2

∑n
i=1(dnet

i − 2M
n

)2.
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Proof. Consider the sum S =
∑n

i=1

∑n
j=1(| βi | − | βj |)2. Then we have

S = 2n

n∑
i=1

β2
i − 2(

n∑
i=1

| βi |)(
n∑

j=1

| βj |) ≤ 4nM1 − 2ε(Lnet(Σ))2.

Since S ≥ 0, we obtain ε(Lnet(Σ)) ≤
√

2M1n.

Theorem 9. If µ1, µ2, . . . , µn are the eigenvalues of the net-Laplacian matrix
Lnet(Σ) then

2
√
|M | ≤ ε(Lnet(Σ)) ≤ 2M1

where M = (m+ −m−) and M1 = m+ 1
2

∑n
i=1(dnet

i − 2M
n

)2

Proof. Since
∑n

i=1 βi = 0, we have
∑n

i=1 β
2
i + 2

∑n
i<j βiβj = 0. It follows

from
∑n

i=1 β
2
i = 2M that 2M = −2

∑n
i<j βiβj . Hence

2|M | = 2|
n∑

i<j

βiβj | ≤ 2

n∑
i<j

|βi||βj |.

Thus
(ε(Lnet(Σ))2 = (

∑n
i=1 |βi|)2

=
∑n

i=1 |βi|2 + 2
∑n

i<j |βi||βj |
≥ 2|M |+ 2

∑n
i<j |βi||βj |

≥ 4|M | ,

and this leads to 2
√
|M | ≤ ε(Lnet(Σ)).

To prove the right-hand inequality, note that for a signed graph with m edges

and no isolated vertex, n ≤ 2m. By Theorem 8,

ε(Lnet(Σ)) ≤
√

2M1n ≤
√

2M1(2m) = 2
√
M1(m).

Since M1 ≥ m, we obtain ε(Lnet(Σ)) ≤ 2M1.
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