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Abstract: The eccentricity of a vertex v is the maximum distance between v and any

other vertex. A vertex with maximum eccentricity is called a peripheral vertex. The

peripheral Wiener index PW (G) of a graph G is defined as the sum of the distances
between all pairs of peripheral vertices of G. In this paper, we initiate the study of

the peripheral Wiener index and investigate its basic properties. In particular, we

determine the peripheral Wiener index of the cartesian product of two graphs and
trees.
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1. Introduction

Let G = (V,E) be a simple connected graph with vertex set V and edge set E. The

order |V | of G is denoted by n = n(G) and the size |E| of G is denoted by m = m(G).

For every vertex v ∈ V , the open neighborhood of v is the set N(v) = {u ∈ V | uv ∈ E}
and the closed neighborhood of v is the set N [v] = N(v)∪ {v}. The degree of a vertex

v ∈ V is degG(v) = deg(v) = |N(v)|. We write Kn for the complete graph of order

n, Pn for a path of order n, Cn for a cycle of order n, and Km,n for the complete

bipartite graph with partite sets of size m and n. The distance d(u, v|G) between the

two vertices u and v of G is the length of a shortest path between u and v in G. The

eccentricity eG(v) or e(v) of a vertex v is the maximum distance between v and any

other vertex u of G. The radius rG or r(G) of G and the diameter diamG of G are
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44 Peripheral Wiener index of a graph

the minimum and maximum eccentricity of G, respectively. A vertex with maximum

eccentricity is called a peripheral vertex. The center C(G) is the set of all vertices of

minimum eccentricity and periphery P (G) is the set of all peripheral vertices of G.

That is,

C(G) = {u ∈ V (G)|e(u) = r(G)} and P (G) = {u ∈ V (G)|e(u) = d(G)}.

The vertices in C(G) are called central vertices. A graph G of order n with |C(G)| = n

is called a self-centered graph and a graph G of order n with |P (G)| = n is called a

peripheral graph. The Cartesian product G×H of two graphs G = (V (G), E(G)) and

H = (V (H), E(H)) is the graph with vertex set V (G) × V (H) where two vertices

(a, x) and (b, y) are adjacent if ab ∈ E(G) and x = y, or a = b and xy ∈ E(H). The

hypercube Qn is defined recursively in terms of the cartesian product of two graphs

as follows: Q1 = K2 and Qn = Qn−1 ×K2.

The Wiener index is a graph invariant of great chemical importance and is defined as

W = W (G) =
∑

{u,v}⊆V (G)

d(u, v|G) (1)

where G is the graph representation of the molecule under consideration and d(u, v|G)

is the distance between the vertices u and v of G. The Wiener index was introduced by

Wiener in 1947 [12] for modeling the shape of organic molecules and for calculating

several of their Physico-Chemical properties. This parameter has been studied by

mathematician from 1979 [4] and since then this distance-based quantity has been

studied extensively. For more details, we refer the reader to [2, 3], and the references

therein.

Gutman, Furtula and Petrović [5] defined another distance-based graph invariant

known as the terminal Wiener index of a tree as,

TW (T ) =
∑

1≤i<j≤k

d(vi, vj |T ) (2)

where v1, . . . , vk are pendent vertices of T . This parameter has been studied by several

authors (see for example [6, 8–10, 13]).

We note that every graph contains the peripheral vertices but may not contain a

terminal vertex. Here, we introduce a new distance-based graph invariant called the

peripheral Wiener index PW (G) of a graph G. The peripheral Wiener index PW (G)

of a graph G is the sum of distances between all pairs of peripheral vertices of G, i.e.

PW (G) =
∑

1≤i<j≤k

d(vi, vj |G) (3)

where v1, . . . , vk are peripheral vertices of G.



K.P. Narayankar, S.B. Lokesh 45

If G is the graph illustrated in Figure 1, then P (G) = {v1, v2, v3} and we have

PW (G) = d(v1, v2|G) + d(v1, v3|G) + d(v2, v3|G)

= 4 + 4 + 1

= 9.
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Figure 1. A graph with three peripheral vertices and peripheral Wiener index 9

The peripheral distance number of a vertex u of G, denoted by d(u|P (G)), is defined

as

d(u|P (G)) =
∑

v∈P (G)

d(u, v|G). (4)

Clearly

PW (G) =
1

2

∑
u∈P (G)

d(u|P (G)). (5)

For the graph illustrated in Figure 1, we have

d(v1|P (G)) = 4 + 4 = 8

d(v2|P (G)) = 4 + 1 = 5

d(v3|P (G)) = 4 + 1 = 5

and so

PW (G) =
1

2

3∑
i=1

d(vi|P (G)) =
1

2
(8 + 5 + 5) = 9.

In this paper, we initiate the study of the peripheral Wiener index and investigate

its basic properties. In particular, we determine the peripheral Wiener index of the

cartesian product of two graphs and trees.

We conclude this paper with the following observations;
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Observation 1. For n ≥ 2, PW (Kn) =
(
n
2

)
.

Observation 2. For n ≥ 2, PW (K1,n) = 2
(
n
2

)
.

Observation 3. For n ≥ m ≥ 2, PW (Km,n) = 2
(
n
2

)
+ 2
(
m
2

)
+mn.

Observation 4. Let G be a graph with exactly r peripheral vertices. Then

PW (G) ≥

(
r

2

)

with equality if and only if G = Kr.

Proof. Let v1, . . . , vr be the peripheral vertices of G. By definition, we have

PW (G) =
∑

1≤i<j≤r

d(vi, vj |G) ≥
∑

1≤i<j≤r

1 =

(
r

2

)
. (6)

If G = Kr, then PW (G) =
(
r
2

)
by Observation 1. Assume that PW (G) =

(
r
2

)
. We

deduce from (6) that d(vi, vj |G) = 1 for each i < j. This implies that diam(G) = 1

and so G is a complete graph. Since every vertex of a complete graph is a peripheral

vertex, we have G = Kr.

2. Relation between the peripheral Wiener index of a graph
and the Wiener index of a graph

In this section, we relate the peripheral Wiener index to the Wiener index. By

definition, we have PW (G) ≤ W (G) with equality if and only if G is a peripheral

graph. Our first result is an immediate consequence of definitions.

Proposition 1. For any connected graph G, PW (G) = W (G) = TW (G) if and only if
G ∼= P2.

Next, we present a lower and an upper bound on the peripheral Wiener index of a

graph G in terms of its Wiener index, order and the number of peripheral vertices.

Theorem 1. Let G be a graph of order n, diameter d and |P (G)| = k. Then

W (G)− (d− 1)

[(
n

2

)
−

(
k

2

)]
≤ PW (G) ≤W (G)−

(
n

2

)
+

(
k

2

)
.

The equality in lower bound and upper bound holds if G is a peripheral graph.
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Proof. By definition, we have

PW (G) =
∑

{u,v}⊆P (G)

d(u, v|G) = W (G)−
∑

{u,v}*P (G)

d(u, v|G).

Since for any {u, v} * P (G) the distance d(u, v|G) is at most d− 1 and at least 1, we

obtain the desired result.

The following result is an immediate consequence of Theorem 1.

Corollary 1. Let G be a graph of order n, diam(G) = 2 and |P (G)| = k. Then

PW (G) = W (G)−

(
n

2

)
+

(
k

2

)
.

Clearly, there is no graph with Wiener index two. However, in the case of the periph-

eral Wiener index, for any positive integer k, there exists a graph G with PW (G) = k.

For instance, for the path Pk+1 := v1v2 . . . vk+1 we have P (Pk+1) = {v1, vk+1} yield-

ing

PW (Pk+1) = d(v1, vk+1|Pk+1) = k.

3. The peripheral Wiener index of a graph with diameter at
most 2

In this section, we determine the peripheral Wiener index of a graph with diameter

at most 2.

Theorem 2. Let G be a graph of order n, size m, diameter two and |P (G)| = k. Then

PW (G) =

(
n

2

)
+

(
k

2

)
−m.

Proof. Let X be the set consisting of all peripheral vertices of G and Y = V (G)−X.

Then |X| = k and |Y | = n− k. We conclude from diam(G) = 2 that every vertex in

Y is adjacent to all other vertices of G. Since
∑

u∈X deg(u) +
∑

u∈Y deg(u) = 2m,

we deduce that

∑
u∈X

deg(u) = 2m− (n− k)(n− 1). (7)
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Since every vertex u ∈ X is adjacent to exactly deg(u)−n+ k vertices in X, we have

2PW (G) =
∑
u∈X

(deg(u)− n + k) + 2
∑
u∈X

(n− 1− deg(u))

=
∑
u∈X

(n + k − 2− deg(u))

= kn + k2 − 2k − 2m + (n− k)(n− 1) (by (7))

= (n2 − n) + (k2 − k)− 2m.

The converse of Theorem 2 is not necessarily true. For example, consider the tree T

in Figure 2.
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Figure 2. A tree T with PW (T ) = 38 and diam(T ) 6= 2.

It could be of ample interest if one could find good bounds for PW (G) posed in the

following open problem:

Problem 1: Let G be a graph with diam(G) ≥ 3 and k peripheral vertices. Find

upper bound for the peripheral Wiener index G.

4. Peripheral Wiener index of the Cartesian product

In this section, we study the peripheral Wiener index of the Cartesian product of

graphs. The proof of the following results can be found in [7].

Lemma 1. Let G and H be connected graphs and let (g, h), (g
′
, h

′
) be vertices of G×H.

Then

d((g, h), (g
′
, h

′
)|G×H) = d(g, g

′
|G) + d(h, h

′
|H).

Lemma 2. Let G be the Cartesian product
∏k

i=1Gi of connected graphs and let g =

(g1, ..., gk) and g
′
= (g

′
1, ..., g

′
k) be vertices of G. Then

d(g, g
′
|G) =

k∑
i=1

d(gi, g
′
i |Gi).
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Lemma 3. For two graphs G1 and G2, P (G1 ×G2) = P (G1)× P (G2).

Theorem 3. Let Gi be a graph of order ni, size mi and with ki peripheral vertices for
i = 1, 2. Then

PW (G1 ×G2) = PW (G1) k2
2 + PW (G2) k1

2.

Proof. Let v1, v2, . . . , vk1
be the peripheral vertices of G1 and u1, u2, . . . , uk2

be the

peripheral vertices of G2. The peripheral Wiener indices of G1 and G2 are

PW (G1) =
1

2

k1∑
i=1

k1∑
j=1

d(vi, vj |G1) (8)

and

PW (G2) =
1

2

k2∑
k=1

k2∑
`=1

d(uk, u`|G2). (9)

By Lemma 3, we have

PW (G1 ×G2) =
1

2

k1∑
i=1

k1∑
j=1

k2∑
k=1

k2∑
`=1

d((vi, uk), (vj , u`)|G1 ×G2)

=
1

2

k1∑
i=1

k1∑
j=1

k2∑
k=1

k2∑
`=1

{d(vi, vj |G1) + d(uk, u`|G2)} (From Lemma 1 )

=
1

2

k1∑
i=1

k1∑
j=1

k2∑
k=1

k2∑
`=1

d(vi, vj |G1) +
1

2

k1∑
i=1

k1∑
j=1

k2∑
k=1

k2∑
`=1

d(uk, u`|G2)

=
1

2

k1∑
i=1

k1∑
j=1

d(vi, vj |G1)

k2∑
k=1

k2∑
`=1

1 +
1

2

k2∑
k=1

k2∑
`=1

d(uk, u`|G2)

k1∑
i=1

k1∑
j=1

1

=
1

2

k1∑
i=1

k1∑
j=1

d(vi, vj |G1)(k2k2) +
1

2

k2∑
k=1

k2∑
`=1

d(uk, u`|G2)(k1k1)

= PW (G1) k2
2 + PW (G2) k1

2 (By (8) and (9)).

Theorem 4. If G is a graph with k peripheral vertices, then

PW (G× · · · ×G︸ ︷︷ ︸
l−copies

) = l k2(l−1) PW (G).
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Proof. The proof is by induction on l. If l = 2, then by Theorem 3 we have

PW (G×G) = PW (G) k2 + PW (G) k2

= 2.k2.PW (G)

as desired. Let l ≥ 3 and let the result holds for (l − 1), i.e

PW (G× · · · ×G︸ ︷︷ ︸
(l−1)−copies

) = (l − 1) k2(l−2) PW (G).

It follows from Theorem 3 that

PW (G× · · · ×G)︸ ︷︷ ︸
(l−1)−copies

×G = k2 ((l − 1) k2(l−2) PW (G))︸ ︷︷ ︸
PW (G) for (l−1)−copies

+( kl−1︸︷︷︸
From Lemma 3

)2 PW (G)

= PW (G)(k2 (l − 1) k2(l−2) + (kl−1)2)

= PW (G)(k2 (l − 1) k(2l−4) + k2l−2)

= l PW (G) k2(l−1).

This completes the proof.

Corollary 2. If G has a unique diametral path, then

PW (G× · · · ×G︸ ︷︷ ︸
l−times

) = l.22(l−1).diam(G).

Proof. Let P = v1 . . . vd+1 be the unique diametral path of G. Then clearly P (G) =

{v1, vd+1} and so PW (G) = diam(G). Now the result follows from Theorem 4.

Corollary 3. Let Qn (n ≥ 2) be the hypercube graph. Then

PW (Qn) = n.22(n−1).

Proof. By definition, Qn = K2 × · · · ×K2︸ ︷︷ ︸
n−times

. Since PW (K2) = 1, the result follows

from Theorem 4.

Since Qn is a peripheral graph, we conclude that PW (Qn) = W (Qn) = n.22(n−1).
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5. Peripheral Wiener index of a tree

Wiener in his seminal paper [12] communicated the formula

W (T ) =
∑
e

n1(e)n2(e) (10)

which holds for any tree T . In Eqn (10), e stands for an edge, whereas n1(e) and

n2(e) are the number of vertices lying on two sides of e respectively and summation

runs over all edges of tree T . If tree T has n vertices, then n1(e) + n2(e) = n for all

edges e. Using the same idea, Gutman et al. [5], obtained the following formula to

compute the terminal Wiener index of a tree T of order n with k terminal vertices

(pendent vertices):

TW (T ) =
∑
e

p1(e)p2(e) (11)

where p1(e) and p2(e) are the number of terminal vertices lying on two sides of e

respectively and the summation is taken over all the (n− 1) edges of T.

Following the above idea, we have made an attempt to calculate the peripheral Wiener

index of a n-vertex tree T with k peripheral vertices.

Theorem 5. Let T be a tree of order n with k peripheral vertices. Then

PW (T ) =
∑

e∈E(T )

a1(e)a2(e) (12)

where a1(e) and a2(e) are the number of peripheral vertices of T lying on the two sides of e.

Proof. Instead of summing distances between all pairs of peripheral vertices in a

n-vertex tree T , one can pick a particular edge e which lies on a peripheral path and

count how many times this edge e lies on a peripheral path, then add these counts

over all edges of the underlying tree, starting from an edge e. If a1(e) is the number

of peripheral vertices lying on one side of e, then k− a1(e) are the peripheral vertices

lying on the other side of e. Thus, their number is a1(e)(k − a1(e)), which gives Eqn

(12).

Now one can observe that for all edges of the tree T , a1(e)+a2(e) = k and a1(e)a2(e) ≥
0. As one can check in Figure 3, for the edges e5 and e6 we have a1(e5) = 4 and

a2(e5) = k − a1(e5) = 0 while a1(e6) = 4 and a2(e6) = k − a1(e6) = 0. Thus, k = 4.

Theorem 6. Let T be a tree of order n ≥ 2 with |P (T )| = k and diameter d. Then

k

(
d+ 2k − 4

2

)
≤ PW (T ) ≤ d

(
k(k − 1)

2

)
.

Furthermore, the equality holds in upper bound if every pair of peripheral vertices is at
distance d and it holds in lower bound if and only if k = 2 or d = 2.
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Figure 3. A tree with peripheral Wiener index 20

Proof. Let u1, . . . , uk be the peripheral vertices of T . Since T is tree, we conclude

that deg(u1) = · · · = deg(uk) = 1. First, we prove the lower bound. By (5), we have

PW (T ) =
1

2

k∑
i=1

d(ui|P (T ))

=
1

2
(d(u1|P (T )) + d(u2|P (T )) + · · ·+ d(uk|P (T )))

≥ 1

2
((d + 2 + · · ·+ 2) + (d + 2 + · · ·+ 2) + · · ·+ (d + 2 + · · ·+ 2))

=
k

2
(d + 2 + 2 + · · ·+ 2︸ ︷︷ ︸

k−2

)

= k(
d + 2k − 4

2
).

If k = 2, then clearly PW (T ) = d = k(d+2k−4
2 ). If d = 2, then T is a star and the

result follows by Observation 2.

Conversely, let PW (T ) = k(d+2k−4
2 ). If k = 2, then we are done. Assume that

k ≥ 3. Then we must have d(ui|P (T )) = d + 2 + · · · + 2 for each i = 1, . . . , k.

We claim that all peripheral vertices have a common neighbor. Assume without loss

of generality that d(u1, u2|T ) = d and let u1w1 . . . wd−1u2 be a diametral path in

T . Then d(u1, ui|T ) = d(u2, ui|T ) = 2 for each 3 ≤ i ≤ k. Since d(u1, ui|T ) =

d(u2, ui|T ) = 2, ui has a common neighbor with u1 and u2. It follows from deg(u1) =

deg(u2) = 1 that w1 ∈ N(u1) ∩ N(ui) and wd−1 ∈ N(u2) ∩ N(ui) for i = 3, . . . , k.

Since deg(u3) = · · · = deg(uk) = 1, we must have w1 = wd−1. Thus d = 2, as desired.

Now we prove the upper bound. Since the distance between every two peripheral

vertices is at most d, we obtain

PW (T ) =
∑

{u,v}⊆P (G)

d(u, v|G) (13)

≤ d
∑

{u,v}⊆P (G)

1

≤ d(
k(k − 1)

2
). (14)
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Clearly, the equality holds (14) if every pair of peripheral vertices are at distance

d.

Now, we determine the peripheral Wiener index of trees with diameter at most four.

If diam(T ) = 1, then T = K2. Hence PW (T ) = 1. If diam(T ) = 2, then T is a star

and so PW (T ) = 2
(|V (T )|−1

2

)
= (|V (T )| − 1)(|V (T )| − 2). If diam(T ) = 3, then T is

a double star Sm,n and hence PW (T ) = 3mn + 2m + 2n.

Proposition 2. Let T be a tree of order n with diameter 4. Let u be the central vertex
of T , N(u) = {v1, . . . , vs} and Ai = N(vi)− {u} for i = 1, 2, . . . , s. Then

PW (T ) = 4
∑

1≤i<j≤s

|Ai||Aj |+
s∑

i=1

|Ai|(|Ai| − 1). (15)

Proof. Since diam(T ) = 4, T is a unicentral tree. Let Y = {v ∈ V (T )| d(u, v) = 2}.

t tt
tp p pt

tt
t t
t t t

tt
v1

v2
vs−1

vsu

vn−1

vn−2

vs+1

vs+2

p p p

��
����
��

d1

d2

ds−1

ds

Figure 4. A tree of order n and diameter 4

Then, N [u] ∪ Y = V (T ) and Y = ∪si=1Ai = P (G). By definition, we have

PW (T ) =
∑

{x,y}⊆P (G)

d(x, y|G)

=

s∑
i=1

∑
{x,y}⊆Ai

d(x, y|G) +
∑

1≤i<j≤s

∑
x∈Ai&y∈Aj

d(x, y|G)

=

s∑
i=1

∑
{x,y}⊆Ai

2 +
∑

1≤i<j≤s

∑
x∈Ai&y∈Aj

4

=

s∑
i=1

|Ai|(|Ai| − 1) + 4
∑

1≤i<j≤s

|Ai||Aj |,

as desired.
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Theorem 7. Let T be a tree of order n and let T be the connected complement of T .
Then

(a) PW (T ) = 3 if and only if diam(T ) = 3.

(b) PW (T ) = n2+n−2
2

if and only if diam(T ) > 3.

Proof. (a) Assume that diam(T ) = 3. Then T ∼= Sn1,n2
is a double star on n1+n2+2

vertices with exactly n1+n2 peripheral vertices. Let u and v be two central vertices of

Sn1,n2
. Then u and v are the peripheral vertices of T and remaining n1 + n2 vertices

of T are non-peripheral vertices of T . Since d(u, v|T ) = 3, we have PW (T ) = 3.

Conversely, let PW (T ) = 3. Suppose, to the contrary, that diam(T ) 6= 3. Then

either diam(T ) ≤ 2 or diam(T ) ≥ 4. If diam(T ) ≤ 2, then T is disconnected, which

is a contradiction. Hence diam(T ) ≥ 4. Then diam(T ) ≤ 2 (see [1, 11]). Since T is

connected, we must have e
T

(v) = 2 for each v ∈ V (T ). Thus, T is a self-centered

graph of diameter 2. It follows from Theorem 2 that

PW (T ) =

(
n

2

)
+

(
k

2

)
−m

= 2

(
n

2

)
−
(
n− 1

2

)
(16)

=
n2 + n− 2

2
.

By assumption, we must have 3 = n2+n−2
2 yielding n = −1±

√
33

2 which is impossible.

Therefore, diam(T ) = 3.

(b) Let diam(T ) ≥ 4. Using the above argument, we obtain e
T

(v) = 2 for each vertex

v ∈ V (T ), and as above, we have PW (T ) = n2+n−2
2 .

Conversely, let PW (T ) = n2+n−2
2 . Since T is connected, we have diam(T ) ≥ 3. If

diam(T ) = 3, then by (a) we must have 3 = n2+n−2
2 that leads to a contradiction.

Thus diam(T ) ≥ 4 and the proof is complete.

In the sequel, we determine the peripheral Wiener Index of two classes of trees in-

cluding caterpillars. A caterpillar is a tree such that removal of all its leaves produces

a path, called its spine. The code of the caterpillar having spine Ps = (v1, . . . , vs)

is the ordered s-tuple (`1, . . . , `s), where `i is the number of leaves adjacent to vi.

Let T be a caterpillar with spine Ps = (v1, . . . , vs) and code (`1, . . . , `s). Suppose

u1, . . . , u`1 are the leaves adjacent to v1 and w1, . . . , w`s are the leaves adjacent to vs.

Then clearly P (T ) = {u1, . . . , u`1 , w1, . . . , w`s} and by definition we have

PW (T ) =
∑

1≤i<j≤`1

d(ui, uj |T ) +
∑

1≤r<k≤`s

d(wr, wk|T ) +
∑

1≤i≤`1,1≤ri≤`s

d(ui, wr|T )

= 2

(
`1
2

)
+ 2

(
`s
2

)
+ `1`s(s + 1)

= `1(`1 − 1) + `s(`s − 1) + `1`s(s + 1).
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Let T1 be a tree obtained from a caterpillar T with spine Ps = (v1, . . . , vs) and code

(`1, 0, `3, . . . , `s) by adding a star K1,` and joining its center to v2. Suppose u1, . . . , u`1

are the leaves adjacent to v1, w1, . . . , w`s are the leaves adjacent to vs, and z1, . . . , z`
are the leaves of added star. Then P (T ) = {u1, . . . , u`1 , w1, . . . , w`s , z1, . . . , z`}. By

definition we have

PW (T ) =
∑

1≤i<j≤`1

d(ui, uj |T ) +
∑

1≤r<k≤`s

d(wr, wk|T ) +
∑

1≤m<t≤`

d(zm, zt|T ) +

∑
1≤i≤`1 and 1≤r≤`s

d(ui, wr|T ) +
∑

1≤i≤`1 and 1≤m≤`

d(ui, zm|T ) +

∑
1≤r≤`s and 1≤m≤`

d(wr, zm|T )

= 2

(
`1
2

)
+ 2

(
`s
2

)
+ 2

(
`

2

)
+ (` + `1)`s(s + 1) + 4``1

= `1(`1 − 1) + `s(`s − 1) + `(`− 1) + (` + `1)`s(s + 1) + 4``1.

(17)
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