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Abstract: Circular programming problems are a new class of convex optimization

problems that include second-order cone programming problems as a special case. Al-

izadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3–51] introduced primal-dual
path-following algorithms for solving second-order cone programming problems. In this

paper, we generalize their work by using the machinery of Euclidean Jordan algebras

associated with the circular cones to derive primal-dual path-following interior point
algorithms for circular programming problems. We prove polynomial convergence of

the proposed algorithms by showing that the circular logarithmic barrier is a strongly

self-concordant barrier. The numerical examples show the path-following algorithms
are simple and efficient.
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1. Introduction

We introduce and study the primal-dual pair of circular programming (CP) problems:

min 〈c, x〉θ max bTy

s.t. [Ax]θ =, s.t. ATy + s = c,

x ∈ Qnθ , s ∈ Qnθ , y ∈ Rm,
(1)
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where θ ∈ (0, π/2) is a given angle, the inner product 〈c, x〉θ denotes the circular inner

product between c and x, which we define as 〈c, x〉θ := cTI2n(θ)x, the matrix-vector

product [Ax]θ denotes the circular matrix-vector product between A and x, which we

define as [Ax]θ := AI2n(θ)x, the matrix In(θ) is called the circular identity matrix,

which we define as

In(θ) :=

[
1 0T

0 cot θ In−1

]
∈ Rn×n

to act as a generalization of the (standard) identity matrix In = In(π4 ), the cone Qnθ
denotes the circular cone [4, 27–29] of dimension n, which is defined as

Qnθ :=

{[
x0
x

]
∈ R× Rn−1 : x0 ≥ cot θ ‖x‖

}
, (2)

and, finally, the norm ‖ · ‖ denotes the standard Euclidean norm.

An important special case of circular cone is that in which θ = π
4 . In this case, the

circular cone Qnθ reduces to the well-known second-order cone Qn, which is defined

as

Qn :=

{[
x0
x

]
∈ R× Rn−1 : x0 ≥ ‖x‖

}
= Qnπ

4
,

the circular identity matrix In(θ) reduces to the identity matrix In, the circular inner

product between c and x (i.e., 〈c, x〉θ = cTI2n(θ)x) reduces to the standard inner

product between c and x (i.e., cTx), the circular matrix-vector product between A

and x (i.e., AI2n(θ)x) reduces to the (standard) matrix-vector product between A

and x (i.e., Ax), and, therefore, the CP problems (1) reduces to second-order cone

programming problems [1]. So, CP includes second-order cone programming as a

special case. We will also see that the CP is a special case of semidefinite programming

[25].

It is known that circular cone is a closed, convex, pointed, solid cone. It was also

popularly known (see for example [7, Theorem 3.3.6]) that the dual of the circular

cone (2), denoted by Qn?θ , is the circular cone

Qnπ
2−θ

=

{[
x0
x

]
∈ R× Rn−1 : x0 ≥ tan θ ‖x‖

}
.

In [4], Alzalg has shown that, under the circular inner product, the circular cone Qnθ
is indeed self-dual (i.e., Qn?θ = Qnθ ; see Lemma 1) and homogeneous, hence it becomes

a symmetric cone. In fact, there is a one-to-one correspondence between Euclidean

Jordan algebras and symmetric cones. As a result, the circular cone is indeed the

cone of squares of some Euclidean Jordan algebra. This motivates us to establish a

Euclidean Jordan algebra associated with the circular cone. In [4], Alzalg has set up

the Jordan algebra associated with the circular cone by establishing a new spectral

decomposition (different and much more efficient than what has been established
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in [27]) associated with this cone and establishing a circular Jordan multiplication

associated with its algebra. We have also demonstrated that this algebra forms a

Euclidean Jordan algebra with the circular inner product.

Being a symmetric cone, circular programming becomes one of the special cases of

symmetric programming [24]. In fact, linear programming, second-order cone pro-

gramming, circular programming and semidefinite programming are considered the

most important subclasses of symmetric programming. The applications of the cir-

cular cone lie in various real-world engineering problems, for example the optimal

grasping manipulation problems for multi-fingered robots [9, 17, 19]. In addition, CP

is applied in the perturbation analysis of second-order cone programming problems

[8].

Interior point methods are one of the efficient methods for conic optimization prob-

lems in general (see for example [13, 14, 20, 21, 26]) and for CP problems in partic-

ular [6, 10, 15, 16]. Monteiro [20] introduced primal-dual path-following algorithms

for solving semidefinite programming (see also Zhang [26]). Alizadeh and Goldfarb

[1] introduced primal-dual path-following algorithms for solving second-order cone

programs. These primal-dual interior point algorithms and their analysis have been

extended by Schmieta and Alizadeh [24] for solving optimization problems over all

symmetric cones. The purpose of this paper is to utilize the work of Monteiro [20],

Alizadeh and Goldfarb [1] and Schmieta and Alizadeh [24] to derive primal-dual path-

following algorithms for the primal-dual pair of CP problems (1). We prove the poly-

nomial convergence results of the proposed algorithms by showing that the logarithmic

barrier in the circular case is a strongly self-concordant barrier [21]. The numerical

examples show the path-following algorithms are efficient.

This paper is organized as follows. The Euclidean Jordan algebra of the circular

cones mentioned above is the substance of Section 2. In Section 3, we introduce the

logarithmic barrier in the circular case for our problem formulation, and then state

the self-concordance property of this barrier. Based on this property, we write the

optimality conditions for the CP problems (1) and describe the commutative class

of directions for the central path in Section 4, then we present short-, semi-long-,

and long-step variants of the path-following algorithm for CP in Section 5. Section

6 is devoted to prove the self-concordance property stated in Section 3. In Section

7, we show by numerical examples that the path-following algorithms are simple and

efficient. The last section contains some concluding remarks.

We end this section by introducing some notations that will be used in the sequel,

and then proving the self-duality of the circular cone.

We use “,” for adjoining vectors and matrices in a row, and use “;” for adjoining them

in a column. So, for example, if x, y, and z are vectors, we have

 xy
z

 = (xT, yT, zT)T = (x; y; z).

We use R to denote the field of real numbers. For each vector x ∈ Rn whose first
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entry is indexed with 0, we write x for the subvector consisting of entries 1, through

n − 1 (therefore x = (x0;x) ∈ R × Rn−1). We let En denote the n dimensional real

vector space R×Rn−1 whose elements x are indexed with 0. For a vector x ∈ En and

a matrix A ∈ Rm×n, we let

xθ := (x0; cot θ x) = In(θ)x, Aθ := AIn(θ),

xθ2 := (x0; cot2 θ x) = I2n(θ)x, Aθ2 := AI2n(θ).
(3)

Hence xθ = cot θ x, and ‖xθ‖ = cot θ‖x‖. Therefore, we can now rewrite the circular

cone Qnθ as follows

Qnθ = {x ∈ En : x0 ≥ ‖xθ‖}.
As a result,

x ∈ Qnθ if and only if xθ ∈ Qn. (4)

We can also rewrite the circular inner product between two vectors x, y ∈ En as

follows:

〈x, y〉θ := xTI2n(θ)y = xT
θyθ = xT

θ2y = xTyθ2 = x0y0 + cot2 θ xTy, (5)

and rewrite the circular matrix-vector product between a matrix A ∈ Rn×n and a

vector x ∈ En as follows:

[Ax]θ := AI2n(θ)x = Aθxθ = Aθ2x. (6)

In general, we define the circular matrix product between two matrices A,B ∈ Rn×n
as follows:

[AB]θ := AI2n(θ)B = Aθ2B.

As we mentioned above, under the standard inner product, the circular cone Qnθ is

not self-dual, and the dual of Qnθ is Qnπ
2−θ

. In fact, the inner product that should be

considered with the circular cones is the circular inner product defined in (5). Under

the circular inner product, the dual of Qnθ is defined as

Qn?θ := {x ∈ En : xT
θyθ ≥ 0, ∀y ∈ Qnθ }.

The proof of the following lemma can be found in [4, Section 3]. We prefer to present

a shorter and more direct proof because it takes the advantage of using our notations.

Lemma 1. Under the circular inner product, the circular cone Qnθ is self-dual. That is,
Qn?θ = Qnθ .

Proof. The proof follows from the following equivalences:

x ∈ Qnθ ⇐⇒ xθ ∈ Qn (by (4))

⇐⇒ xθ ∈ Qn? (as Qn = Qn?)
⇐⇒ xT

θyθ ≥ 0, ∀yθ ∈ Qn (by definition of Qn?)
⇐⇒ xT

θyθ ≥ 0, ∀y ∈ Qnθ (by (4))

⇐⇒ xθ ∈ Qn?θ (by definition of Qn?θ ). 2
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2. The Euclidean Jordan algebra of the circular cone

Let x ∈ En. The circular spectral decomposition of x with respect to the angle

θ ∈ (0, π/2) is obtained as follows [4]

x = (x0 + cot θ‖x‖)
(
1
2

) 1
tan θ x

‖x‖

+ (x0 − cot θ‖x‖)
(
1
2

) 1

− tan θ x

‖x‖


= (x0 + ‖xθ‖)︸ ︷︷ ︸

λθ,1(x)

(
1

2

) 1
x

‖xθ‖


︸ ︷︷ ︸

cθ,1(x)

+ (x0 − ‖xθ‖)︸ ︷︷ ︸
λθ,2(x)

(
1

2

) 1

− x

‖xθ‖


︸ ︷︷ ︸

cθ,2(x)

,
(7)

where xθ is defined in (3). The spectral decomposition (7) is associated with the

circular cone, and it is viewed as a generalization of the spectral decomposition in [1,

Section 4] which is associated with the second-order cone. Under the circular spectral

decomposition (7), we have that

trace(x) := λθ,1(x) + λθ,2(x) = 2x0, detθ(x) := λθ,1(x)λθ,2(x) = x20 − ‖xθ‖2,

and that cθ,1 +cθ,2 = e := (1; 0) which is the identity element of En. It is quite easy to

see that trace(e) = 2, det(e) = 1, λθ,1(cθ,1) = λθ,1(cθ,2) = 1, λθ,2(cθ,1) = λθ,2(cθ,2) =

0, cθ,1 = Rcθ,2, and cθ,2 = Rcθ,1, where R is the reflection matrix

R :=

[
1 0T

0 −In−1

]
. (8)

For any real valued continuous function fθ, we define the image of x under fθ with

respect to θ as

fθ(x) := fθ(λθ,1(x))cθ,1(x) + fθ(λθ,2(x))cθ,2(x).

For instance, for p ∈ R, xp := λpθ,1(x)cθ,1(x) + λpθ,2(x)cθ,2(x). In particular, with a

little calculation, we can obtain

x−1 :=
1

λθ,1(x)
cθ,1(x) +

1

λθ,2(x)
cθ,2(x) =

1

detθ(x)

[
x0
−x

]
=

R

detθ(x)
x,

which is called the inverse of x (provided that x is invertible, i.e., detθ(x) 6= 0).

The Frobenius norm with respect to θ of x is defined as ‖x‖θ,F :=
√
λ2θ,1(x) + λ2θ,2(x),

and the 2-norm of x with respect to θ is defined as ‖x‖θ,2 := max{|λθ,1(x)|, |λθ,2(x)|}.
It is clear that ‖x‖θ,2 ≤ ‖x‖θ,F .
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We call x ∈ En positive semidefinite if x ∈ Qnθ (i.e., λ1,2(x) ≥ 0), and positive definite

if x ∈ Int(Qnθ ) (i.e., λ1,2(x) > 0). We write x �θ 0 to mean that x is positive

semidefinite, and x �θ 0 to mean that x is positive definite. We also write x �θ y
or y �θ x to mean that x − y �θ 0, and x �θ y or y ≺θ x to mean that x − y �θ 0.

For real symmetric matrices of order n, X and Y , we write X � 0 (X � 0) to mean

that X is positive semidefinite (X is positive definite), and X � Y (X � Y ) or

Y � X (Y ≺ X) to mean that X − Y � 0 (X − Y � 0).

We define the arrow-shaped matrix Arwθ(x) associated with x ∈ En with respect to θ

as

Arwθ(x) :=

[
x0 cot θ xT

cot θ x x0In−1

]
=

[
x0 xθ

T

xθ x0In−1

]
. (9)

Note that Arwθ(x)e = xθ,Arwθ(x)xθ = x2θ and Arw(e) = In. Note also that x �θ 0

(x �θ 0) if and only if the matrix Arwθ(x) � 0 (Arwθ(x) � 0). This explains why

circular programming is a special case of semidefinite programming.

The Jordan multiplication between two vectors x and y with respect to θ is defined

as

(x ◦ y)θ :=

[
xT
θyθ

x0yθ + y0xθ

]
=

[
xT
θ2y

x0yθ + y0xθ

]
= Arwθ(x)yθ = Arwθ(x)Arwθ(y)e.

(10)

It is clear that the definitions of the circular arrow-shaped matrix in (9) and the

circular Jordan multiplication in (10) generalize the corresponding ones in [1, Section

4] associated with the second-order cone.

Observe that c2θ,1 = (cθ,1 ◦ cθ,1)θ = cθ,1, c
2
θ,2 = (cθ,2 ◦ cθ,2)θ = cθ,2, (cθ,1 ◦ cθ,2)θ = 0.

Therefore, {cθ,1, cθ,2} is a Jordan frame. The vectors x and y of En are simultaneously

decomposed if they share a Jordan frame, i.e., x = λθ,1(x)cθ,1(x) + λθ,2(x)cθ,2(x) and

y = ωθ,1(x)cθ,1(x) + ωθ,2(x)cθ,2(x) for a Jordan frame {cθ,1, cθ,2}. We say x and y

operator commute with respect to θ if for all z ∈ En, we have that (x◦ (y ◦z)θ)θ = (y ◦
(x◦z)θ)θ. Two vectors in En operator commute if and only if they are simultaneously

decomposed (see [24, Theorem 27]).

One can easily see that, for any α, β ∈ R, (x ◦ (αy + βz))θ = α(x ◦ y)θ + β(x ◦ z)θ
and ((αy + βz) ◦ x)θ = α(y ◦ x)θ + β(z ◦ x)θ. Note that (x ◦ e)θ = x, (x ◦ x−1)θ =

e, xp = (xp−1 ◦ x)θ for any nonnegative integer p ≥ 1, and (xp ◦ xq)θ = xp+q for any

nonnegative integer p, q ≥ 1. Therefore, the algebra (En, θ, ◦) is power associative (it

is not associative though). In fact, one can also see that

x ◦ y)θ = (y ◦ x)θ (commutativity)

and

(x ◦ (x2 ◦ y)θ)θ = (x2 ◦ (x ◦ y)θ)θ (Jordan’s axiom).

This shows that the algebra (En, θ, ◦) is a Jordan algebra with the circular Jordan

multiplication (· ◦ ·)θ defined in (10). Moreover, we can also show that the Jordan

algebra (En, θ, ◦) is a Euclidean Jordan algebra under the circular inner product 〈·, ·〉θ
defined in (5). We have the following theorem [4].
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Theorem 1. The cone of squares of the Euclidean Jordan algebra (En, θ, ◦) is the circular
cone Qnθ .

The quadratic operator Qθ,x,z : En × En −→ En associated with the pair (x, z) ∈
En × En with respect to θ is given by

Qθ,x,z := Arwθ(x)Arwθ(z) + Arwθ(z)Arwθ(x)−Arwθ(x ◦ z)

=

[
xT
θzθ cot θ (x0z

T + z0x
T)

cot θ(x0z + z0x) x0z0In−1 + (xθz
T
θ + zθx

T
θ − xT

θzθIn−1)

]
.

The quadratic representation Qθ,x : En −→ En associated with x ∈ En with respect

to θ is given by

Qθ,x :=2Arw2
θ(x)−Arwθ(x

2)

=

[
‖xθ‖2 2 cot θ x0x

T

2 cot θ x0x detθ(x)In−1 + 2xθx
T
θ

]
=2xθx

T
θIn(θ)− detθ(x)R,

where R is the reflection matrix defined in (8). Note that Qθ,xe = x2θ, Qθ,xx
−1
θ = xθ,

and Qθ,e = In.

We finally present some handy tools needed for our computations.

Lemma 2. [4, Theorem 7] Let x, u ∈ En, and y = y(x) be a function of x in J . Then

1. The gradient ∇x ln detθ x = 2 I2n(θ)x−1 = 2 (x−1)θ2 , provided that detθ(x) is positive
(so x is invertible). More generally, ∇x ln detθ y = 2(∇xy)Tθ2y

−1 = 2(∇xy)T(y−1)θ2 ,
provided that detθ y is positive.

2. The Hessian ∇2
xx ln detθ x = −2 I2n(θ)Qθ,x−1 . Hence the gradient ∇xx−1 = −Qθ,x−1 ,

provided that x is invertible. More generally, ∇xy−1 = −Qθ,y−1∇xy provided that y
is invertible.

3. Problem formulation and self-concordance properties

In CP problems, we minimize a linear function over the intersection of an affine linear

manifold with the Cartesian product of circular cones:

Qn(θ1,θ2,...,θr) := Qn1

θ1
×Qn2

θ2
× · · · × Qnrθr ,

where n = n1 + n2 + · · · + nr. In this paper, without loss of generality, we assume

that r = 1, hence

Qn1,...,nr
θ1,...,θr

= Qn1

θ1
= Qnθ .
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We use the Euclidean Jordan algebraic characterization of circular cones to define the

primal-dual pair of the CP problems. Let θ ∈ (0, π/2) be a given angle, by using the

notations introduced in Subsection 1.1, we define the CP problem and its dual as

min cTθ2x max bTy

s.t. a
(i)T

θ2 x = bi, i = 1, 2, . . . ,m, s.t.

m∑
i=1

yia
(i) + s = c,

x �θ 0, s �θ 0, y ∈ Rm,

(11)

where c, a(i) ∈ En for i = 1, 2, . . . ,m, b ∈ Rm, x is the primal variable, and y and s

are the dual variables. The pair (11) can be compactly rewritten as

min cTθ2x max bTy

s.t. Aθ2x = b, s.t. ATy + s = c,

x �θ 0, s �θ 0, y ∈ Rm,
(12)

where A := (a(1)
T
; a(2)

T
; . . . ; a(m)T) is a matrix that maps En into Rm, and AT is

its transpose. We call x ∈ En primal feasible if Aθ2x = b and x �θ 0. Similarly,

(s, y) ∈ En × Rm is called dual feasible if ATy + s = c and s �θ 0.

Now, we consider the self-concordance properties for CP. First, we define the logarith-

mic barrier for the circular case and compute the partial derivatives of this barrier.

We then state and prove our self-concordance result.

We define the following strictly feasibility sets:

F0
θ (P ) :=

{
x ∈ En : Aθ2x = b, x �θ 0

}
;

F0
θ (D) :=

{
(s, y) ∈ En × Rm : ATy + s = c, s �θ 0

}
;

Fθ := F0
θ (P ) ∩ F0

θ (D).

Now, we make two assumptions.

Assumption 1. The matrix A has a full row rank.

Assumption 2. Fθ is not empty.

Assumption 1 is for convenience. Assumption 2 requires that both primal and dual

CP problems (12) contain strictly feasible solutions (i.e., positive definite feasible

points), which guarantees strong duality for CPs and therefore implies that the CP

problems (12) have unique solutions.

We define the logarithmic barrier [21] on the interior of the feasible set of the dual

CP problem (12):

max bTy

s.t. s(y) := ATy − c �θ 0.
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Let

Hθ :=
{
y ∈ Rm : s(y) �θ 0

}
, hence Int(Hθ) =

{
y ∈ Rm : s(y) �θ 0

}
.

Under Assumption 2, the set Int(Hθ) is nonempty. The circular logarithmic barrier

for Int(Hθ) is the function fθ : Int(Hθ)→ R defined as

fθ(y) := − ln detθ(s(y)), ∀ y ∈ Int(Hθ).

To state the result on the self-concordance of the logarithmic barrier fθ(·) for CP, we

need the following definition.

Definition 1. [21, Definition 2.1.1] Let E be a finite-dimensional real vector space, G
be an open nonempty convex subset of E, and let g be a C3, convex mapping from G to R.
Then g is called α-self-concordant on G with the parameter α > 0 if for every y ∈ G and
h ∈ E, the following inequality holds:

|∇3
yyyg(y)[h, h, h]| ≤ 2α−1/2(∇2

yyg(y)[h, h])3/2.

An α-self-concordant function g on G is called strongly α-self-concordant if g tends to infinity
for any sequence approaching a boundary point of G.

We note that in the above definition the set G is assumed to be open. However,

relative openness would be sufficient to apply the definition. See also [21, Item A,

Page 57].

We now present the following important result in the self-concordance of the circular

logarithmic barrier.

Theorem 2. The logarithmic barrier function fθ(·) is a strongly 1-self-concordant barrier
for Hθ.

Theorem 2 implies the existence of polynomial-time interior-point algorithms for cir-

cular programming [21]. This is the substance of Sections 4 and 5. We prove Theorem

2 in Section 6. Proving Theorem 2 establishes the polynomial convergence results of

the proposed algorithms.

4. Newton’s method and commutative directions

In the primal dual pair of CP problems (12), the matrix A is defined to map En
into Rm, and its transpose, AT, is defined to map Rm into En such that xT(AT

θ2y) =

(Aθ2x)Ty. Indeed, we can prove weak and strong duality properties for the pair (12)

as justification for referring to them as a primal dual pair. The following lemma

generalizes [1, Lemma 15].
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Lemma 3. (Complementarity conditions) Suppose that x, s �θ 0. Then

xTθ sθ = xTsθ2 = 0 if and only if (x ◦ s)θ = 0.

Proof. Since

(x ◦ s)θ =

[
xT
θsθ

x0s+ s0x

]
=

[
x0s0 + cot2 θ xTs

x0s+ s0x

]
,

it is enough to prove that xT
θsθ = x0s0 + cot2 θ xTs = 0 implies that x0s + s0x = 0.

If x0 = 0 or s0 = 0, then x = 0 or s = 0 and hence result is trivial. Therefore, we

need only to consider the case where x0 and s0 are strictly greater than zero. By

Cauchy-Schwartz inequality and the assumption that x �θ 0 and s �θ 0, we have

cot2 θ xTs ≥ − cot2 θ |xTs| ≥ − cot2 θ ‖x‖‖s‖ ≥ −x0s0. (13)

Consequently, x0s0 + cot2 θ xTs ≥ 0. Now, x0s0 + cot2 θ xTs = 0 if and only if

cot2 θ xTs = −x0s0, therefore if and only if the inequalities in (13) are satisfied as

equalities. But if this is true then either x = 0 or s = 0, in which case x0s+ s0x = 0,

or x 6= 0 and s 6= 0, x = −αs, where α > 0, and x0 = ‖x‖ = α‖s‖ = αs0, i.e.,

x+ x0

s0
s = 0. The proof is complete. 2

As a result, the complementary slackness condition for the CP problems (12) is given

by the equation (x ◦ s)θ = 0. Thus, the corresponding linear system is:

Aθ2x = b,

ATy + s = c,

(x ◦ s)θ = 0,

x, s �θ 0.

The logarithmic barrier problem associated with the primal problem in (12) is the

problem:

min cTθ2x− µθ ln detθ(x)

s.t. Aθ2x = b,

x �θ 0,

(14)

where the barrier parameter µθ := 1
2x

T
θsθ > 0 is the normalized duality gap. The

Lagrangian dual of (14) is the problem:

max bTy + µθ ln detθ(s)

s.t. ATy + s = c,

s �θ 0,

(15)

which is the logarithmic barrier problem associated with the dual problem in (12).
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As the CP problems (14) and (15) are, respectively, concave and convex, x and (y, s)

are optimal solutions to (14) and (15), respectively, if and only if they satisfy the

following optimality conditions:

Aθ2x = b,

ATy + s = c,

(x ◦ s)θ = σµθe,

x, s �θ 0.

(16)

Now, we apply Newton’s method to this system to get the following linear system:

Aθ2∆x = b−Aθ2x,
AT∆y + ∆s = c− s−ATy,

(∆x ◦ s)θ + (x ◦∆s)θ = σµθe− (x ◦ s)θ,
(17)

where (∆x,∆s,∆y) ∈ En × En × Rm and σ ∈ [0, 1] is a centering parameter.

We study short-, semi-long-, and long-step algorithms associated with the following

centrality measures defined for (x, s) ∈ Int(Qnθ )× Int(Qnθ ) with respect to θ:

dθ,F (x, s) := ‖Qθ,x1/2 s− µθe‖F
=

√(
λθ,1(Qθ,x1/2 s)− µθ

)2
+
(
λθ,2(Qθ,x1/2 s)− µθ

)2
,

dθ,2(x, s) := ‖Qθ,x1/2 s− µθe‖2
= max

{∣∣λθ,1(Qθ,x1/2 s)− µθ
∣∣ , ∣∣λθ,2(Qθ,x1/2 s)− µθ

∣∣} ,
dθ,−∞(x, s) := µθ −min

{
λθ,1(Qθ,x1/2 s), λθ,2(Qθ,x1/2 s)

}
.

Let γ ∈ (0, 1) be a given constant. With respect to θ, we define the following neigh-

borhoods of the central path for CP:

Nθ,F (γ) :=
{

(x, s, y) ∈ F0
θ (P )×F0

θ (D) : dθ,F (x, s) ≤ γµθ
}
,

Nθ,2(γ) :=
{

(x, s, y) ∈ F0
θ (P )×F0

θ (D) : dθ,2(x, s) ≤ γµθ
}
,

Nθ,−∞(γ) :=
{

(x, s, y) ∈ F0
θ (P )×F0

θ (D) : dθ,−∞(x, s) ≤ γµθ
}
.

(18)

Note that, by item i of [24, Proposition 21], Qθ,s1/2 x and Qθ,s1/2 x operator com-

mute, and thus the centrality measures dθ,·(x, s) and their corresponding neighbor-

hoods Nθ,·(γ) are symmetric with respect to x and s. Note also that, by item ii of [24,

Proposition 21], Qθ,x1/2 s and Qθ,x̃1/2 s̃ have the same eigenvalues, and that all neigh-

borhoods can be defined in terms of the eigenvalues of Qθ,x1/2 s, therefore the three

neighborhoods defined in (18) are scaling invariant, i.e. (x, s) is in the neighborhood

if and only if (x̃, s̃) is. Furthermore, it is easy to see that

dθ,F (x, s) ≥ dθ,2(x, s) ≥ dθ,−∞(x, s),

which implies that

Nθ,F (γ) ⊆ Nθ,2(γ) ⊆ Nθ,−∞(γ) ⊆ Qnθ ×Qnθ .
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One can see that the vectors x and s may not operator commute, hence the statement

that “(x ◦ s)θ = σµθe implies x = σµθs
−1” may not true. Such a statement holds if x

and s operator commute (see [11, Chapter II]). So, we need to scale the optimality con-

ditions (17) so that the scaled vectors operator commute (or equivalently, the scaled

vectors are simultaneously decomposed). We use an effective way of scaling proposed

originally by Monteiro [20] and Zhang [26] for semidefinite programming, and then

generalized by Schmieta and Alizadeh [24] for general symmetric programming.

From now on, with respect to θ and p �θ 0, we define

x̃ := Qθ,p x, s̃ := Qθ,p−1 s, c̃ := Qθ,p−1 c, c̃θ2 := Qθ,p−1 cθ2 , Ã := A Qθ,p−1 ,

and

Ãθ2 := Aθ2 Qθ,p−1 .

Note that, using item 2 of [24, Lemma 8], we have Qθ,pQθ,p−1 = Qθ,p(Qθ,p)
−1 = In

for p �θ 0. With this change of variables, Problem (14) becomes

min c̃θ2
T
x̃− µθ ln detθ(x̃)

s.t. Ãθ2 x̃ = b,

x̃ �θ 0,

(19)

and Problem (15) becomes

max bTy + µθ ln detθ(s̃)

s.t. ÃTy + s̃ = c̃,

s̃ �θ 0,

(20)

Note that Problems (14) and (19) have the same maximizer, but their optimal ob-

jective values are equal up to a constant. Similarly, Problems (15) and (20) have the

same minimizer but their optimal objective values differ by a constant. We have the

following lemma and proposition.

Lemma 4 (Lemma 28, [24]). Let p ∈ En be invertible. Then (x ◦ s)θ = σµθe if and
only if (x̃ ◦ s̃)θ = σµθe.

Proposition 1. The point (x, s, y) satisfies the optimality conditions (16) if and only if
the point (x̃, s̃, y) satisfies the relaxed optimality conditions

Ãθ2 x̃ = b,

ÃTy + s̃ = c̃,
(x̃ ◦ s̃)θ = σµθe,
x̃, s̃ �θ 0.
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Proof. The proof follows from Lemma 4, the fact that Qθ,p(Qnθ ) = Qnθ , and likewise,

as an operator, Qθ,p(Int(Qnθ )) = Int(Qnθ ), because Qnθ is a symmetric cone (see also

[4, Theorem 6]). 2

As a result of Proposition 1, we conclude that the set directions (∆x,∆s,∆y) satisfies

the optimality conditions (17) if and only if the set directions (∆̃x, ∆̃s,∆y) satisfies

the following relaxed optimality conditions:

Ãθ2 ∆̃x = b− Ãθ2 x̃,
ÃT∆y + ∆̃s = c̃− s̃− ÃTy,

(∆̃x ◦ s̃)θ + (x̃ ◦ ∆̃s)θ = σµθe− (x̃ ◦ s̃)θ.
(21)

To compute the Newton directions (∆̃x, ∆̃s,∆y), we write the system of equations

(21) in the following block matrix form:

 Ãθ2 0T 0T

0 ÃT In
Arwθ(s̃) 0T Arwθ(x̃)


 ∆̃x

∆y

∆̃s

 =

 rθ,prd
rθ,c

 , (22)

where

rθ,p := b− Ãθ2 x̃, rd := c̃− s̃− ÃTy, and rθ,c := σµθe− (x̃ ◦ s̃)θ.

Solving (22) by applying block Gaussian elimination, we obtain

∆y = (Ãθ2Arw−1θ (s̃)Arwθ(x̃)ÃT)−1(rθ,p + Ãθ2Arw−1θ (s̃)(Arwθ(x̃)rd − rθ,c)),
∆̃s = rd − ÃT∆y,

∆̃x = Arw−1θ (s̃)
(
rθ,c −Arwθ(x̃)∆̃s

)
.

(23)

As we can see, each choice of p leads to a different search direction. As we mentioned

earlier, we are interested in the class of p for which the scaled elements are simul-

taneously decomposed. Hence, it is sufficient to choose p so that x̃ and s̃ operator

commute. That is, we restrict our attention to the following set of scalings:

Cθ(x, s) := {p �θ 0 : x̃ and s̃ operator commute}.

We introduce the following definition [1].

Definition 2. The set of directions (∆x,∆s,∆y) arising from those p ∈ C(x, s) is called
the commutative class of directions, and a direction in this class is called a commutative
direction.
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The following three choices of p are the most common in practice [24] (see also [2, 3, 5]):

• Choice I (The HRVW/KSH/M direction): We may choose p = s1/2

and obtain s̃ = e. This choice is analogue of the XS direction in semidefinite

programming, and is known as the HRVW/KSH/M direction (it was introduced

by Helmberg, Rendl, Vanderbei, and Wolkowicz [12], and Kojima, Shindoh, and

Hara [18] independently, and then rediscovered by Monteiro [20]).

• Choice II (The dual HRVW/KSH/M direction): We may choose p =

x−1/2 and obtain x̃ = e. This choice of directions arises by switching the roles

of X and S; it is analogue of the SX direction in semidefinite programming,

and is known as the dual HRVW/KSH/M direction.

• Choice III (The NT direction): We choose p in such a way that x̃ = s̃. In

this case we choose

p =
(
Qθ,x1/2

(
Qθ,x1/2 s

)−1/2)−1/2
=
(
Qθ,s−1/2

(
Qθ,s1/2 x

)1/2)−1/2
.

This choice of directions was introduced by Nesterov and Todd [22, 23] and is

known as the NT direction.

After we compute the Newton directions (∆̃x, ∆̃s,∆y) using (23), we can compute

the Newton directions (∆x,∆s,∆y) by applying the inverse scaling to (∆̃x, ∆̃s,∆y)

(see Algorithm 1). The corresponding (∆x,∆s,∆y) is different from the one obtained

by solving system (17) directly. In fact, the former depends on p, while the latter is

yielded as a special case when p = e. It is clear that p = e may not be in C(x, s).

5. The path-following algorithms for solving CPs

In this section we introduce short-, semi-long-, and long-step path-following algo-

rithms for solving the CP problems (12). This class is stated formally in Algorithm

1.

Algorithm 1: The path-following algorithm for solving CP (12)

Require: ε ∈ (0, 1), σ ∈ (0, 1), γ ∈ (0, 1),
(
x(0), y(0), s(0)

)
∈ Nθ,·(γ),

set µ
(0)
θ = 1

2 x
(0)T

θ s
(0)
θ and k = 0.

while µ
(k)
θ ≥ εµ(0)

θ do

choose a scaling vector pk ∈ Cθ
(
x(k), s(k)

)
,

let
(
x̃(k), s̃(k), y(k)

)
=
(
Qθ,pkx

(k), Qθ,p−1
k
s(k), y(k)

)
,

compute
(

∆̃x
(k)
, ∆̃s

(k)
,∆y(k)

)
using (23),

let
(
∆x(k),∆s(k),∆y(k)

)
=

(
Qθ,p−1

k
∆̃x

(k)
, Qθ,pk∆̃s

(k)
,∆y(k)

)
,
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choose the largest step length α(k) such that(
x(k+1), y(k+1), s(k+1)

)
=
(
x(k), y(k), s(k)

)
+α(k)

(
∆x(k),∆y(k),∆s(k)

)
∈

Nθ,·(γ),

set µ
(k+1)
θ = 1

2 x
(k+1)T

θ s
(k+1)
θ and k = k + 1.

end while

In Algorithm 1, ε is the desired accuracy of the solution. The general variant of the

algorithm is determined by the choice σ and the neighborhood as follows:

• The short-step algorithm is obtained by choosing σ = 1− δ/
√
r, with δ ∈ (0, 1),

and Nθ,F (γ) as the neighborhood.

• The semi-long-step algorithm is obtained by choosing σ ∈ (0, 1) and Nθ,2(γ) as

the neighborhood.

• The long-step algorithm is obtained by choosing σ ∈ (0, 1) and Nθ,−∞(γ) as the

neighborhood.

The following theorem gives polynomial convergence results for Algorithm 1.

Theorem 3. Consider Algorithm 1. If the NT direction is used at every iteration, then the
short-step algorithm will terminate in O(

√
2 log ε−1) iterations, and the semi-long and long-

step algorithm will terminate in O(2 log ε−1) iterations. If the HRVW/KSH/M direction or
the dual HRVW/KSH/M direction is used at every iteration, then the short-step algorithm
will terminate in O(

√
2 log ε−1) iterations, the semi-long-step algorithm will terminate in

O(2 log ε−1) iterations, and long-step algorithm will terminate in O(2
√

2 log ε−1) iterations.

Theorem 3 is a consequence of Theorem 2 (which will be proved in the remaining

part of this paper) and [24, Theorem 37] where the underlying symmetric cone is the

circular cone.

6. Proving self-concordance for the circular logarithmic bar-
rier

In this section, we prove Theorem 2. To do so, we first obtain a representation for the

gradient, the Hessian and the third directional derivative of the logarithmic barrier

in the circular case.

Recall that the circular logarithmic barrier is defined as fθ(y) = − ln detθ(s(y)) for

all y in Int(Hθ), where s(y) = ATy − c and Hθ = {y ∈ Rm : s(y) �θ 0}. Throughout

the following proof, we let y ∈ Rm be such that s(y) �θ 0.

Proof of Theorem 2. Note that

∇ys(y) = ∇y(ATy − c) = AT.
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Then, by using item 1 of Lemma 2 and applying chain rule, we have

∇yfθ(y) = −∇yln detθ(s(y)) = −(∇ys)Tθ2s−1 = −Aθ2s−1,

and consequently, using item 2 of Lemma 2 and applying chain rule, we also have

∇2
yyfθ(y) = −Aθ2∇ys−1 = Aθ2Qθ,s−1∇ys = Aθ2Qθ,s−1AT.

Let

H = H(y) := ∇2
yyfθ(y) = Aθ2Qθ,s−1AT. (24)

Note that the Hessian matrix H is positive definite under Assumption 1 and the

assumption that s = s(y) �θ 0.

Let h ∈ Rm, h 6= 0, ai := Qθ,s−1/2ai, A := AQθ,s−1/2 , and let p := Ah be a vector in

En with the eigenvalues λθ,1(p) and λθ,2(p). Using (24), we have

hTHh = (Ah)Tθ2Ah = ‖Ah‖2θ,F = ‖p‖2θ,F = λ2θ,1(p) + λ2θ,2(p). (25)

Let u and v be two vectors in En such that u is invertible. We have

∇uQθ,u−1 [v] = ∇u
(
2Arw(u−1)2 −Arw(u−2)

)
[v]

= −2Arw
(
Qθ,u−1v

)
Arw(u−1)− 2Arw(u−1)Arw

(
Qθ,u−1v

)
+

2Arw
(
Qθ,u−1v ◦ u−1

)
= −2Qθ,(Qθ,u−1v),u−1 .

Note that s−1/2 is the unique positive definite vector having (s−1/2)2 = s−1. Plugging

in s(y) for u in the positive equation yields

∇sQθ,s(y)−1 [u] = −2Qθ,(Qθ,s−1Au),s−1 = −2Qθ,s−1/2Arw(Au)Qθ,s−1/2 . (26)

Using (24) and (26), we have

∇yH[u] = −2Aθ2Arw(Au)A
T
.

Then

∇y(hTHh)[u] = −2pTθ2(Arw(Au)p).

Therefore,

∇3
yyyfθ[h, h, h] = ∇y(hTHh)[h] = −2 pTθ2(Arw(p)p). (27)
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It is immediate from the fact that ‖Arw(p)‖θ,2 = ‖p‖θ,2, the fact that ‖p‖θ,2 ≤ ‖p‖θ,F ,

and (27) that

|∇3
yyyfθ[h, h, h]| = 2 |pTθ2(Arw(p)p)|

≤ 2 ‖Arw(p)‖θ,2 pTθ2p
= 2 ‖p‖θ,2 pTθ2p
= 2 ‖p‖θ,2

(
λ2θ,1(p) + λ2θ,2(p)

)
= 2 ‖p‖θ,2 hTH(x)h

= 2 ‖p‖θ,2 |∇2
yyfθ[h, h]|

≤ 2 ‖p‖θ,F |∇2
yyfθ[h, h]|

= 2 (|∇2
yyfθ[h, h])3/2,

(28)

where we used (25) to obtain the third and last equalities and (24) to obtain the

fourth equality.

It follows from (28), and

∇xfθ(x)T(∇2
xxfθ(x))−1∇xfθ(x) = eTθ2 A

T
(Aθ2A

T
)−1Ae ≤ eTe = 1,

that fθ is a 1-self-concordant barrier for Hθ. In addition, it is clear that f tends to

infinity for any sequence approaching a boundary point of Hθ. Thus, the logarithmic

barrier fθ is a strongly 1-self-concordant barrier for Hθ. The result is established. 2

7. Simulation experiments

In order to verify the efficiency of the proposed algorithm, we give in this section

some simulation experiments. All our numerical experiments are carried out on a PC

with Intel(R) Dual CPU at 2.20 GHz and 2 GB of physical memory. The PC runs

MATLAB Version: 7.4.0.287 (R2007a) on Windows XP Enterprise 32-bit operating

system.

Example 1. Consider the primal-dual pair of CP problem with the following data

[6]:

A = [A1, A2, A3, A4],

where

A1 =



5 1 1

1 1 1

4 6 3

1 4 3

3 3 5

3 3 3


, A2 =



3 6 6

1 6 2

6 2 1

5 4 1

6 5 1

4 3 4


, A3 =



4 3 6

3 2 6

2 5 1

1 5 2

5 6 5

4 3 3


, A4 =



3 3 1

6 1 2

6 2 6

5 2 5

4 4 5

6 1 6


,
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θ DG CPU(s) IN

π
11

0.01878 0.29687 66
π
8

0.00875 0.26562 62
π
6

0.00507 0.31250 76
π
5

0.00306 0.28125 67
π
4

0.00182 0.29687 67
π
3

0.00085 0.25000 67

Table 1. The results for Example 1.

and

b =



43

32

51

39

54

44


, ci =

 2

1

0

 , xi = si =

 2 cot θi
1

0

 , i = 1, 2, 3, 4, y =



0

0

0

0

0

0


,

where xi and si, for i = 1, 2, 3, 4, denote the initial starting point of the algorithm,

θ denotes the angles (θ1, θ2, θ3, θ4), and Qnθ = Q3
θ1
×Q3

θ2
×Q3

θ3
×Q3

θ4
(with n = 12)

denotes the Cartesian product of four 3rd-dimensional circular cones.

We use ε = 10−4 as the default accuracy parameter and choose the rotation angles

as θ = π
11 ,

π
8 ,

π
6 ,

π
5 ,

π
4 ,

π
3 . The numerical results are summarized in Table 1 where we

present the duality gap (DG), the CPU time and the required iteration numbers (IN)

of the proposed Algorithm 1 for obtaining an ε-approximate optimal solution of the

underlying problem.

Example 2. In this example, we test some various dimensions primal-dual pair of
CP problems in which the coefficient matrix A is generated randomly. For these
circular programming problems, we choose the rotation angles as θ = π

10 ,
π
6 ,

π
5 ,

π
4 ,

π
3

and the accuracy parameter ε as ε = 10−5. The numerical results obtained for theses
problems are shown in Table 2.
The test results in Table 2 show that the path-following method can efficiently solve
different kinds of circular programming.

8. Conclusions

Circular programming problems are a new class of symmetric optimization problems
with a special structure. There is a particular Euclidean Jordan algebra that underlies
the analysis of interior point algorithms for the circular programming. In this paper,
we have used the machinery of this particular Euclidean Jordan algebra to derive
polynomial-time path-following algorithms for circular programming problems. We
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θ π
10

π
6

π
5

π
4

π
3

(m,n) IN CPU(s) IN CPU(s) IN CPU(s) IN CPU(s) IN CPU(s)

(10,15) 11 0.03125 13 0.03125 10 0.03125 14 0.03125 53 0.09375

(15,20) 25 0.06250 47 0.09375 63 0.12500 70 0.17187 40 0.09375

(25,30) 40 0.12500 17 0.06250 46 0.15625 70 0.25000 43 0.12500

(30,40) 15 0.06250 43 0.15625 33 0.12500 73 0.31250 13 0.06250

(40,50) 25 0.15625 17 0.12500 36 0.25000 71 0.40625 29 0.18750

(55,70) 27 0.31250 46 0.45312 18 0.20312 36 0.34375 23 0.21875

(65,85) 16 0.17187 12 0.17187 40 0.45312 51 0.78125 12 0.18750

(85,100) 22 0.34375 16 0.28125 23 0.37500 68 1.07812 46 0.71875

(100,150) 25 0.78125 45 1.31250 56 0.90625 25 0.81250 17 0.51562

(150,250) 17 1.60937 22 2.06250 31 2.98437 46 1.31250 44 4.12500

(250,400) 15 5.65625 10 3.68750 11 4.04687 17 6.23437 6 2.21875

(400,700) 3 5.21875 4 4.98437 5 8.32812 19 7.03125 4 6.62500

Table 2. The numerical results of Example 2.

have also proved the polynomial convergence results of the proposed algorithms by
showing that the circular logarithmic barrier is a strongly self-concordant barrier.
Some preliminary numerical results were provided to demonstrate the implementation
of the proposed algorithm. The numerical results show the path-following algorithms
for circular programming problems are simple and efficient.
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