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Abstract: The first and second Zagreb indices of a graph are equal, respectively, to

the sum of squares of the vertex degrees, and the sum of the products of the degrees

of pairs of adjacent vertices. We now consider analogous graph invariants, based on
the second degrees of vertices (number of their second neighbors), called leap Zagreb

indices. A number of their basic properties is established.
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1. Introduction

In this paper, we are concerned with simple graphs, i.e., finite graphs having no loops,

multiple and directed edges. Let G = (V,E) be such a graph with vertex set V (G) and

edge set E(G). As usual, we denote by n = |V | and m = |E| the number of vertices

and edges of G. The distance d(u, v) between any two vertices u and v of a graph G

is equal to the length of (number of edges in) a shortest path connecting them. For a

vertex v ∈ V (G) and a positive integer k, the open k-neighborhood of v in the graph

G, denoted by Nk(v/G), is defined as Nk(v/G) = {u ∈ V (G) : d(u, v) = k}.
The k-distance degree of a vertex v in G, denoted by dk(v/G) (or simply dk(v) if no

misunderstanding is possible), is the number of k-neighbors of the vertex v in G, i.e.,

dk(v/G) = |Nk(v/G)|. It is clear that d1(v/G) = d(v/G) for every v ∈ V (G).

∗ Corresponding Author
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The complement G of a graph G is a graph with vertex set V (G) in which two

vertices are adjacent if and only if they are not adjacent in G. Kn is the empty

(totally disconnected) graph, in which no two vertices are adjacent (i.e., its edge set

is empty).

If a graph G consists of disconnected components H1 and H2, then we write G =

H1 ∪H2. If G consists of p ≥ 2 disjoint copies of a graph H, then we write G = pH.

For a vertex v of G, the eccentricity e(v) = max{d(v, u) : u ∈ V (G)}. The diameter of

G is diam(G) = max{e(v) : v ∈ V (G)} and the radius of G is r = r(G) = min{e(v) :

v ∈ V (G)}.
Let H ⊆ V (G) be any subset of vertices of G. Then the induced subgraph G[H] of G

is the graph whose vertex set is H and whose edge set consists of all edges in E(G)

that have both endpoints in H. A graph G is said to be F -free if no induced subgraph

of G is isomorphic to F .

For any terminology or notation not mention here, we refer to [15].

In the current mathematical and mathematico–chemical literature a large number of

vertex–degree–based graph invariants are being studied [8, 10]. Among them, the so-

called first M1 and second M2 Zagreb indices are the far most extensively investigated

ones. These have been introduced more than forty years ago [13, 14] and are defined

as:

M1 = M1(G) =
∑

v∈V (G)

d1(v/G)2

and

M2 = M2(G) =
∑

uv∈E(G)

d1(u/G) d1(v/G).

For properties of the two Zagreb indices see [3, 5, 11, 20] and the papers cited therein.

In recent years, some novel variants of Zagreb indices have been put forward, such as

Zagreb coindices [1, 6, 12], reformulated Zagreb indices [17, 19], Zagreb hyperindex

[2, 21], multiplicative Zagreb indices [9, 25], multiplicative sum Zagreb index [7, 23],

and multiplicative Zagreb coindices [24], etc. The Zagreb coindices are defined as:

M1(G) =
∑

uv/∈E(G)

[
d1(u/G) + d1(v/G)

]
and

M2(G) =
∑

uv/∈E(G)

d1(u/G) d1(v/G).

In [12] the following identities were established:

Theorem 1. [12] Let G be a graph with n vertices and m edges. Then

M1(G) = M1(G) = 2m(n− 1)−M1(G)

M2(G) = 2m2 − 1

2
M1(G)−M2(G)

M2(G) = M2(G)− (n− 1)M1(G) + m(n− 1)2 .
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The aim of the present work is to extend the concept of Zagreb indices to analogous

graph invariants based on the second vertex degrees. We propose to name these graph

invariants leap Zagreb indices.

The following fundamental results which will be used in many of our subsequent

considerations are found in the earlier papers [22] and [26].

Lemma 1. [22, 26] Let G be a connected graph with n vertices and m edges. Then

d2(v/G) ≤

 ∑
u∈N1(v/G)

d1(u/G)

− d1(v/G) . (1)

Equality holds if and only if G is a {C3, C4}–free graph.

Lemma 2. [26] Let G be a connected graph with n vertices. Then for any vertex v ∈ V (G)

d2(v/G) ≤ n + 1− d1(v/G)− e(v/G).

Observation 1. Let G be a connected graph with n vertices. Then for any vertex
v ∈ V (G)

d2(v/G) ≤ d1(v/G) = n− 1− d1(v/G) .

Equality holds if and only if G has diameter at most two.

From Lemma 1, it follows,

Corollary 1. Let G be a {C3, C4}-free k-regular graph with n vertices. Then d2(v/G) =
k(k − 1).

2. Leap Zagreb indices of a graph

Definition 1. For a graph G, the first, second, and third leap Zagreb indices are:

LM1 = LM1(G) =
∑

v∈V (G)

d2(v/G)2

LM2 = LM2(G) =
∑

uv∈E(G)

d2(u/G) d2(v/G)

LM3 = LM3(G) =
∑

v∈V (G)

d(v/G) d2(v/G) .
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From the above definitions, we immediately get

LM1 =
∑

v∈V (G)

∑
u∈N2(v/G)

d2(u/G)

LM2 =
1

2

∑
v∈V (G)

d2(v/G)
∑

u∈N(v/G)

d2(u/G)

LM3 =
∑

v∈V (G)

∑
u∈N(v/G)

d2(u/G)

=
∑

v∈V (G)

∑
u∈N2(v/G)

d1(u/G)

=
∑

uv∈E(G)

[
d2(u/G) + d2(v/G)

]
.

Another straightforward consequence of Definition 1 is:

Theorem 2. Let G1 and G2 be two vertex–disjoint graphs. Then for i = 1, 2, 3,

LMi(G1 ∪G2) = LMi(G1) + LMi(G2) .

Corollary 2. Let G1, G2, . . . , Gp be pairwise vertex–disjoint graphs, p ≥ 2. Then for
G = G1 ∪G2 ∪ · · · ∪Gp and j = 1, 2, 3,

LMj(G) =

p∑
i=1

LMj(Gi) .

3. Leap Zagreb indices of some graph families

For the complete graph Kn and the empty graph Kn, n ≥ 1,

LMi(Kn) = LMi(Kn) = 0 for i = 1, 2, 3.

For the path Pn, n ≥ 3,

LM1(Pn) =

{
2 if n = 3

4(n− 3) otherwise

LM2(Pn) =


0 if n = 3

3 if n = 4

2(2n− 7) otherwise

LM3(Pn) = 2(2n− 5) .
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For the cycle Cn, n ≥ 3, and for i = 0, 1, 2,

LMi(Cn) =


0 if n = 3, i = 1, 2, 3

4 if n = 4, i = 1, 2

8 if n = 4, i = 3

4n otherwise.

(2)

For the star K1,n, n ≥ 1,

LM1(K1,n) = n(n− 1)2

LM2(K1,n) = 0

LM3(K1,n) = n(n− 1) .

For the complete bipartite graph Kr,s, s ≥ r ≥ 1,

LM1(Kr,s) = r(r − 1)2 + s(s− 1)2

LM2(Kr,s) = rs(r − 1)(s− 1)

LM3(Kr,s) = rs(r + s− 2) .

For the wheel graph W1,n = K1 + Cn, n ≥ 3,

LM1(W1,n) = LM2(W1,n) = n(n− 3)2

LM3(W1,n) = 3n(n− 3) .

For a {C3, C4}-free k-regular graph of order n,

LM1(G) = nk2(k − 1)2

LM2(G) =
nk3

2
(k − 1)2

LM3(G) = nk2(k − 1) .

4. Some properties of leap Zagreb indices

Theorem 3. Let G be a connected graph with n vertices and m edges. Then

LM1(G) ≤ M1(G) + n(n− 1)2 − 4m(n− 1) (3)

LM2(G) ≤ M2(G)− (n− 1)M1(G) + m(n− 1)2 (4)

LM3(G) ≤ 2m(n− 1)−M1(G) . (5)

Equalities hold if and only if the diameter of G is at most two.
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Proof. We prove only the inequality (3). The proofs of the inequalities (4) and (5)

are analogous.

By Observation 1,

LM1(G) ≤
∑

v∈V (G)

[n− 1− d1(v/G)]2

=
∑

v∈V (G)

[
(n− 1)2 − 2(n− 1)d1(v/G) + d1(v/G)2

]
= n(n− 1)2 − 4m(n− 1) + M1(G) .

Suppose now that G has diameter at most two. Then we have to distinguish between

the following cases:

Case 1. If diam(G) ≤ 1, then G = Kn, n ≥ 1 and hence d2(v/G) = d(v/G) = 0, for

every v ∈ V (G). Thus, LM1(G) = M1(G) = M1(Kn) + n(n− 1)2 − 4m(n− 1) = 0.

Case 2. If diam(G) = 2, then by Observation 1, d2(v/G) = d1(v/G) = n−1−d1(v/G),

for every v ∈ V (G). Hence,

LM1(G) =
∑

v∈V (G)

d2(v/G)2 =
∑

v∈V (G)

d1(v/G)2 =
∑

v∈V (G)

(n− 1− d1(v/G))2

=
∑

v∈V (G)

[
(n− 1)2 − 2(n− 1)d(v/G) + d(v/G)2

]
= n(n− 1)2 − 4m(n− 1) + M1(G) .

Suppose on contrary, that G has diameter diam(G) ≥ 3. Then there is at least one

vertex v such that e(v/G) ≥ diam(G) ≥ 3. Thus, d2(v/G) < d1(v/G), for every

vertex v with e(v/G) ≥ 3. Therefore,

LM1(G) <
∑

v∈V (G)

[
n− 1− d1(v/G)

]2
= n(n− 1)2 − 4m(n− 1) + M1(G) .

In what follows, we establish the relationships between the leap Zagreb indices of a

graph G and the Zagreb indices and co-indices of the complement of G.

Theorem 4. Let G be a connected graph with n vertices and m edges. Then

LM1(G) ≤ M1(G) (6)

LM1(G) ≤ n(n− 1)2 − 2m(n− 1)−M1(G) (7)

LM2(G) ≤ M2(G) (8)

LM3(G) ≤ M1(G) = M1(G) . (9)

Equalities hold if and only if the diameter of G is at most two.
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Proof. By Observation 1,

LM1(G) =
∑

v∈V (G)

d2(v/G)2 ≤
∑

v∈V (G)

d1(v/G)2 =
∑

v∈V (G)

d1(v/G)2 = M1(G) .

This implies

LM1(G) ≤ M1(G)

=
∑

uv∈E(G)

[
d1(u/G) + d1(v/G)

]
=

∑
uv∈E(G)

[
n− 1− d1(u/G) + n− 1− d(v/G)

]
=

∑
uv∈E(G)

[
2(n− 1)− (d1(u/G) + d1(v/G))

]
= 2(n− 1)

(
n(n− 1)

2
−m

)
−

∑
uv/∈E(G)

[
d1(u/G) + d1(v/G)

]
= n(n− 1)2 − 2m(n− 1)−M1(G)

LM2(G) =
∑

uv∈E(G)

d2(u/G)d2(v/G)

≤
∑

uv∈E(G)

d1(u/G)d1(v/G)

=
∑

uv/∈E(G)

d1(u/G)d1(v/G) = M2(G)

LM3(G) =
∑

uv∈E(G)

[
d2(u/G) + d2(v/G)

]
≤

∑
uv∈E(G)

[
d1(u/G) + d1(v/G)

]
=

∑
uv/∈E(G)

[
d1(u/G) + d1(v/G)

]
= M1(G)

= M1(G) .

Suppose that equality holds in (6). Then by Observation 1, equality d2(v/G) =

d1(v/G) holds for every vertex v ∈ V (G), if and only if the diameter of G is at most

two. By similar arguments, equalities hold in (7), (8), and (9), if and only if G has

diameter at most two.

Conversely, if G has diameter at most two, then it is immediate to check that (6)–(9)

are equalities.
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Let G be a connected graph with n vertices and let v be any vertex of G. Then the

inequality

d2(v/G) ≤ d1(v/G) .

is easily verified. By Observation 1, equality holds for every vertex v ∈ V (G), if and

only if either G has diameter at most two, or G has diameter at least four, or G is a

regular graph with diameter at least two, or G = K1. Hence we have the following

result.

Proposition 1. Let G be a connected graph with n vertices and m edges. Then

LM1(G) ≤ M1(G)

LM2(G) ≤ M2(G)

LM3(G) ≤ M1(G) = M1(G) .

Equalities hold, if and only if either G has diameter at least four, or G is a regular graph
with diameter at least two, or G = K1.

In [12], it was shown that for a a simple graph G with n vertices and m edges,

M1(G) = M1(G) holds if and only if m = n(n−1)
4 . Bearing this in mind we arrive at:

Corollary 3. Let G be a graph with n vertices and m edges. If m = n(n−1)
4

and
diam(G) = 2, then

LM1(G) = M1(G) .

Remark 1.
1) If a graph G is self-complementary with diam(G) = 2, then m = n(n−1)

4
must hold and

the result in Corollary 3 is obeyed in a trivial manner.
2) In the general case, the converse of Corollary 3 is not true. For example, LM1(Cn) =
M1(Cn) for any cycle Cn with n ≥ 5 vertices.
3) LM1(G) = M1(G2), where G2 is the square (second power) of the graph G, which has the
same vertices as G and two vertices u and v are adjacent in G2 if and only if dG(u, v) = 2.
On the other hand, in the general case, for i = 2, 3, LMi(G) differs from Mi(G

2).

Theorem 5. Let G be a {C3, C4}–free graph with n vertices and m edges. Then

[
M1(G)− 2m

]2
n

≤ LM1(G) ≤
[
M1(G)− 2m)

]2
.

The lower bound attains on the {C3, C4}–free regular graphs whereas the upper bound attains
on the graphs G = sK1 ∪ tK2, for s + 2t = n.
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Proof. Since for any positive integers ai , i = 1, 2, . . . , n,

n∑
i=1

a2i ≤

(
n∑

i=1

ai

)2

it follows that ∑
v∈V (G)

d2(v/G)2 ≤

 ∑
v∈V (G)

d(v/G)

2

and hence by Lemma 1,

LM1(G) ≤
(
M1(G)− 2m

)2
.

Now, consider the Cauchy–Schwarz inequality

(
n∑

i=1

ai bi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
.

By choosing ai = 1 and bi = d2(vi/G) and by Lemma 1, we obtain

(
n∑

i=1

d2(vi/G)

)2

≤

(
n∑

i=1

1

)(
n∑

i=1

d2(v/G)2

)
.

This means that (
M1(G)− 2m

)2
≤ nLM1(G) .

From Theorem 5, by using the fact that for any connected graph G with n ≥ 2 vertices

and m edges, M1(G) ≥ 4m2

n (see [3, 16]), the following result follows.

Corollary 4. Let G be a {C3, C4}–free graph with n vertices and m edges. Then

LM1(G) ≥ 4m2(2m− n)2

n3
.

The bound attains on the {C3, C4}–free regular graphs.

Recall [4], that the Moore graphs with diameter two are the pentagon, Petresen graph,

Hoffman singleton graph, and possibly a 57-regular with 572 + 1 vertices. Yamaguchi

[26] established the following interesting result:
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Theorem 6. [26] Let G be a connected {C3, C4}–free graph with n vertices, m edges and
radius r. Then

M1(G) ≤ n(n + 1− r) (10)

M2(G) ≤ m(n + 1− r) . (11)

Equalities in (10) and (11) hold if and only if G is a Moore graph of diameter two, or
G = C6.

Theorem 7. Let G be a connected graph with n vertices, m edges and radius r. Then

LM1(G) ≤ (n + 1− r)
[
n2 + (2− r)n− 4m

]
. (12)

Equality holds if and only if G is a Moore graph of diameter two, or G = C6.

Proof. From Lemma 2 and Theorem 6, we have

LM1(G) =
∑

v∈V (G)

d2(v/G)2

≤
∑

v∈V (G)

[
n + 1− e(v/G)− d1(v/G)

]2
≤

∑
v∈V (G)

[
n + 1− r − d1(v/G)

]2
=

∑
v∈V (G)

[
(n + 1− r)2 − 2(n + 1− r)d1(v/G) + d1(v/G)2

]
= n(n + 1− r)2 − 4m(n + 1− r) + M1(G)

≤ n(n + 1− r)2 − 4m(n + 1− r) + n(n + 1− r)

= (n + 1− r)
[
n2 + (2− r)n− 4m

]
.

Suppose that equality holds in (12). Yamaguchi [26] proved that equalities in

∑
v∈V (G)

d2(v/G) ≤
∑

v∈V (G)

[
n + 1− e(v/G)− d1(v/G)

]
≤ n + 1− r − d1(v/G)

and

M1(G) ≤ n(n + 1− r)

hold if and only if G is a Moore graph with diameter two or G = C6. Hence, by

similar arguments as in the proof of Theorem 6, G is a Moore graph of diameter two,

or G = C6.

Conversely, if G is a Moore graph of diameter two, or G = C6, then it is immediate

to check that (12) is an equality.
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Theorem 8. Let G be a connected graph with n vertices, m edges, and radius r. Then

LM2(G) ≤ m

n
(n + 1− r)

[
n2 + (2− r)n− 4m

]
. (13)

Equality holds if and only if G is a Moore graph of diameter two, or G = C6.

Proof. From Lemma 2, Theorem 6, and by using the well-known result [3, 16]

M1(G) ≥ 4m2

n , we get:

LM2(G) =
∑

uv∈E(G)

d2(u/G)d2(v/G)

≤
∑

uv∈E(G)

(
n + 1− e(u/G)− d1(u/G)

)(
n + 1− e(v/G)− d1(v/G)

)
≤

∑
uv∈E(G)

(
n + 1− r − d1(u/G)

)(
n + 1− r − d1(v/G)

)
=

∑
uv∈E(G)

[
(n+1−r)2 − (n+1−r)(d1(u/G) + d1(v/G)) + d1(u/G)d1(v/G)

]
= m(n + 1− r)2 − (n + 1− r)M1(G) + M2(G)

≤ m(n + 1− r)2 − (n + 1− r)
4m2

n
+ m(n + 1− r)

=
m

n
(n + 1− r)

[
n2 + (2− r)n− 4m

]
.

By similar arguments as in the proof of Theorems 6 and 7, we obtain the equality

conditions for (13).

Theorem 9. Let G be a connected graph with n vertices, m edges, and radius r. Then

LM3(G) ≤ 2m

n

[
n2 + (1− r)n− 2m

]
. (14)

Equality holds if and only if G is a Moore graph of diameter two, or G = C6.

Proof. From Lemma 2 and Theorem 6, we have

LM3(G) =
∑

v∈V (G)

d1(v/G)d2(v/G)

≤
∑

v∈V (G)

[
d1(v/G)(n + 1− e(v/G)− d1(v/G))

]

≤
∑

v∈V (G)

[
d1(v/G)(n + 1− r − d1(v/G))

]
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=
∑

v∈V (G)

[
(n + 1− r)d1(v/G)− d1(v/G)2

]
= 2m(n + 1− r)−M1(G)

≤ 2m(n + 1− r)− 4m2

n

=
2m

n

[
n2 + (1− r)n− 2m

]
.

The equality conditions are terated analogously as in the proofs of Theorems 6 and

7.

Corollary 5. Let G be a connected graph with n vertices, m edges, and radius r. Then

LM1(G)−M1(G) ≤ (n + 1− r)
[
n2 − (r − 1)n− 4m

]
(15)

LM2(G)−M2(G) ≤ m

n
(n + 1− r)

[
n2 − (r − 1)n− 4m

]
(16)

LM3(G) + M1(G) ≤ 2m(n + 1− r) . (17)

The bounds in (15), (16), and (17) are sharp, the cycles Cn , n = 4, 5, 6, are attending it.

Theorem 10. Let G be a connected graph. Then

LM3(G) ≤ 2M2(G)−M1(G) . (18)

Equality holds if and only if G is {C3, C4}–free.

Proof. Since inequality (1) holds for every vertex v ∈ V (G), and

M2(G) =
1

2

∑
v∈V (G)

d1(v/G)
∑

u∈N1(v/G)

d1(u/G)

it follows that,

LM3(G) =
∑

v∈V (G)

d1(v/G) d2(v/G)

≤
∑

v∈V (G)

d1(v/G)

 ∑
u∈N1(v/G)

d1(u/G))− d1(v/G)


=

∑
v∈V (G)

d1(v/G)
∑

u∈N1(v/G)

d1(u/G)−
∑

v∈V (G)

d1(v/G)2 .

Therefore, LM3(G) = 2M2(G)−M1(G).

Suppose that equality holds in (18). Then inequality (1) holds for every vertex v ∈
V (G) if and only if G is {C3, C4}-free [22, 26].
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From Theorem 3, and bearing in mind that M1(G) ≥ 4m2

n [3, 16], it follows:

Corollary 6. Let G be a connected graph with n vertices, m edges, and radius r. Then

LM3(G) ≤ 2m

n
(n2 − n− 2m) .

The bound attains on C4, C5, and Petersen graph.

Theorem 11. Let G be a connected graph with n vertices and m edges. Then

LM3(G) ≤
√

M1(G)LM1(G) . (19)

Equality holds if one of the following conditions is satisfied:
(a) G is regular with diameter diam(G) ≤ 2.
(b) G is regular and {C3, C4}–free.

Proof. By the Cauchy–Schwarz inequality,

LM3(G) =
∑

v∈V (G)

d1(v/G) d2(v/G) ≤
√ ∑

v∈V (G)

d1(v/G)2
∑

v∈V (G)

d2(v/G)2

=
√
M1(G)LM1(G) .

Suppose that G is a k-regular graph with diameter diam(G) ≤ 2. Then we have the

following cases:

Case 1. If diam(G) < 2, then G is the complete graph and hence d2(v/G) = 0, for

every vertex v ∈ V (G). Thus the equality in (19) holds.

Case 2. If diam(G) = 2, then d2(v/G) = n − 1 − d1(v/G) = n − 1 − k, for every

vertex v ∈ V (G) and hence LM1(G) = nk(n− 1− k), M1(G) = nk2, and LM1(G) =

n(n− 1− k)2. Therefore the equality in (19) holds.

Now, suppose that G is a k-regular {C3, C4}–free graph. Then by Corollary 1,

d2(v/G) = k(k − 1), for every vertex v ∈ V (G) and by an easy check we conclude

that LM3(G) =
√
M1(G)LM1(G).

In the general case, the converse of Theorem 11 is not true. For example, for a graph

G shown in Fig. 1, the equality holds in (19), because d2(v/G) = d1(v/G) for every

vertex v ∈ V (G), but the conditions (a) and (b) do not hold.
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Fig. 1. A graph for which LM3 =
√
M1 LM1

Theorem 12. Let G be a {C3, C4}–free graph with n vertices and m edges, such that
d1(v1/G) ≥ d1(v2/G) ≥ · · · ≥ d1(vn/G) and d2(v1/G) ≥ d2(v2/G) ≥ · · · ≥ d2(vn/G). Then,

LM3(G) ≥
(

2m

n

)2

(2m− n) . (20)

The bound attains on {C3, C4}–free regular graphs.

Proof. The Chebyshev’s sum inequality states that if a1 ≥ a2 ≥ · · · ≥ an and

b1 ≥ b2 ≥ · · · ≥ bn, then

n

n∑
i=1

ai bi ≥

(
n∑

i=1

ai

)(
n∑

i=1

bi

)
. (21)

By Lemma 1, if G is {C3, C4}–free, then

∑
v∈V (G)

d2(v/G) = M1(G)− 2m. (22)

Applying (21), (22), and bearing in mind M1(G) ≥ 4m2

n , we obtain

nLM3(G) ≥
∑

v∈V (G)

d1(v/G)
∑

v∈V (G)

d2(v/G)

= 2m(M1(G)− 2m) ≥ 2m

(
4m2

n
− 2m

)
=

4m2

n
(2m− n) .

Hence, inequality (20) follows.

5. Nordhaus–Gaddum–type relations for leap Zagreb indices

The following result is an immediate consequence of Theorem 4 and Proposition 1.
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Proposition 2. Let G be a graph with n vertices and m edges. Then

LM1(G) + LM1(G) ≤ M1(G) + M1(G)

LM2(G) + LM2(G) ≤ M2(G) + M2(G)

LM3(G) + LM3(G) ≤ M1(G) + M1(G) .

From Theorem 7 and Proposition 1, it follows:

Theorem 13. Let G be a connected graph with n vertices, m edges, and radius r. Then

0 ≤ LM1(G) + LM1(G) ≤ (n + 1− r)
[
n2 + (3− r)n− 4m

]
.

The lower bound attains on the complete graph Kn whereas the upper bound attains on the
Moore graphs with diameter two.

The following result is an immediate consequence of Theorems 1, 4, and Proposition

1.

Proposition 3. Let G be a connected graph of order n and size m. Then

0 ≤ LM2(G) + LM2(G) ≤ m(n− 1)

(
n− 1− 2m

n

)
.

The lower bound attains on the complete graph Kn, for every n, and the upper bound attains
on the Petersen graph and C5.

Proposition 4. Let G be a connected graph of order n and size m. Then

0 ≤ LM3(G) + LM3(G) ≤ 4nm(n− 1) .

The lower bound attains on the complete graph Kn, for every n, and the upper bound attains
on the Petersen graph, C5, and P4.

From Eq. (2), we know that for every n ≥ 5,

LM1(Cn) = LM2(Cn) = LM3(Cn) = M1(Cn) = M2(Cn) = 4n .

Theorem 14. For every positive integer p, there exists a graph G with ∆(G) = 2p, such
that LM1(G) = LM3(G) = M1(G) and LM2(G) = M2(G).
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Proof. The result is true for p = 1, since G = Cn, for n ≥ 5, has the desired

properties. For p ≥ 2, we have the following cases.

Case 1. If p is even, then we construct a graph G from a vertex v0, four copies of a

complete graph with p
2 vertices and two copies of an empty graph with p vertices. Let

K
(i)
p/2, i = 1, 2, 3, 4, denote the i-th copy of a complete graph and Kp

(j)
, j = 1, 2, the

j-th copy of the empty graph. Next, we join a vertex v0 to every vertex v ∈ V (K
(i)
p/2),

for every i ∈ {1, 2, 3, 4}. Then we join every vertex u ∈ V (Kp
(1)

) to every vertex v ∈
V (K

(i)
p/2), i = 1, 2 and we join every vertex u ∈ V (Kp

(2)
) to every vertex v ∈ V (K

(i)
p/2),

i = 3, 4. By this we arrive at a graph G with ∆ = d(v0) = 2p and d1(v/G) = d2(v/G),

for every vertex v in G.

Case 2. If p is odd, then we construct a graph G from a vertex v0, two graphs H1 and

H2 and two copies of an empty graph with p vertices, where H1 is a (p−3
2 )-regular

graph and H2 is a (p−1
2 )-regular graph. Let Kp

(j)
, j = 1, 2, denote the j-th copy of

the empty graph. We join a vertex v0 to every vertex v ∈ V (H1) ∪ V (H2). Then we

join every vertex v ∈ V (H1) to every vertex u ∈ V (Kp
(1)

) and we join every vertex

v ∈ V (H2) to every vertex u ∈ V (Kp
(2)

). This construction results in a graph G with

∆ = d(v0) = 2p and d1(v/G) = d2(v/G), for every vertex v in G.

6. Leap Zagreb indices of graph joins

Definition 2. Let G1 and G2 be two graphs with disjoint vertex sets V (G1) and V (G2)
and edge sets E(G1) and E(G2), respectively. Then the join of G1 and G2, denoted by
G1 +G2, is the graph with vertex set V (G1)∪V (G2) and edge set E(G1)∪E(G2)∪{uv|u ∈
V (G1) & v ∈ V (G2)}.

Evidently, G1+G2 is connected, n = n1+n2, m = n1 n2+m1+m2, where ni = |V (Gi)|
and mi = |E(Gi)|, i = 1, 2, and

diam(G1 + G2) =

 1 if G1 and G2 are both complete graphs

2 otherwise.

Khalifeh at el. in [18] obtained expressions for the first and second Zagreb indices of

the join G1 +G2 + · · ·+Gp. Here we need the following especial cases of their result.

Lemma 3. [18] Let G1 and G2 be connected graphs with ni = |V (Gi)|, mi = |E(Gi)|,
i = 1, 2. Then

M1(G1 + G2) = M1(G1) + M1(G2) + n2
1n2 + n1n

2
2 + 4n1m2 + 4n2m1 (23)

M2(G1 + G2) = M2(G1) + M2(G2) + n2M1(G1) + n1M1(G2) +

n2
1m2 + n2

2m1 + n2
1n

2
2 + 2n1n2(m1 + m2) + 4m1m2. (24)
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Theorem 15. Let G1 and G2 be connected graphs with n1, n2 vertices and m1, m2 edges,
respectively. Then

LM1(G1 + G2) =
[
M1(G1) + n1(n1 − 1)2 − 4m1(n1 − 1)

]
+[

M1(G2) + n2(n2 − 1)2 − 4m2(n2 − 1)
]
.

Proof. Since, G1 + G2 has order n = n1 + n2, size m = n1n2 + m1 + m + 2 and

diameter at most two, by Theorem 3 and using Eq. (23) in Lemma 3, we obtain

LM1(G1 + G2) = M1(G1 + G2) + n(n− 1)2 − 4m(n− 1)

=
[
M1(G1) + M1(G2) + n1n

2
2 + n2

1n2 + 4n1m2 + 4n2m1

]
+[

(n1 + n2)[(n1 + n2)− 1]2
]
−
[
4(n1n2 + m1 + m2)(n1 + n2 − 1)

]
=
[
M1(G1) + n1(n1 − 1)2 − 4m1(n1 − 1)

]
+[

M1(G2) + n2(n2 − 1)2 − 4m2(n2 − 1)
]
.

The following result is also an immediate consequences of Theorem 15.

Theorem 16. Let G1, G2, . . . , Gp , p ≥ 2, be graphs and let G = G1 + G2 + · · · + Gp.
For i=1,2,. . . ,p, let Gi has ni vertices and mi edges. Then

LM1(G) =

p∑
i=1

[
M1(Gi) + ni(ni − 1)2 − 4mi(ni − 1)

]
.

Corollary 7. Let G be same as in Theorem 16. Then

LM1(G) =

p∑
i=1

M1(Gi) .

Theorem 17. Let G1 and G2 be connected graphs with n1, n2 vertices and m1, m2 edges,
respectively. Then

LM2(G1 + G2) = M2(G1) + M2(G2)− (n1 − 1)M1(G1)− (n2 − 1)M1(G2) +

m1(n1 − 1)2 + m2(n2 − 1)2 − 2m1n2(n2 − 1)− 2m2n1(n1 − 1) +

n1n2(n1 − 1)(n2 − 2) + 4m1m2

LM3(G1 + G2) = n1n2(n1 + n2 − 2) + 2(n1 − n2)(m1 −m2)− 2(m1 + m2)−
M1(G1)−M1(G2) .

Proof. The proof is analogous to that of Theorem 15.
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