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Abstract: The rings considered in this article are commutative with identity which

admit at least one nonzero proper ideal. Let R be a ring. We denote the collection of
all ideals of R by I(R) and I(R)\{(0)} by I(R)∗. Alilou et al. [A. Alilou, J. Amjadi and

S.M. Sheikholeslami, A new graph associated to a commutative ring, Discrete Math.

Algorithm. Appl. 8 (2016) Article ID: 1650029 (13 pages)] introduced and investigated
a new graph associated to R, denoted by Ω∗R which is an undirected graph whose vertex

set is I(R)∗\{R} and distinct vertices I, J are joined by an edge in this graph if and
only if either (AnnRI)J = (0) or (AnnRJ)I = (0). Several interesting theorems were

proved on Ω∗R in the aforementioned paper and they illustrate the interplay between

the graph-theoretic properties of Ω∗R and the ring-theoretic properties of R. The aim
of this article is to investigate some properties of (Ω∗R)c, the complement of the new

graph Ω∗R associated to R.

Keywords: Annihilating ideal of a ring, maximal N-prime of (0), special principal

ideal ring, connected graph, diameter, girth

AMS Subject classification: 13A15, 05C25

1. Introduction

The rings considered in this article are commutative with identity which admit at least

one nonzero proper ideal. Let R be a ring. An ideal I of R such that I /∈ {(0), R}
is referred to as a nontrival ideal. Inspired by the work of I. Beck in [9], during the

last two decades, several researchers have associated a graph with certain subsets

of a ring and explored the interplay between the ring-theoretic properties of a ring
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with the graph-theoretic properties of the graph associated with it (see for example,

[3, 4, 6, 7]). Recall from [10] that an ideal I of R is said to be an annihilating ideal

if there exists r ∈ R\{0} such that Ir = (0). As in [10], we denote the set of all

annihilating ideals of R by A(R) and A(R)\{(0)} by A(R)∗. Let R be a ring such

that A(R)∗ 6= ∅. As the ideals of a ring also play an important role in studying

its structure, M. Behboodi and Z. Rakeei in [10] introduced and investigated an

undirected graph called the annihilating-ideal graph of R, denoted by AG(R), whose

vertex set is A(R)∗ and distinct vertices I, J are joined by an edge in AG(R) if and only

if IJ = (0). In [10, 11], M. Behboodi and Z. Rakeei explored the influence of certain

graph-theoretic parameters of AG(R) on the ring structure of R. The annihilating-

ideal graph of a commutative ring and other related graphs have been studied by

several researchers (see for example, [1, 2, 14, 18, 19]). Motivated by the work done

on the annihilating-ideal graph of a commutative ring, in [2], Alilou, Amjadi and

Sheikholeslami introduced and studied a new graph associated to a commutative ring

R, denoted by Ω∗R, which is an undirected graph whose vertex set is the set of all

nontrivial ideals of R and distinct vertices I, J are joined by an edge in this graph if

and only if either (AnnRI)J = (0) or (AnnRJ)I = (0) (that is, if and only if either

AnnRI ⊆ AnnRJ or AnnRJ ⊆ AnnRI), where for an ideal I of R, the annihilator of

I in R, denoted by AnnRI is defined as AnnRI = {r ∈ R : Ir = (0)}. Let R be a ring

such that R is not a field. Several interesting and inspiring theorems were proved on

Ω∗R in [2] (see for example, Theorems 4, 10, and 20).

Let G = (V,E) be a simple graph. Recall from ([8], Definition 1.1.13) that the

complement of G, denoted by Gc, is a graph whose vertex set is V and distinct vertices

u, v are joined by an edge in Gc if and only if there is no edge in G joining u and v. Let

R be a ring with at least one nontrivial ideal. The aim of this article is to investigate

some properties of (Ω∗R)c. It is useful to mention here that distinct nontrivial ideals

A,B of R are joined by an edge in (Ω∗R)c if and only if AnnRA 6⊆ AnnRB and

AnnRB 6⊆ AnnRA.

It is useful to recall the following definitions and results from commutative ring theory.

Let R be a ring and let I be a proper ideal of R. Recall from [15] that a prime ideal

p of R is said to be a maximal N-prime of I if p is maximal with respect to the

property of being contained in ZR(R/I) = {r ∈ R : rx ∈ I for some x ∈ R\I}. Let

x ∈ Z(R). Let S = R\Z(R). Note that S is a multiplicatively closed subset of R

and Rx ∩ S = ∅. It follows from Zorn’s lemma and ([16], Theorem 1) that there

exists a maximal N-prime p of (0) in R such that x ∈ p. Hence, if {pα}α∈Λ is the

set of maximal N-primes of (0) in R, then it follows that Z(R) = ∪α∈Λpα. Observe

that R has only one maximal N-prime of (0) if and only if Z(R) is an ideal of R.

We use nil(R) to denote the nilradical of a ring R. A ring R is said to be reduced if

nil(R) = (0). Recall from ([12], Exercise 16, p.111) that a ring R is said to be von

Neumann regular if given x ∈ R, there exists y ∈ R such that x = x2y. For a ring R,

we denote the Krull dimension of R by dimR. It is known that R is von Neumann

regular if and only if R is reduced and dimR = 0 ([12], Exercise 16, p.111). We

denote the cardinality of a set A using the notation |A|.
Next, we recall the following definitions from graph theory. The graphs considered
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in this article are undirected and simple. Let G = (V,E) be a graph. Let a, b ∈ V ,

a 6= b. Recall that the distance between a and b, denoted by d(a, b) is defined as

the length of a shortest path between a and b in G if such a path exists; otherwise

d(a, b) = ∞. We define d(a, a) = 0. G is said to be connected if for any distinct

a, b ∈ V , there exists a path in G between a and b. Recall from ([8], Definition 4.2.1)

that the diameter of a connected graph G = (V,E) denoted by diam(G) is defined as

diam(G) = max{d(a, b) : a, b ∈ V }. Let a ∈ V . The eccentricity of a, denoted by e(a)

is defined as e(a) = max{d(a, b) : b ∈ V }. G is said to be bipartite if the vertex set

V can be partitioned into two nonempty subsets V1 and V2 such that each edge of G

has one end in V1 and the other in V2. A simple bipartite graph with vertex partition

V1 and V2 is said to be complete if each element of V1 is adjacent to every element of

V2. A complete bipartite graph with vertex partition V1 and V2 is said to be a star

if either |V1| = 1 or |V2| = 1. Recall from ([8], p. 159) that the girth of G, denoted

by girth(G) is defined as the length of a shortest cycle in G. If a graph G does not

contain any cycle, then we define girth(G) =∞.

Let R be a ring which admits at least one nontrivial ideal. In Section 2 of this article,

we discuss regarding the connectedness of (Ω∗R)c. Let R be a reduced ring with at

least two nontrivial ideals. It is shown that (Ω∗R)c is connected if and only if AG(R) is

a spanning subgraph of (Ω∗R)c and it is observed in such a case that diam((Ω∗R)c) ≤ 3

(see Proposition 1). It is noted in Remark 1 that if R is reduced and if (Ω∗R)c is

connected, then R must have at least two maximal N-primes of (0). Let R be a

reduced ring which admits only a finite number n ≥ 2 of maximal N-primes of (0).

In Proposition 2, it is proved that for such a ring R, (Ω∗R)c is connected if and only if

R ∼= F1×F2×· · ·×Fn as rings, where Fi is a field for each i ∈ {1, 2, . . . , n}. Moreover,

for such a ring R, diam((Ω∗R)c) is shown to be equal to 1 or 2 (see Proposition 4). For

a von Neumann regular ring R, it is proved in Proposition 3 that (Ω∗R)c is connected if

and only if R is Noetherian. Let R be an Artinian ring which is not local. If R is not

reduced, then it is verified in Remark 3 that (Ω∗R)c is connected and diam((Ω∗R)c) = 3.

Let R be a ring such that A(R)∗ 6= ∅. In [18], we associated and investigated some

properties of an undirected graph denoted by Ω(R) whose vertex set is A(R)∗ and

distinct vertices I, J are joined by an edge in Ω(R) if and only if I + J ∈ A(R). In

[19], we studied the interplay between the graph-theoretic properties of (Ω(R))c and

the ring-theoretic properties of R. It is useful to recall here that distinct nonzero

annihilating ideals I, J are adjacent in (Ω(R))c if and only if I + J /∈ A(R). Let H

be the subgraph of (Ω∗R)c induced on A(R)∗. It is observed in Lemma 5 that (Ω(R))c

is a spanning subgraph of H. Let R be a ring such that |A(R)∗| ≥ 2. In Theorem 2,

classification of rings R such that (Ω∗R)c is a path of order 4 is obtained. In Proposition

6, classification of rings R such that H is complete bipartite is given. It is proved in

Proposition 7 that H is complete if and only if R ∼= F1 × F2 as rings, where F1 and

F2 are fields. With |A(R)∗| ≥ 3, in Proposition 8, necessary and sufficient conditions

on R are determined in order that H be a star graph.

Let R be a ring which admits at least one nontrivial ideal. Section 3 of this article

contains a discussion on the girth of (Ω∗R)c. Let R be a reduced ring which is not

an integral domain. If R has a unique maximal N-prime of (0), then it is verified in
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Proposition 9 that girth((Ω∗R)c) = 3. If R has exactly two maximal N-primes of (0),

then it is proved in Proposition 10 that girth((Ω∗R)c) ∈ {3, 4,∞}. Let R be a ring

(which can possibly be non-reduced) such that R has at least three maximal N-primes

of (0). It is noted in Proposition 11 that girth((Ω∗R)c) = 3. Let R be a non-reduced

ring which has at most two maximal N-primes of (0). We are not able to determine

girth((Ω∗R)c). Some examples are provided to illustrate the results obtained in this

section.

Let R be a ring. We denote the set of all maximal ideals of R using the notation

Max(R). A ring R is said to be quasilocal (respectively, semiquasilocal) if R has a

unique maximal ideal (respectively, R has only a finite number of maximal ideals).

A Noetherian quasilocal (respectively, semiquasilocal) ring is referred to as a local

(respectively, semilocal) ring. Let A,B be sets. We use A ⊂ B to denote proper

inclusion.

2. On the connectedness of (Ω∗R)c

As mentioned in the introduction, the rings considered in this article are commutative

with identity which admit at least one nontrivial ideal. First, we determine some

necessary conditions on the ring R in order that (Ω∗R)c be connected.

Lemma 1. Let R be a ring and I be a nontrivial ideal of R such that I /∈ A(R)∗. Then
I is an isolated vertex of (Ω∗R)c.

Proof. It is already noted in the introduction that nontrivial ideals A,B of R are

adjacent in (Ω∗R)c if and only if AnnRA 6⊆ AnnRB and AnnRB 6⊆ AnnRA. As

I /∈ A(R)∗, we obtain that AnnRI = (0). Let J be any nontrivial ideal of R with

J 6= I. Then AnnRI = (0) ⊆ AnnRJ . Hence, I and J are not adjacent in (Ω∗R)c.

This proves that I is an isolated vertex of (Ω∗R)c.

Corollary 1. Let R be a ring such that R admits at least two nontrivial ideals. If (Ω∗R)c

is connected, then any nontrivial ideal of R is an annihilating ideal of R.

Proof. As R has at least two nontrivial ideals and (Ω∗R)c is connected, it follows

that no nontrivial ideal of R is an isolated vertex of (Ω∗R)c. Hence, we obtain from

Lemma 1 that each nontrivial ideal of R is an annihilating ideal of R.

Let R be a reduced ring with at least two nontrivial ideals. We prove in Proposition

1 that (Ω∗R)c is connected if and only if each nontrivial ideal of R is an annihilating

ideal of R. We use Lemma 2 in the proof of Proposition 1.

Lemma 2. Let R be a reduced ring. Let I, J ∈ A(R)∗ be such that IJ = (0). Then I and
J are adjacent in (Ω∗R)c.
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Proof. We claim that AnnRI 6⊆ AnnRJ and AnnRJ 6⊆ AnnRI. Suppose that

AnnRI ⊆ AnnRJ . Then from IJ = (0), it follows that J ⊆ AnnRI ⊆ AnnRJ . This

implies that J2 = (0). This is impossible since R is reduced and J 6= (0). Therefore,

AnnRI 6⊆ AnnRJ . Similarly, it can be shown that AnnRJ 6⊆ AnnRI. This proves

that I and J are adjacent in (Ω∗R)c.

Proposition 1. Let R be a reduced ring which admits at least two nontrivial ideals. Then
the following statements are equivalent:
(i) (Ω∗R)c is connected.
(ii) Each nontrivial ideal of R is an annihilating ideal of R.

Proof. (i) ⇒ (ii) This follows immediately from Corollary 1. It is useful to note

that this part of this Proposition does not need the hypothesis that R is reduced.

(ii) ⇒ (i) Note that the vertex set of (Ω∗R)c equals A(R)∗. It follows from Lemma

2 that AG(R) is a spanning subgraph of (Ω∗R)c. It is well-known that AG(R) is

connected and diam(AG(R)) ≤ 3 ([10], Theorem 2.1). Therefore, we obtain that

(Ω∗R)c is connected and diam((Ω∗R)c) ≤ 3.

Remark 1. Let R be a reduced ring which admits p as its unique maximal N-prime of
(0). Then (Ω∗R)c is not connected.

Proof. Note that p = Z(R). Let x ∈ p, x 6= 0. Note that there exists y ∈ R\{0}
such that xy = 0. As R is reduced and x 6= 0, whereas xy = 0, it follows that

Rx 6= Ry. Thus R has at least two nontrivial ideals. We assert that p /∈ A(R).

Suppose that p ∈ A(R). Then there exists a ∈ R\{0} such that pa = (0). This

implies that a ∈ Z(R) = p. Hence, a2 = 0. This is impossible since R is reduced and

a 6= 0. Therefore, p /∈ A(R). Hence, we obtain from Corollary 1 that (Ω∗R)c is not

connected.

Let R be a reduced ring which admits only a finite number n ≥ 2 of maximal N-primes

of (0). In Proposition 2, we classify such rings R in order that (Ω∗R)c be connected.

We use Lemmas 3 and 4 in the proof of Proposition 2 and some other results of this

article.

Lemma 3. Let R be a reduced ring which admits only a finite number n ≥ 2 of maximal
N-primes of (0). Let {p1, p2, . . . , pn} be the set of all maximal N-primes of (0) in R. If (Ω∗R)c

is connected, then ∩n
i=1pi = (0).

Proof. Assume that (Ω∗R)c is connected. It follows from Corollary 1 that each non-

trivial ideal of R is an annihilating ideal of R. Hence, for each i ∈ {1, 2, . . . , n},
there exists ai ∈ R\{0} such that piai = (0). It follows from ([9], Lemma 3.6) that

aiaj = 0 for all distinct i, j ∈ {1, 2, . . . , n}. Let i ∈ {1, 2, . . . , n}. Note that ai /∈ pi.

Hence, we obtain that ai ∈ ∩j∈{1,2,...,n}\{i}pj . Since Z(R) = ∪ni=1pi, it follows that
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i=1 ai /∈ Z(R). Let us denote

∑n
i=1 ai by a. Let x ∈ ∩ni=1pi. It follows from ax = 0

and a /∈ Z(R) that x = 0. This proves that ∩ni=1pi = (0).

Lemma 4. Let R be a ring. If (Ω∗R)c is connected, then each maximal N-prime p of (0)
in R is a maximal ideal of R.

Proof. Assume that (Ω∗R)c is connected. Let p be a maximal N-prime of (0) in R.

Let m be a maximal ideal of R such that p ⊆ m. If p = m, then the proof is complete.

Suppose that p 6= m. Since (Ω∗R)c is connected, there exists a path in (Ω∗R)c between

p and m. Hence, m is not an isolated vertex of (Ω∗R)c. This implies by Lemma 1 that

m ∈ A(R)∗. So, there exists x ∈ R\{0} such that mx = (0). Hence, m ⊆ Z(R) and

so, p ⊂ m ⊆ Z(R). This is impossible since p is maximal with respect to the property

of being contained in Z(R). Therefore, p is a maximal ideal of R.

Proposition 2. Let R be a reduced ring . Suppose that R has only a finite number n ≥ 2
of maximal N-primes of (0). Then the following statements are equivalent:
(i) (Ω∗R)c is connected.
(ii) R ∼= F1 × F2 × · · · × Fn as rings, where Fi is a field for each i ∈ {1, 2, . . . , n}.

Proof. (i)⇒ (ii) Let {p1, p2, . . . , pn} denote the set of all maximal N-primes of (0)

in R. We know from Lemma 3 that ∩ni=1pi = (0). It follows from Lemma 4 that

pi is a maximal ideal of R for each i ∈ {1, 2, . . . , n}. Observe that pi + pj = R

for all distinct i, j ∈ {1, 2, . . . , n} and ∩ni=1pi = (0). Therefore, we obtain from the

Chinese remainder theorem ([5], Proposition 1.10 (ii) and (iii)) that the mapping

f : R → R/p1 × R/p2 × · · · × R/pn defined by f(r) = (r + p1, r + p2, . . . , r + pn) is

an isomorphism of rings. Let i ∈ {1, 2, . . . , n}. Since pi is a maximal ideal of R, it

follows that R/pi is a field. Let us denote R/pi by Fi. Then Fi is a field for each

i ∈ {1, 2, . . . , n} and R ∼= F1 × F2 × · · · × Fn as rings.

(ii)⇒ (i) Let us denote the ring F1×F2×· · ·×Fn by T . Note that T is reduced and

each nontrivial ideal of T is of the form Te for some nontrivial idempotent e of T .

Hence, each nontrivial ideal of T is an annihilating ideal of T . Therefore, we obtain

from (ii) ⇒ (i) of Proposition 1 that (Ω∗T )c is connected. Since R ∼= T as rings, it

follows that (Ω∗R)c is connected.

Let R be von Neumann regular and let x ∈ R. Note that there exists y ∈ R such that

x = x2y. Observe that e = xy is an idempotent element of R. It is not hard to verify

that u = x + 1− e is a unit in R and x = ue. Let R be a von Neumann regular ring

with at least two maximal ideals. In Proposition 3, we classify von Neumann regular

rings R in order that (Ω∗R)c be connected.

Proposition 3. Let R be a von Neumann regular ring which is not a field. Then the
following statements are equivalent:
(i) (Ω∗R)c is connected.
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(ii) R ∼= F1 × F2 × · · · × Fn as rings for some n ≥ 2, where Fi is a field for each i ∈
{1, 2, . . . , n}.

Proof. (i) ⇒ (ii) Since (Ω∗R)c is connected, we obtain from Corollary 1 that if I

is any nontrivial ideal of R, then I ∈ A(R)∗. Let p be any prime ideal of R. As

p ∈ A(R)∗, there exists x ∈ R\{0} such that px = (0). Since dimR = 0, it follows

that p is a maximal ideal of R. Hence, p = ((0) :R x). Note that x = ue, where u is

a unit of R and e is a nontrivial idempotent element of R. Therefore, p = R(1 − e).

This proves that any prime ideal of R is finitely generated and hence by Cohen’s

theorem ([5], Exercise 1, p.84), we obtain that R is Noetherian. Therefore, it follows

from ([12], Exercise 22, p.112) that R ∼= F1 × · · · ×Fn as rings, where Fi is a field for

each i ∈ {1, . . . , n}. As R is not a field, it is clear that n ≥ 2.

(ii)⇒ (i) This follows immediately from (ii)⇒ (i) of Proposition 2.

Let n ≥ 2 and let R = F1×F2×· · ·×Fn, where Fi is a field for each i ∈ {1, 2, . . . , n}.
In Proposition 4, we determine diam((Ω∗R)c).

Proposition 4. Let n ≥ 2 and let R = F1 × F2 × · · · × Fn, where Fi is a field for each
i ∈ {1, 2, . . . , n}. Then the following hold.
(i) diam((Ω∗R)c) = 1 if n = 2.
(ii) diam((Ω∗R)c) = 2 if n ≥ 3.

Proof. (i) Assume that n = 2. Note that the set of all nontrivial ideals of R equals

{m1 = (0)× F2,m2 = F1 × (0)}. Since R is reduced and m1m2 = (0)× (0), it follows

from Lemma 2 that m1 and m2 are adjacent in (Ω∗R)c. Therefore, diam((Ω∗R)c) = 1.

(ii) Assume that n ≥ 3. Let I, J be any two distinct nontrivial ideals of R. Observe

that I = Re and J = Rf for some nontrivial idempotent elements e, f of R. Suppose

that I and J are not adjacent in (Ω∗R)c. Then either AnnRI ⊆ AnnRJ or AnnRJ ⊆
AnnRI. Without loss of generality, we can assume that AnnRI ⊆ AnnRJ . Hence,

R(1−e) ⊆ R(1−f). This implies that (1−e)f = 0. Observe that IR(1−e) = (0) and

JR(1− e) = (0). Since R is reduced, it follows from Lemma 2 that I −R(1− e)− J

is a path of length 2 in (Ω∗R)c. This proves that between any two nontrivial ideals

I, J of R, there exists a path of length at most two between I and J in (Ω∗R)c.

Therefore, diam((Ω∗R)c) ≤ 2. We next verify that diam((Ω∗R)c) = 2. Indeed, we show

that e(I) = 2 for any nontrivial ideal I of R. Observe that either I ∈ Max(R) or

I /∈ Max(R). Suppose that I ∈ Max(R). Let m ∈ Max(R) be such that I 6= m.

Since n ≥ 3, it follows that I ∩ m is a nontrivial ideal of R. As I ∩ m ⊂ I, it

follows that AnnRI ⊆ AnnR(I ∩ m) and so, I and I ∩ m are not adjacent in (Ω∗R)c.

Hence, d(I, I ∩ m) = 2 in (Ω∗R)c. Suppose that I /∈ Max(R). Let n ∈ Max(R) be

such that I ⊂ n. Note that I and n are not adjacent in (Ω∗R)c and so, d(I, n) = 2

in (Ω∗R)c. This proves that e(I) = 2 for any nontrivial ideal I of R and therefore,

diam((Ω∗R)c) = 2.
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Let R be a non-reduced ring. We next discuss the connectedness of (Ω∗R)c. First,

we consider non-reduced rings R such that R has only one maximal N-prime of (0).

Recall that a principal ideal ring R is said to be a special principal ideal ring (SPIR)

if R has only one prime ideal. If m is the only prime ideal of a SPIR R, then m is

necessarily nilpotent. If R is a SPIR with m as its only prime ideal, then we denote

it by saying that (R,m) is a SPIR. Suppose that m 6= (0). Let n ≥ 2 be least with

the property that mn = (0). Then it follows from (iii)⇒ (i) of ([5], Proposition 8.8)

that {mi : i ∈ {1, . . . , n− 1}} is the set of all nontrivial ideals of R.

Proposition 5. Let R be a non-reduced ring which admits p as its unique maximal
N-prime of (0) Then the following statements are equivalent:
(i) (Ω∗R)c is connected.
(ii) (R, p) is a SPIR with p2 = (0).

Proof. (i) ⇒ (ii) Let x ∈ R\{0} be such that x2 = 0. We claim that p = Rx.

Suppose that p 6= Rx. Since, (Ω∗R)c is connected, there exists a path in (Ω∗R)c between

Rx and p. Hence, there exists a nontrivial I of R such that I and p are adjacent in

(Ω∗R)c. This implies by Lemma 1 that I ∈ A(R)∗. So, there exists r ∈ R\{0} such

that Ir = (0). Hence, I ⊆ Z(R) = p. Therefore, AnnRp ⊆ AnnRI and so, I and

p are not adjacent in (Ω∗R)c. This is a contradiction. Therefore, p = Rx. We know

from Lemma 4 that p ∈ Max(R). It follows from p2 = (0), that p is the unique

maximal ideal of R and it is the only nontrivial ideal of R. Hence, (R, p) is a SPIR

with p2 = (0).

(ii)⇒ (i) Note that p is the only nontrivial ideal of R. Hence, (Ω∗R)c is a graph whose

vertex set is {p} and so, it is connected.

Let R be a non-reduced ring such that R admits only a finite number n ≥ 2 of

maximal N-primes of (0). In Theorem 7, we provide a sufficient condition for (Ω∗R)c

to be connected. We need some preliminary results that are needed for proving

Theorem 7.

Lemma 5. Let R be a ring and let I1, I2 ∈ A(R)∗ be such that I1 + I2 /∈ A(R). Then I1
and I2 are adjacent in (Ω∗R)c.

Proof. Since I1 +I2 /∈ A(R), we obtain that AnnRI1∩AnnRI2 = (0). As AnnRIi 6=
(0) for each i ∈ {1, 2}, it follows that AnnRI1 6⊆ AnnRI2 and AnnRI2 6⊆ AnnRI1.

This proves that I1 and I2 are adjacent in (Ω∗R)c.

For a ring R, we denote the Jacobson radical of R by J(R).

Lemma 6. Let R be a ring such that each nontrivial ideal of R is an annihilating ideal
of R. Let W = {I : I ∈ A(R)∗ such that I 6⊆ J(R)}. Then the subgraph H of (Ω∗R)c induced
on W is connected and moreover, diam(H) ≤ 2.
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Proof. Let I1, I2 ∈ W be such that I1 6= I2. Suppose that I1 and I2 are not

adjacent in H. Then either AnnRI1 ⊆ AnnRI2 or AnnRI2 ⊆ AnnRI1. Without loss

of generality, we can assume that AnnRI1 ⊆ AnnRI2. Since I2 ∈ W , there exists

a maximal ideal m of R such that I2 6⊆ m. We assert that I1 6⊆ m. Suppose that

I1 ⊆ m. Then we obtain that AnnRm ⊆ AnnRI1. Since AnnRI1 ⊆ AnnRI2, we

get that AnnRm ⊆ AnnRI2. This is impossible since I2 + m = R. This proves that

I1 6⊆ m. Therefore, I1 + m = I2 + m = R. It is clear that m ∈ W and it follows from

Lemma 5 that I1 −m− I2 is a path of length 2 between I1 and I2 in H. This shows

that H is connected and moreover, diam(H) ≤ 2.

Lemma 7. Let n ≥ 2 and let (Ri,mi) be a quasilocal ring for each i ∈ {1, 2, . . . , n}.
Suppose that each proper ideal of Ri is an annihilating ideal of Ri for each i ∈ {1, 2, . . . , n}.
Let R = R1 ×R2 × · · · ×Rn. Then (Ω∗R)c is connected and moreover, diam((Ω∗R)c) ≤ 3.

Proof. Let i ∈ {1, 2, . . . , n} . Let Mi = I1 × I2 × · · · × In, where Ii = mi and

Ij = Rj for all j ∈ {1, 2, . . . , n}\{i}. It is clear that R is semiquasilocal with

{M1,M2, . . . ,Mn} as its set of all maximal ideals. As each proper ideal of Ri is

an annihilating ideal of Ri for each i ∈ {1, 2, . . . , n}, we obtain that each proper ideal

of R is an annihilating ideal of R. Note that J(R) = m1×m2×· · ·×mn. Let A,B be

nontrivial ideals of R with A 6= B. We now verify that there exists a path of length

at most three between A and B in (Ω∗R)c. We can assume that A and B are not

adjacent in (Ω∗R)c. We consider the following cases.

Case 1. A 6⊆ J(R) and B 6⊆ J(R).

In this case, we know from Lemma 6 that there exists a path of length at most two

between A and B in (Ω∗R)c.

Case 2. A ⊆ J(R) whereas B 6⊆ J(R).

Note that A is of the form A = A1 × A2 × · · · × An, where Ai is an ideal of Ri with

Ai ⊆ mi for each i ∈ {1, 2, . . . , n}. Note that Ai 6= (0) for at least one i ∈ {1, 2, . . . , n}.
Fix i ∈ {1, 2, . . . , n} such that Ai 6= (0). Observe that AnnRi

Ai is a nontrivial ideal of

Ri . It can happen that Aj = (0) for each j ∈ {1, 2, . . . , n}\{i}. Fix j ∈ {1, 2, . . . , n}
with j 6= i. Let C be an ideal of R defined by C = C1×C2×· · ·×Cn with Cj = Rj and

Ck = (0) for all k ∈ {1, 2, . . . , n}\{j}. It is clear that C 6⊆ J(R) , AnnRA 6⊆ AnnRC,

and AnnRC 6⊆ AnnRA. Therefore, A and C are adjacent in (Ω∗R)c. Suppose that

At 6= (0) for some t ∈ {1, 2, . . . , n} with t 6= i. In such a case, define the ideal D of R

by D = D1 ×D2 × · · · ×Dn with Di = Ri and Dk = (0) for all k ∈ {1, 2, . . . , n}\{i}.
It is clear that D 6⊆ J(R), AnnRA 6⊆ AnnRD, and AnnRD 6⊆ AnnRA. Hence, A and

D are adjacent in (Ω∗R)c. We know from Lemma 6 that there exists a path of length

at most two between C and B in (Ω∗R)c and there exists a path of length at most two

between D and B in (Ω∗R)c. This proves that there exists a path of length at most

three between A and B in (Ω∗R)c.

Case 3. A ⊆ J(R) and B ⊆ J(R).

Note that A is of the form A = A1 × A2 × · · · × An and B is of the form B = B1 ×
B2×· · ·×Bn , where for each i ∈ {1, 2, . . . , n}, Ai, Bi are proper ideals of Ri. We are
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assuming that A and B are not adjacent in (Ω∗R)c. Hence, either AnnRA ⊆ AnnRB

or AnnRB ⊆ AnnRA. Without loss of generality, we can assume that AnnRA ⊆
AnnRB. Then AnnRi

Ai ⊆ AnnRi
Bi for each i ∈ {1, 2, . . . , n}. Note that Bi 6= (0) for

at least one i ∈ {1, 2, . . . , n}. It follows from AnnRi
Ai ⊆ AnnRi

Bi that Ai 6= (0). It

can happen that there are distinct i, t ∈ {1, 2, . . . , n} such that Bi 6= (0) and Bt 6= (0).

In such a case, Ai 6= (0) and At 6= (0). In such a situation, we know from the proof of

Case 2 of this lemma that both A and B are adjacent to D = D1 ×D2 × · · · ×Dn in

(Ω∗R)c, where Di = Ri and Dk = (0) for all k∈ {1, 2, . . . , n}\{i}. Hence, A−D−B is

a path of length two between A and B in (Ω∗R)c. Suppose that there exists a unique

i ∈ {1, 2, . . . , n} such that Bi 6= (0). Then Ai 6= (0). It can happen that Aj = (0) for

all j ∈ {1, 2, . . . , n}\{i}. Fix j ∈ {1, 2, . . . , n}\{i}. Observe that it follows from the

proof of Case 2 of this lemma that both A and B are adjacent to C = C1×C2×· · ·×Cn
in (Ω∗R)c, where Cj = Rj and Ck = (0) for all k ∈ {1, 2, . . . , n}\{j}. Hence, A−C−B

is a path of length two between A and B in (Ω∗R)c. Suppose that there exists j ∈
{1, 2, . . . , n}\{i} such that Aj 6= (0). With C,D as above, it is clear that A−D−C−B
is a path of length three between A and B in (Ω∗R)c.

Thus for any distinct nontrivial ideals A,B of R, there exists a path of length at

most three between A and B in (Ω∗R)c. This proves that (Ω∗R)c is connected and

diam((Ω∗R)c) ≤ 3.

Theorem 1. Let R be a non-reduced ring which has only a finite number n ≥ 2 of
maximal N-primes of (0). Let {p1, p2, . . . , pn} denote the set of all maximal N-primes of (0)
in R. If ∩n

i=1pi is nilpotent, then the following statements are equivalent:
(i) (Ω∗R)c is connected.
(ii) Each nontrivial ideal of R is an annihilating ideal of R and R is semiquasilocal with
{p1, p2, . . . , pn} as its set of all maximal ideals.

Proof. (i)⇒ (ii) Assume that (Ω∗R)c is connected. It follows from Corollary 1 that

any nontrivial ideal of R is an annihilating ideal of R. We know from Lemma 4 that

pi ∈Max(R) for each i ∈ {1, 2, . . . , n}. Note that Z(R) = ∪ni=1pi. Let m ∈Max(R).

As m ∈ A(R), we get that m ⊆ Z(R) = ∪ni=1pi. Therefore, we obtain from Prime

avoidance lemma ([5], Proposition 1.11 (i)) that m ⊆ pi for some i ∈ {1, 2, . . . , n} and

so, m = pi. This shows that R is semiquasilocal with {p1, p2, . . . , pn} as its set of all

maximal ideals.

(ii) ⇒ (i) Note that for each i ∈ {1, 2, . . . , n}, there exists ai ∈ R\{0} such that

pi = ((0) :R ai). Note that J(R) = ∩ni=1pi and as J(R) is nilpotent, there exists

k ≥ 1 such that (J(R))k = (0). Since R is not reduced, it follows that k ≥ 2. Observe

that for all distinct i, j ∈ {1, 2, . . . , n}, pik + pj
k = R and ∩ni=1p

k
i =

∏n
i=1 p

k
i = (0).

Therefore, we obtain from the Chinese remainder theorem ([5], Proposition 1.10 (ii)

and (iii)) that the mapping f : R → R/pk1 × R/pk2 × · · · × R/pkn given by f(r) =

(r + pki , r + pk2 , . . . , r + pkn) is an isomorphism of rings. Let i ∈ {1, 2, . . . , n} and let

us denote the ring R/pki by Ri. Note that Ri is quasilocal with mi = pi/p
k
i as its

unique maximal ideal. It is clear that mki = zero ideal of Ri. Let us denote the ring

R1 × R2 × · · · × Rn by T . We know from Lemma 7 that (Ω∗T )c is connected and
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diam((Ω∗T )c) ≤ 3. Since R ∼= T as rings, we obtain that (Ω∗R)c is connected and

moreover, diam((Ω∗R)c) ≤ 3.

Let R, p1, p2, . . . , pn be as in the statement of Theorem 1. If ∩ni=1pi is nilpotent and

if (Ω∗R)c is connected, then it is shown in the proof of (ii) ⇒ (i) of Theorem 1 that

diam((Ω∗R)c) ≤ 3. As an immediate consequence of Remark 2, we deduce in Corollary

2 that diam((Ω∗R)c) = 3.

Remark 2. Let R be a ring. Let p be a prime ideal of R such that p = ((0) :R x) for
some x ∈ p . Suppose that p 6= Rx. Then the following hold.
(i) Rx and p are not adjacent in (Ω∗R)c.
(ii) There is no path of length 2 between Rx and p in (Ω∗R)c.

Proof. (i) Since Rx ⊂ p, it is clear that Rx and p are not adjacent in (Ω∗R)c.

(ii) Suppose that there exists a path of length 2 between Rx and p in (Ω∗R)c. Let

Rx − I − p be a path of length 2 in (Ω∗R)c between Rx and p. Since Rx and I are

adjacent in (Ω∗R)c, it follows that AnnRRx 6⊆ AnnRI and AnnRI 6⊆ AnnRRx. Note

that AnnRRx = p. Thus AnnRI 6⊆ p. It follows from IAnnRI = (0) ⊆ p and the

hypothesis that p is a prime ideal of R that I ⊆ p. Hence, I and p are not adjacent

in (Ω∗R)c. This is a contradiction. Therefore, there exists no path of length 2 between

Rx and p in (Ω∗R)c.

Corollary 2. Let R be a non-reduced ring. Suppose that R has only a finite number
n ≥ 2 of maximal N-primes of (0). Let {p1, p2, . . . , pn} be the set of all maximal N-primes
of (0) in R. If (Ω∗R)c is connected and if ∩n

i=1pi is nilpotent, then diam((Ω∗R)c) = 3.

Proof. Assume that (Ω∗R)c is connected. We know from (i) ⇒ (ii) of Theorem 1

that for each i ∈ {1, 2, . . . , n}, there exists ai ∈ R\{0} such that pi = ((0) :R ai).

Moreover, R is semiquasilocal with Max(R) = {p1, p2, . . . , pn}. Under the assumption

that ∩ni=1pi is nilpotent, it is shown in the proof of (ii) ⇒ (i) of Theorem 1 that

diam((Ω∗R)c) ≤ 3. Let i ∈ {1, 2, . . . , n}. Now, piai = (0). As pi 6⊆ pj for each

j ∈ {1, 2, . . . , n}\{i}, it follows that ai ∈ pj for all j ∈ {1, 2, . . . , n}\{i}. We claim

that ak ∈ ∩ni=1pi for some k ∈ {1, 2, . . . n}. That is, equivalently ak ∈ pk for some

k ∈ {1, 2, . . . , n}. Suppose that ak /∈ pk for each k ∈ {1, 2, . . . , n}. Note that for

each k ∈ {1, 2, . . . , n}, ak ∈ pi for all i ∈ {1, 2, . . . , n}\{k}. Let us denote the element∑n
i=1 ai by a. Since Z(R) = ∪ni=1pi, it follows that a /∈ Z(R). As R is not reduced, we

obtain that ∩ni=1pi 6= (0). Let x ∈ ∩ni=1pi, x 6= 0. From ax = 0 and a /∈ Z(R), we get

that x = 0. This is a contradiction. Therefore, ak ∈ ∩ni=1pi for some k ∈ {1, 2, . . . , n}.
Note that pk = ((0)R : ak), ak ∈ pk, and it is clear that Rak 6= pk. Now, it follows from

Remark 2 that d(Rak, pk) ≥ 3 in (Ω∗R)c. As is already noted that diam((Ω∗R)c) ≤ 3,

we obtain that diam((Ω∗R)c) = 3.
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Remark 3. Let R be a non-reduced Artinian ring. If R is local with m as its unique
maximal ideal, then as m is the unique maximal N-prime of (0) in R, it follows from Propo-
sition 5 that (Ω∗R)c is connected if and only if (R,m) is a SPIR with m2 = (0). Suppose that
R is not local. Since R is Artinian, we know from ([5], Proposition 8.3) that R has only a
finite number of maximal ideals. Let {m1,m2, . . . ,mn} be the set of all maximal ideals of
R. Note that J(R) = ∩n

i=1mi. It follows from ([5], Corollary 8.2 and Proposition 8.4) that
there exists k ∈ N such that (J(R))k = (0). It is clear that k ≥ 2. Let i ∈ {1, 2, . . . , n}. Let
us denote {1, 2, . . . , n}\{i} by Ai. Observe that

∏
j∈Ai

mk
j 6= (0) . It is convenient to denote∏

j∈Ai
mk

j by Ii. Note that mk
i Ii = (0). We can choose t ≥ 1 least with the property that

mt
iIi = (0). Let xi ∈ mt−1

i Ii\{0}. Then it is clear that mi = ((0) :R xi). This shows that
{m1,m2, . . . ,mn} is the set of all maximal N-primes of (0) in R and each proper ideal of R
is an annihilating ideal of R. Now, it follows from (ii) ⇒ (i) of Theorem 1 that (Ω∗R)c is
connected. Moreover, we obtain from Corollary 2 that diam((Ω∗R)c) = 3.

Let n ≥ 2 and let R, p1, p2, . . . , pn be as in the statement of Theorem 1. It is shown

in Theorem 1 that (ii)⇒ (i) of Theorem 1 holds under the assumption that ∩ni=1pi is

nilpotent. We provide an example in Example 1 to illustrate that the above assump-

tion is not necessary.

Example 1. Let S = K[[X,Y ]] be the power series ring in two variables X,Y over a field
K. Let I = SX2 + SXY . Let T = S/I. Let R = T × T . Then (Ω∗R)c is connected and
moreover, diam((Ω∗R)c) = 3.

Proof. Observe that S is local with m = SX + SY as its unique maximal ideal.

Note that m = (I :S X). It is clear that T is local with m/I as its unique maximal

ideal. Observe that (m/I)(X + I) = (0 + I) and X /∈ I. Hence, each proper ideal

of T is an annihilating ideal of T . As R = T × T , we obtain from Lemma 7 that

(Ω∗R)c is connected and diam((Ω∗R)c) ≤ 3. Note that Z(T ) = m/I. Therefore, {p1 =

m/I × T, p2 = T × m/I} is the set of all maximal N-primes of the zero ideal in R.

As (Y + I)k 6= 0 + I for any k ≥ 1, it follows that p1 ∩ p2 = m/I × m/I is not

nilpotent. Observe that p1 = ((0 + I, 0 + I) :R (X + I, 0 + I)), p1 6= R(X + I, 0 + I).

Therefore, we obtain from Remark 2 that d(R(X + I, 0 + I), p1) ≥ 3 in (Ω∗R)c and so,

diam((Ω∗R)c) = 3.

In Theorem 2, we classify rings R such that (Ω∗R)c is a path of order 4.

Theorem 2. Let R be a ring. Then the following statements are equivalent:
(i) (Ω∗R)c is a path of order 4.
(ii) R ∼= F × S as rings, where F is a field and (S,m) is a SPIR with m 6= (0) but m2 = (0).

Proof. (i) ⇒ (ii) It follows from (i) that (Ω∗R)c is connected and R has exactly

four nontrivial ideals. Therefore, R is necessarily Artinian. If R is local, then we

obtain from (i) ⇒ (ii) of Proposition 5 that R has only one nontrivial ideal. Hence,

R must have at least two maximal ideals. Let n be the number of maximal ideals of

R. If n ≥ 3, then R admits at least six nontrivial ideals. This is impossible. Hence,
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n = 2. Let {m1,m2} denote the set of all maximal ideals of R. If m1 ∩ m2 = (0),

then R is isomorphic to the direct product of two fields. In such a case, R has exactly

two nontrivial ideals. This is a contradiction. Therefore, m1 ∩m2 6= (0). Since R has

exactly four nontrivial ideals, it follows that either m1 = m2
1 or m2 = m2

2. Without loss

of generality, we can assume that m1 = m2
1. Note that J(R) = m1∩m2. As J(R) 6= (0),

it follows from Nakayama’s lemma ([5], Proposition 2.6) that J(R) 6= (J(R))2. Hence,

it follows that m2 6= m2
2. Therefore, {m1,m2,m

2
2,m1 ∩ m2} is the set of all nontrivial

ideals of R. Moreover, (J(R))2 = (0). Note that m1 + m2
2 = R and m1 ∩ m2

2 = (0).

Hence, we obtain from the Chinese remainder theorem ([5], Proposition 1.10 (ii) and

(iii)) that the mapping f : R→ R/m1×R/m2
2 given by f(r) = (r +m1, r +m2

2) is an

isomorphism of rings. Let us denote R/m1 by F and R/m2
2 by S. Observe that for

any x ∈ m2\(m1 ∪ m2
2), m2 = Rx. Let us denote m2/m

2
2 by m. It is clear that (S,m)

is a local ring with m = S(x + m2
2) 6= (0 + m2

2) and m2 = (0 + m2
2). Note that F is a

field and (S,m) is a SPIR with m 6= zero ideal but m2 = zero ideal and R ∼= F ×S as

rings.

(ii) ⇒ (i) Assume that R ∼= F × S as rings, where F is a field and (S,m) is a SPIR

with m 6= (0) but m2 = (0). It is not hard to show that (Ω∗R)c is the path of order 4

given by (0)×m− F × (0)− (0)× S − F ×m.

Let R be a ring such that |A(R)∗| ≥ 2. Let H be the subgraph of (Ω∗R)c induced

on A(R)∗. In Proposition 6, we classify rings R such that H is a complete bipartite

graph. We use Lemma 8 in the proof of Proposition 6.

Lemma 8. Let R be a reduced ring such that R has exactly two minimal prime ideals.
Let H be the subgraph of (Ω∗R)c induced on A(R)∗. Then H = AG(R) = (Ω(R))c.

Proof. Note that the vertex set of H = the vertex set of AG(R) = the vertex set of

(Ω(R))c = A(R)∗. Let I, J ∈ A(R)∗ be such that I 6= J . If I and J are adjacent in

AG(R), then we know from Lemma 2 that I and J are adjacent in (Ω∗R)c. Suppose

that I and J are adjacent in (Ω∗R)c. We assert that I and J are adjacent in AG(R),

that is, IJ = (0). Suppose that IJ 6= (0). Let {p1, p2} denote the set of all minimal

prime ideals of R. Note that p1∩p2 = (0) and Z(R) = p1∪p2. Moreover, if A ∈ A(R)∗,

then A ⊆ Z(R) and so, either A ⊆ p1 or A ⊆ p2. From IJ 6= (0), it follows that

either IJ 6⊆ p1 or IJ 6⊆ p2. Without loss of generality, we can assume that IJ 6⊆ p1.

Then I 6⊆ p1 and J 6⊆ p1. Hence, AnnRI ⊆ p1 and AnnRJ ⊆ p1. Observe that I ⊆ p2

and J ⊆ p2. Hence, Ip1 = Jp1 = (0) and so, p1 ⊆ AnnRI ∩ AnnRJ . Therefore,

AnnRI = AnnRJ = p1. This is in contradiction to the assumption that I and J

are adjacent in (Ω∗R)c. Hence, IJ = (0) and so, I and J are adjacent in AG(R).

Therefore, we obtain that H = AG(R).

We next verify that H = (Ω(R))c. Let I, J ∈ A(R)∗ be such that I 6= J . Suppose

that I and J are adjacent in (Ω(R))c. This implies that I + J /∈ A(R). Hence, we

obtain from Lemma 5 that I and J are adjacent in (Ω∗R)c. Suppose that I and J

are adjacent in (Ω∗R)c. Then it is shown in the previous paragraph that IJ = (0).

Without loss of generality, we can assume that I ⊆ p1 and J ⊆ p2. Note that I 6⊆ p2
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and J 6⊆ p1. Hence, we get that I + J 6⊆ p1 ∪ p2. Since any annihilating ideal of R

is contained in Z(R) and Z(R) = p1 ∪ p2, it follows that I + J /∈ A(R). Therefore, I

and J are adjacent in (Ω(R))c. This proves that H = (Ω(R))c.

Proposition 6. Let R be a ring with |A(R)∗| ≥ 2. Let H be the subgraph of (Ω∗R)c

induced on A(R)∗. Then the following statements are equivalent:
(i) H is a complete bipartite graph.
(ii) R is reduced and has exactly two minimal prime ideals.

Proof. (i) ⇒ (ii) We adapt an argument found in the proof of (i) ⇒ (ii) of ([19],

Proposition 2.10). Let H be a complete bipartite graph with vertex partition V1 and

V2. Note that V1 and V2 are nonempty, V1 ∩ V2 = ∅, and A(R)∗ = V1 ∪ V2. Let us

denote ∪I∈V1I by A and ∪J∈V2J by B. We claim that A and B are ideals of R. Let

a1, a2 ∈ A. Then there exist I1, I2 ∈ V1 such that a1 ∈ I1 and a2 ∈ I2. If I1 = I2,

then it is clear that a1 + a2 ∈ I1 ⊆ A. If I1 6= I2, then I1 and I2 are not adjacent in

(Ω∗R)c. Hence, it follows from Lemma 5 that I1 + I2 ∈ A(R). If I1 + I2 ∈ V2, then

we obtain that I1 and I1 + I2 are adjacent in (Ω∗R)c. This is impossible. Therefore,

I1 + I2 ∈ V1. Hence, we get that a1 + a2 ∈ I1 + I2 ⊆ A. Let r ∈ R and a ∈ A. Note

that there exists I ∈ V1 such that a ∈ I. Hence, ra ∈ I ⊆ A. This proves that A

is an ideal of R. Similarly, it can be shown that B is an ideal of R. Now, it can be

shown as in the proof of (i)⇒ (ii) of ([19], Proposition 2.10) that both A and B are

maximal N-primes of (0) in R and A ∩ B = (0). It is now clear that R is a reduced

ring and {A,B} is the set of all minimal prime ideals of R.

(ii) ⇒ (i) Assume that R is reduced and has exactly two minimal prime ideals.

Let {p1, p2} denote the set of all minimal prime ideals of R. Note that AG(R) is

a complete bipartite graph with vertex partition V1 = {I ∈ A(R)∗ : I ⊆ p1} and

V2 = {J ∈ A(R)∗ : J ⊆ p2}. We know from Lemma 8 that H = AG(R). Therefore,

H is a complete bipartite graph.

Proposition 7. Let R be a ring with |A(R)∗| ≥ 2. Let H be the subgraph of (Ω∗R)c

induced on A(R)∗. Then the following statements are equivalent:
(i) H is complete.
(ii) R ∼= F1 × F2 as rings, where Fi is a field for each i ∈ {1, 2}.
(iii) (Ω∗R)c is complete.

Proof. (i)⇒ (ii) Let I ∈ A(R)∗. Let J be any nonzero ideal of R such that J ⊆ I.

Then it is clear that J ∈ A(R)∗ and AnnRI ⊆ AnnRJ . If I 6= J , then I and J are not

adjacent in (Ω∗R)c. This contradicts the assumption that H is complete. Therefore,

J = I. This shows that each I ∈ A(R)∗ is a minimal ideal of R. Hence, we obtain

from ([10], Theorem 1.1) that R is Artinian. It is already noted in Remark 3 that if

I is any proper ideal of R, then I ∈ A(R). We know from ([5], Proposition 8.3) that

R has only a finite number of maximal ideals. Let {m1, . . . ,mn} denote the set of all

maximal ideals of R. If R is local, then m1 is the only element of A(R)∗ and this is in

contradiction to the hypothesis that |A(R)∗| ≥ 2. Hence, we obtain that n ≥ 2. As
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m1 is a minimal ideal of R and m1 ∩ m2 ⊂ m1, it follows that m1 ∩ m2 = (0). Since

m1+m2 = R, we obtain from the Chinese remainder theorem ([5], Proposition 1.10 (ii)

and (iii)) that the mapping f : R→ R/m1×R/m2 defined by f(r) = (r+m1, r+m2)

is an isomorphism of rings. Let us denote R/mi by Fi for each i ∈ {1, 2}. Then Fi is

a field for each i ∈ {1, 2} and R ∼= F1 × F2 as rings.

(ii) ⇒ (iii) Let us denote the ring F1 × F2 by T , where F1 and F2 are fields. It is

already noted in Proposition 4 (i) that (Ω∗T )c is complete. Since R ∼= T as rings, it

follows that (Ω∗R)c is complete.

(iii) ⇒ (i) It follows from Corollary 1 that if I is any nontrivial ideal of R, then

I ∈ A(R)∗. Hence, we obtain that H = (Ω∗R)c and so, H is complete.

Proposition 8. Let R be a ring with |A(R)∗| ≥ 3. Let H be the subgraph of (Ω∗R)c

induced on A(R)∗. Then the following statements are equivalent:
(i) H is a star graph.
(ii) R ∼= D × F as rings, where F is a field and D is an integral domain but not a field.

Proof. (i) ⇒ (ii) Let H be a star graph with vertex partition V1 and V2 such that

|V1| = 1. Let V1 = {I}. Since H is a complete bipartite graph with vertex partition

V1 and V2, it follows from the proof of (i) ⇒ (ii) of Proposition 6 that R is reduced

and has exactly two minimal prime ideals A and B , where A = I and B = ∪J∈V2
J .

We know from Lemma 8 that H = (Ω(R))c. Hence, (Ω(R))c is star and so, we obtain

from (i)⇒ (ii) of ([19], Proposition 2.12) that R ∼= D×F as rings, where F is a field

and D is an integral domain but not a field.

(ii)⇒ (i) Let us denote D × F by T , where F is a field and D is an integral domain

but not a field. From (ii) ⇒ (i) of ([19], Proposition 2.12), we obtain that (Ω(T ))c

is a star graph. As R ∼= T as rings, we get that (Ω(R))c is a star graph. Since R

is reduced and has exactly two minimal prime ideals, it follows from Lemma 8 that

H = (Ω(R))c. Therefore, H is a star graph.

3. On the girth of (Ω∗R)c

Let R be a ring with |A(R)∗| ≥ 2. In this section, we discuss regarding girth((Ω∗R)c).

Let H be the subgraph of (Ω∗R)c induced on A(R)∗. We know from Lemma 1 that if

I is an ideal of R such that I /∈ A(R), then I is an isolated vertex of (Ω∗R)c. Hence,

it follows that girth((Ω∗R)c) = girth of H. Moreover, we know from Lemma 5 that

(Ω(R))c is a subgraph of H. Hence, in this section, we use results that were proved

on the girth((Ω(R))c) in ([19], Section 3).

Proposition 9. Let R be a reduced ring with |A(R)∗| ≥ 2. If R has a unique maximal
N-prime of (0), then girth((Ω∗R)c) = 3.

Proof. First, we claim that R has an infinite number of minimal prime ideals.

Suppose that R has only a finite number n ≥ 2 of minimal prime ideals. Let
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{p1, p2, . . . , pn} denote the set of all minimal prime ideals of R. Note that ∩ni=1pi = (0)

and Z(R) = ∪ni=1pi. This implies that {p1, p2, . . . , pn} is the set of all maximal N-

primes of (0) in R. This is in contradiction to the assumption that R has a unique

maximal N-prime of (0). Therefore, R has an infinite number of minimal prime ideals.

Now, it follows from ([19], Proposition 3.8) that girth((Ω(R))c) = 3. Since (Ω(R))c

is a subgraph of (Ω∗R)c, we obtain that girth((Ω∗R)c) = 3.

Proposition 10. Let R be a reduced ring such that R has exactly two maximal N-primes
of (0). Then girth((Ω∗R)c) ∈ {3, 4,∞}.

Proof. If R has at least three minimal prime ideals, then we know from ([19], Propo-

sition 3.8) that girth((Ω(R))c) = 3 and so, girth((Ω∗R)c) = 3. Suppose that R

has exactly two minimal prime ideals. Let H be the subgraph of (Ω∗R)c induced

on A(R)∗. We know from (ii) ⇒ (i) of Proposition 6 that H is a complete bi-

partite graph. Therefore, girth((Ω∗R)c) = girth(H) ∈ {4,∞}. This proves that

girth((Ω∗R)c) ∈ {3, 4,∞}.

We next present some examples to illustrate Propositions 9 and 10. Example 2 given

below is found in ([13], Example, page 16).

Example 2. Let K be a field and {Xi}∞i=1 be a set of independent indeterminates over
K. Let D = ∪∞n=1K[[X1, . . . , Xn]], where K[[X1, . . . , Xn]] is the power series ring in n
variables X1, . . . , Xn over K. Let I be the ideal of D generated by {XiXj : i, j ∈ N, i 6= j}.
Let R = D/I. Then R is a reduced ring, R has a unique maximal N-prime of (0), and
girth((Ω∗R)c) = 3.

Proof. Let i ∈ N. It is convenient to denote Xi+ I by xi. The following facts about

the ring R have been mentioned in ([13], Example, page 16).

(1) R is quasilocal with m = the ideal of R generated by {xi : i ∈ N} as its unique

maximal ideal.

(2) Let i ∈ N and pi be the ideal of R generated by {xj : j ∈ N, j 6= i}. Then

{pi : i ∈ N} is the set of all minimal prime ideals of R.

It was shown in ([17], Example 3.4 (i)) that m = Z(R). Hence, R has m as its unique

maximal N-prime of (0). It follows from ∩∞i=1pi = (0) that R is reduced. It follows

from Proposition 9 that girth((Ω∗R)c) = 3. We verify here that (Ω(R))c admits an

infinite clique. Since R is reduced, it is clear that m /∈ A(R). Observe that for each

i ∈ N, pi = ((0 + I) :R xi) and so, pi ∈ A(R)∗. Note that for all distinct i, j ∈ N,

pi + pj = m /∈ A(R). Hence, the subgraph of (Ω(R))c induced on {pi : i ∈ N} is an

infinite clique. Since (Ω(R))c is a subgraph of (Ω∗R)c, it follows that (Ω∗R)c admits an

infinite clique.

Example 3. Let R be as in Example 2 and let T = R×R. Then T is a reduced ring, T
has exactly two maximal N-primes of its zero ideal, and girth((Ω∗T )c) = 3.
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Proof. We know from Example 2 that R is reduced. Hence, it follows that T is

reduced. Also, it is noted in the verification of Example 2 that Z(R) = m, where m

is the unique maximal ideal of R. Observe that T has exactly two maximal N-primes

of (0, 0) and they are given by P1 = m × R and P2 = R × m. It is observed in the

proof of Example 2 that the subgraph of (Ω(R))c induced on {pi : i ∈ N} is an infinite

clique. Hence, we obtain that the subgraph of (Ω(T ))c induced by {pi ×R : i ∈ N} is

an infinite clique. Therefore, girth((Ω(T ))c) = girth((Ω∗T )c) = 3.

Example 4. If R = Z× Z, then girth((Ω∗R)c) = 4.

Proof. It is clear that R is reduced and {p1 = (0) × Z, p2 = Z × (0)} is the set of

all minimal prime ideals of R. We know from Lemma 8 that H = AG(R), where

H is the subgraph of (Ω∗R)c induced by A(R)∗. Observe that AG(R) is a complete

bipartite graph with vertex partition V1 = {A ∈ A(R)∗ : A ⊆ p1} and V2 = {B ∈
A(R)∗ : B ⊆ p2}. As Vi contains at least two elements for each i ∈ {1, 2}, it follows

that girth((Ω∗R)c) = girth(H) = 4.

Example 5. If R = Z×Q, then girth((Ω∗R)c) =∞.

Proof. Let H be the subgraph of (Ω∗R)c induced by A(R)∗. We know from (ii)⇒ (i)

of Proposition 8 that H is a star graph. Hence, girth((Ω∗R)c) = girth(H) =∞.

Example 6. Let R = F1 × F2, where F1, F2 are fields. Then girth((Ω∗R)c) =∞.

Proof. It is already noted in the proof of Proposition 4 (i) that (Ω∗R)c is a complete

graph on two vertices. Therefore, girth((Ω∗R)c) =∞.

Let R be a ring which is possibly non-reduced. We next discuss regarding

girth((Ω∗R)c). We are not able to determine girth((Ω∗R)c) in the case when R has

at most two maximal N-primes of (0). However, we present some remarks and exam-

ples of rings R describing the nature of cycles of (Ω∗R)c.

Remark 4. Recall that a ring R is a chained ring if the ideals of R are comparable under
the inclusion relation. Thus if R is a chained ring , then Z(R) is an ideal of R and hence, R
has a unique maximal N-prime of (0). Let R be a chained ring with at least one nontrivial
ideal. Then (Ω∗R)c has no edges and so, girth((Ω∗R)c) =∞.

Example 7. Let T = K[[X]] be the power series ring in one variable X over a field K
and let R = T/X5T . Then girth((Ω∗R)c) =∞.

Proof. It is well-known that T is a discrete valuation ring and {XnT : n ∈ N} is the

set of all nontrivial ideals of T . Observe that R is a chained ring and the set of all
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nontrivial ideals of R equals {XiT/X5T : i ∈ {1, 2, 3, 4}}. It follows from Remark 4

that girth((Ω∗R)c) =∞.

We next provide an example of a quasilocal ring (R, p) in Example 8 such that p is the

unique maximal N-prime of (0) and girth((Ω∗R)c) = 3. The ring R given in Example

8 is from ([16], Exercises 6 and 7, pages 62-63).

Example 8. Let S = K[X,Y ] be the polynomial ring in two variables X,Y over a field
K. Let m = SX + SY . Let T = Sm. Let P be the set of all pairwise nonassociate prime
elements of the unique factorization domain T . Let W =

⊕
p∈P(T/Tp) be the direct sum of

the T - modules T/Tp, where p varies over P. Let R = T ⊕W be the ring obtained on using
Nagata’s principle of idealization. Then girth((Ω∗R)c) = 3.

Proof. Since T is local with mT as its unique maximal ideal, it follows that R is

quasilocal with p = mT ⊕ W as its unique maximal ideal. It was shown in ([18],

Example 2.8) that p is the unique maximal N-prime ideal of the zero ideal in R. It

was verified in ([19], Remark 3.2 (ii)) that girth((Ω(R))c) = 3. Indeed, it was shown

in ([19], Remark 3.2 (ii)) that (Ω(R))c contains an infinite clique. Since (Ω(R))c is a

subgraph of (Ω∗R)c, we get that girth((Ω∗R)c) = 3.

Example 9. Let R = F × S, where F is a field and (S,m) is a SPIR with m 6= (0) but
m2 = (0). Then R has exactly two maximal N-primes of (0, 0) and girth((Ω∗R)c) =∞.

Proof. It is clear that {p1 = (0)×S, p2 = F ×m} is the set of all maximal N-primes

of (0, 0) in R. We know from (ii) ⇒ (i) of Theorem 2 that (Ω∗R)c is a path of order

4. Hence, girth((Ω∗R)c) =∞.

Remark 5. Let R1, R2 be rings such that Z(Ri) ∈ A(Ri)
∗ for each i ∈ {1, 2}. Let

R = R1 ×R2. Then R has exactly two maximal N-primes of (0, 0) and girth((Ω∗R)c) = 3.

Proof. Observe that {p1 = Z(R1)×R2, p2 = R1 × Z(R2)} is the set of all maximal

N-primes of (0, 0) in R. Let I1 = R1 × (0), I2 = (0) × R2, and I3 = Z(R1) × Z(R2).

As I1 + I2 = R /∈ A(R), it follows from Lemma 5 that I1 and I2 are adjacent in

(Ω∗R)c. By assumption, AnnRi
Z(Ri) is a nontrivial ideal of Ri for each i ∈ {1, 2}.

Observe that AnnRI1 = (0) × R2 6⊆ AnnRI3 = AnnR1
Z(R1) × AnnR2

Z(R2) and

AnnRI3 6⊆ AnnRI1. Similarly, AnnRI2 = R1×(0) 6⊆ AnnRI3 and AnnRI3 6⊆ AnnRI2.

Hence, we obtain that I3 is adjacent to both I1 and I2 in (Ω∗R)c. From the above

discussion, it is clear that I1 − I2 − I3 − I1 is a cycle of length 3 in (Ω∗R)c. Therefore,

we get that girth((Ω∗R)c) = 3.

Example 10. Let R be as in Example 7 and let S = R×R. Then girth((Ω∗S)c) = 3.

Proof. Observe that Z(R) = XT/X5T ∈ A(R)∗. Hence, on applying Remark 5

with R1 = R2 = R, we obtain that girth((Ω∗S)c) = 3.
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Proposition 11. If R is a ring which admits at least three maximal N-primes of (0),
then girth((Ω∗R)c) = 3.

Proof. We know from ([19], Corollary 3.11) that girth((Ω(R))c) = 3. Since (Ω(R))c

is a subgraph of (Ω∗R)c, it follows that girth((Ω∗R)c) = 3.
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