# Some results on the complement of a new graph associated to a commutative ring 

S. Visweswaran ${ }^{1 *}$ and A. Parmar ${ }^{1}$<br>${ }^{1}$ Department of Mathematics, Saurashtra University, Rajkot, India, 360005<br>s_visweswaran2006@yahoo.co.in

Received: 7 March 2017; Accepted: 29 July 2017;
Published Online: 3 August 2017
Communicated by Seyed Mahmoud Sheikholeslami


#### Abstract

The rings considered in this article are commutative with identity which admit at least one nonzero proper ideal. Let $R$ be a ring. We denote the collection of all ideals of $R$ by $\mathbb{I}(R)$ and $\mathbb{I}(R) \backslash\{(0)\}$ by $\mathbb{I}(R)^{*}$. Alilou et al. [A. Alilou, J. Amjadi and S.M. Sheikholeslami, A new graph associated to a commutative ring, Discrete Math. Algorithm. Appl. 8 (2016) Article ID: 1650029 (13 pages)] introduced and investigated a new graph associated to $R$, denoted by $\Omega_{R}^{*}$ which is an undirected graph whose vertex set is $\mathbb{I}(R)^{*} \backslash\{R\}$ and distinct vertices $I, J$ are joined by an edge in this graph if and only if either $\left(A n n_{R} I\right) J=(0)$ or $\left(A n n_{R} J\right) I=(0)$. Several interesting theorems were proved on $\Omega_{R}^{*}$ in the aforementioned paper and they illustrate the interplay between the graph-theoretic properties of $\Omega_{R}^{*}$ and the ring-theoretic properties of $R$. The aim of this article is to investigate some properties of $\left(\Omega_{R}^{*}\right)^{c}$, the complement of the new graph $\Omega_{R}^{*}$ associated to $R$.


Keywords: Annihilating ideal of a ring, maximal N -prime of (0), special principal ideal ring, connected graph, diameter, girth

AMS Subject classification: 13A15, 05C25

## 1. Introduction

The rings considered in this article are commutative with identity which admit at least one nonzero proper ideal. Let $R$ be a ring. An ideal $I$ of $R$ such that $I \notin\{(0), R\}$ is referred to as a nontrival ideal. Inspired by the work of I. Beck in [9], during the last two decades, several researchers have associated a graph with certain subsets of a ring and explored the interplay between the ring-theoretic properties of a ring

[^0]with the graph-theoretic properties of the graph associated with it (see for example, $[3,4,6,7])$. Recall from [10] that an ideal $I$ of $R$ is said to be an annihilating ideal if there exists $r \in R \backslash\{0\}$ such that $\operatorname{Ir}=(0)$. As in [10], we denote the set of all annihilating ideals of $R$ by $\mathbb{A}(R)$ and $\mathbb{A}(R) \backslash\{(0)\}$ by $\mathbb{A}(R)^{*}$. Let $R$ be a ring such that $\mathbb{A}(R)^{*} \neq \emptyset$. As the ideals of a ring also play an important role in studying its structure, M. Behboodi and Z. Rakeei in [10] introduced and investigated an undirected graph called the annihilating-ideal graph of $R$, denoted by $\mathbb{A} \mathbb{G}(R)$, whose vertex set is $\mathbb{A}(R)^{*}$ and distinct vertices $I, J$ are joined by an edge in $\mathbb{A} \mathbb{G}(R)$ if and only if $I J=(0)$. In $[10,11]$, M. Behboodi and Z. Rakeei explored the influence of certain graph-theoretic parameters of $\mathbb{A} \mathbb{G}(R)$ on the ring structure of $R$. The annihilatingideal graph of a commutative ring and other related graphs have been studied by several researchers (see for example, $[1,2,14,18,19]$ ). Motivated by the work done on the annihilating-ideal graph of a commutative ring, in [2], Alilou, Amjadi and Sheikholeslami introduced and studied a new graph associated to a commutative ring $R$, denoted by $\Omega_{R}^{*}$, which is an undirected graph whose vertex set is the set of all nontrivial ideals of $R$ and distinct vertices $I, J$ are joined by an edge in this graph if and only if either $\left(A n n_{R} I\right) J=(0)$ or $\left(A n n_{R} J\right) I=(0)$ (that is, if and only if either $A n n_{R} I \subseteq A n n_{R} J$ or $\left.A n n_{R} J \subseteq A n n_{R} I\right)$, where for an ideal $I$ of $R$, the annihilator of $I$ in $R$, denoted by $A n n_{R} I$ is defined as $A n n_{R} I=\{r \in R: I r=(0)\}$. Let $R$ be a ring such that $R$ is not a field. Several interesting and inspiring theorems were proved on $\Omega_{R}^{*}$ in [2] (see for example, Theorems 4, 10, and 20).
Let $G=(V, E)$ be a simple graph. Recall from ([8], Definition 1.1.13) that the complement of $G$, denoted by $G^{c}$, is a graph whose vertex set is $V$ and distinct vertices $u, v$ are joined by an edge in $G^{c}$ if and only if there is no edge in $G$ joining $u$ and $v$. Let $R$ be a ring with at least one nontrivial ideal. The aim of this article is to investigate some properties of $\left(\Omega_{R}^{*}\right)^{c}$. It is useful to mention here that distinct nontrivial ideals $A, B$ of $R$ are joined by an edge in $\left(\Omega_{R}^{*}\right)^{c}$ if and only if $A n n_{R} A \nsubseteq A n n_{R} B$ and $A n n_{R} B \nsubseteq A n n_{R} A$.
It is useful to recall the following definitions and results from commutative ring theory. Let $R$ be a ring and let $I$ be a proper ideal of $R$. Recall from [15] that a prime ideal $\mathfrak{p}$ of $R$ is said to be a maximal $N$-prime of $I$ if $\mathfrak{p}$ is maximal with respect to the property of being contained in $Z_{R}(R / I)=\{r \in R: r x \in I$ for some $x \in R \backslash I\}$. Let $x \in Z(R)$. Let $S=R \backslash Z(R)$. Note that $S$ is a multiplicatively closed subset of $R$ and $R x \cap S=\emptyset$. It follows from Zorn's lemma and ([16], Theorem 1) that there exists a maximal N -prime $\mathfrak{p}$ of $(0)$ in $R$ such that $x \in \mathfrak{p}$. Hence, if $\left\{\mathfrak{p}_{\alpha}\right\}_{\alpha \in \Lambda}$ is the set of maximal N -primes of (0) in $R$, then it follows that $Z(R)=\cup_{\alpha \in \Lambda} \mathfrak{p}_{\alpha}$. Observe that $R$ has only one maximal N -prime of (0) if and only if $Z(R)$ is an ideal of $R$. We use $\operatorname{nil}(R)$ to denote the nilradical of a ring $R$. A ring $R$ is said to be reduced if $\operatorname{nil}(R)=(0)$. Recall from ([12], Exercise 16, p.111) that a ring $R$ is said to be von Neumann regular if given $x \in R$, there exists $y \in R$ such that $x=x^{2} y$. For a ring $R$, we denote the Krull dimension of $R$ by $\operatorname{dim} R$. It is known that $R$ is von Neumann regular if and only if $R$ is reduced and $\operatorname{dim} R=0$ ([12], Exercise 16, p.111). We denote the cardinality of a set $A$ using the notation $|A|$.
Next, we recall the following definitions from graph theory. The graphs considered
in this article are undirected and simple. Let $G=(V, E)$ be a graph. Let $a, b \in V$, $a \neq b$. Recall that the distance between $a$ and $b$, denoted by $d(a, b)$ is defined as the length of a shortest path between $a$ and $b$ in $G$ if such a path exists; otherwise $d(a, b)=\infty$. We define $d(a, a)=0 . G$ is said to be connected if for any distinct $a, b \in V$, there exists a path in $G$ between $a$ and $b$. Recall from ([8], Definition 4.2.1) that the diameter of a connected graph $G=(V, E)$ denoted by $\operatorname{diam}(G)$ is defined as $\operatorname{diam}(G)=\max \{d(a, b): a, b \in V\}$. Let $a \in V$. The eccentricity of $a$, denoted by $e(a)$ is defined as $e(a)=\max \{d(a, b): b \in V\}$. $G$ is said to be bipartite if the vertex set $V$ can be partitioned into two nonempty subsets $V_{1}$ and $V_{2}$ such that each edge of $G$ has one end in $V_{1}$ and the other in $V_{2}$. A simple bipartite graph with vertex partition $V_{1}$ and $V_{2}$ is said to be complete if each element of $V_{1}$ is adjacent to every element of $V_{2}$. A complete bipartite graph with vertex partition $V_{1}$ and $V_{2}$ is said to be a star if either $\left|V_{1}\right|=1$ or $\left|V_{2}\right|=1$. Recall from ([8], p. 159) that the girth of $G$, denoted by $\operatorname{girth}(\mathrm{G})$ is defined as the length of a shortest cycle in $G$. If a graph $G$ does not contain any cycle, then we define $\operatorname{girth}(G)=\infty$.
Let $R$ be a ring which admits at least one nontrivial ideal. In Section 2 of this article, we discuss regarding the connectedness of $\left(\Omega_{R}^{*}\right)^{c}$. Let $R$ be a reduced ring with at least two nontrivial ideals. It is shown that $\left(\Omega_{R}^{*}\right)^{c}$ is connected if and only if $\mathbb{A} \mathbb{G}(R)$ is a spanning subgraph of $\left(\Omega_{R}^{*}\right)^{c}$ and it is observed in such a case that $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right) \leq 3$ (see Proposition 1). It is noted in Remark 1 that if $R$ is reduced and if $\left(\Omega_{R}^{*}\right)^{c}$ is connected, then $R$ must have at least two maximal $N$-primes of (0). Let $R$ be a reduced ring which admits only a finite number $n \geq 2$ of maximal N -primes of (0). In Proposition 2, it is proved that for such a ring $R,\left(\Omega_{R}^{*}\right)^{c}$ is connected if and only if $R \cong F_{1} \times F_{2} \times \cdots \times F_{n}$ as rings, where $F_{i}$ is a field for each $i \in\{1,2, \ldots, n\}$. Moreover, for such a ring $R, \operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right)$ is shown to be equal to 1 or 2 (see Proposition 4). For a von Neumann regular ring $R$, it is proved in Proposition 3 that $\left(\Omega_{R}^{*}\right)^{c}$ is connected if and only if $R$ is Noetherian. Let $R$ be an Artinian ring which is not local. If $R$ is not reduced, then it is verified in Remark 3 that $\left(\Omega_{R}^{*}\right)^{c}$ is connected and $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=3$. Let $R$ be a ring such that $\mathbb{A}(R)^{*} \neq \emptyset$. In [18], we associated and investigated some properties of an undirected graph denoted by $\Omega(R)$ whose vertex set is $\mathbb{A}(R)^{*}$ and distinct vertices $I, J$ are joined by an edge in $\Omega(R)$ if and only if $I+J \in \mathbb{A}(R)$. In [19], we studied the interplay between the graph-theoretic properties of $(\Omega(R))^{c}$ and the ring-theoretic properties of $R$. It is useful to recall here that distinct nonzero annihilating ideals $I, J$ are adjacent in $(\Omega(R))^{c}$ if and only if $I+J \notin \mathbb{A}(R)$. Let $H$ be the subgraph of $\left(\Omega_{R}^{*}\right)^{c}$ induced on $\mathbb{A}(R)^{*}$. It is observed in Lemma 5 that $(\Omega(R))^{c}$ is a spanning subgraph of $H$. Let $R$ be a ring such that $\left|\mathbb{A}(R)^{*}\right| \geq 2$. In Theorem 2, classification of rings $R$ such that $\left(\Omega_{R}^{*}\right)^{c}$ is a path of order 4 is obtained. In Proposition 6, classification of rings $R$ such that $H$ is complete bipartite is given. It is proved in Proposition 7 that $H$ is complete if and only if $R \cong F_{1} \times F_{2}$ as rings, where $F_{1}$ and $F_{2}$ are fields. With $\left|\mathbb{A}(R)^{*}\right| \geq 3$, in Proposition 8 , necessary and sufficient conditions on $R$ are determined in order that $H$ be a star graph.
Let $R$ be a ring which admits at least one nontrivial ideal. Section 3 of this article contains a discussion on the girth of $\left(\Omega_{R}^{*}\right)^{c}$. Let $R$ be a reduced ring which is not an integral domain. If $R$ has a unique maximal $N$-prime of ( 0 ), then it is verified in

Proposition 9 that $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=3$. If $R$ has exactly two maximal N-primes of (0), then it is proved in Proposition 10 that $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right) \in\{3,4, \infty\}$. Let $R$ be a ring (which can possibly be non-reduced) such that $R$ has at least three maximal N-primes of (0). It is noted in Proposition 11 that $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=3$. Let $R$ be a non-reduced ring which has at most two maximal N-primes of (0). We are not able to determine $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)$. Some examples are provided to illustrate the results obtained in this section.
Let $R$ be a ring. We denote the set of all maximal ideals of $R$ using the notation $\operatorname{Max}(R)$. A ring $R$ is said to be quasilocal (respectively, semiquasilocal) if $R$ has a unique maximal ideal (respectively, $R$ has only a finite number of maximal ideals). A Noetherian quasilocal (respectively, semiquasilocal) ring is referred to as a local (respectively, semilocal) ring. Let $A, B$ be sets. We use $A \subset B$ to denote proper inclusion.

## 2. On the connectedness of $\left(\Omega_{R}^{*}\right)^{c}$

As mentioned in the introduction, the rings considered in this article are commutative with identity which admit at least one nontrivial ideal. First, we determine some necessary conditions on the ring $R$ in order that $\left(\Omega_{R}^{*}\right)^{c}$ be connected.

Lemma 1. Let $R$ be a ring and $I$ be a nontrivial ideal of $R$ such that $I \notin \mathbb{A}(R)^{*}$. Then $I$ is an isolated vertex of $\left(\Omega_{R}^{*}\right)^{c}$.

Proof. It is already noted in the introduction that nontrivial ideals $A, B$ of $R$ are adjacent in $\left(\Omega_{R}^{*}\right)^{c}$ if and only if $A n n_{R} A \nsubseteq A n n_{R} B$ and $A n n_{R} B \nsubseteq A n n_{R} A$. As $I \notin \mathbb{A}(R)^{*}$, we obtain that $A n n_{R} I=(0)$. Let $J$ be any nontrivial ideal of $R$ with $J \neq I$. Then $A n n_{R} I=(0) \subseteq A n n_{R} J$. Hence, $I$ and $J$ are not adjacent in $\left(\Omega_{R}^{*}\right)^{c}$. This proves that $I$ is an isolated vertex of $\left(\Omega_{R}^{*}\right)^{c}$.

Corollary 1. Let $R$ be a ring such that $R$ admits at least two nontrivial ideals. If $\left(\Omega_{R}^{*}\right)^{c}$ is connected, then any nontrivial ideal of $R$ is an annihilating ideal of $R$.

Proof. As $R$ has at least two nontrivial ideals and $\left(\Omega_{R}^{*}\right)^{c}$ is connected, it follows that no nontrivial ideal of $R$ is an isolated vertex of $\left(\Omega_{R}^{*}\right)^{c}$. Hence, we obtain from Lemma 1 that each nontrivial ideal of $R$ is an annihilating ideal of $R$.

Let $R$ be a reduced ring with at least two nontrivial ideals. We prove in Proposition 1 that $\left(\Omega_{R}^{*}\right)^{c}$ is connected if and only if each nontrivial ideal of $R$ is an annihilating ideal of $R$. We use Lemma 2 in the proof of Proposition 1.

Lemma 2. Let $R$ be a reduced ring. Let $I, J \in \mathbb{A}(R)^{*}$ be such that $I J=(0)$. Then $I$ and $J$ are adjacent in $\left(\Omega_{R}^{*}\right)^{c}$.

Proof. We claim that $A n n_{R} I \nsubseteq A n n_{R} J$ and $A n n_{R} J \nsubseteq A n n_{R} I$. Suppose that $A n n_{R} I \subseteq A n n_{R} J$. Then from $I J=(0)$, it follows that $J \subseteq A n n_{R} I \subseteq A n n_{R} J$. This implies that $J^{2}=(0)$. This is impossible since $R$ is reduced and $J \neq(0)$. Therefore, $A n n_{R} I \nsubseteq A n n_{R} J$. Similarly, it can be shown that $A n n_{R} J \nsubseteq A n n_{R} I$. This proves that $I$ and $J$ are adjacent in $\left(\Omega_{R}^{*}\right)^{c}$.

Proposition 1. Let $R$ be a reduced ring which admits at least two nontrivial ideals. Then the following statements are equivalent:
(i) $\left(\Omega_{R}^{*}\right)^{c}$ is connected.
(ii) Each nontrivial ideal of $R$ is an annihilating ideal of $R$.

Proof. $\quad(i) \Rightarrow$ (ii) This follows immediately from Corollary 1. It is useful to note that this part of this Proposition does not need the hypothesis that $R$ is reduced.
(ii) $\Rightarrow(i)$ Note that the vertex set of $\left(\Omega_{R}^{*}\right)^{c}$ equals $\mathbb{A}(R)^{*}$. It follows from Lemma 2 that $\mathbb{A} \mathbb{G}(R)$ is a spanning subgraph of $\left(\Omega_{R}^{*}\right)^{c}$. It is well-known that $\mathbb{A} \mathbb{G}(R)$ is connected and $\operatorname{diam}(\mathbb{A} \mathbb{G}(R)) \leq 3$ ([10], Theorem 2.1). Therefore, we obtain that $\left(\Omega_{R}^{*}\right)^{c}$ is connected and $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right) \leq 3$.

Remark 1. Let $R$ be a reduced ring which admits $\mathfrak{p}$ as its unique maximal N-prime of (0). Then $\left(\Omega_{R}^{*}\right)^{c}$ is not connected.

Proof. Note that $\mathfrak{p}=Z(R)$. Let $x \in \mathfrak{p}, x \neq 0$. Note that there exists $y \in R \backslash\{0\}$ such that $x y=0$. As $R$ is reduced and $x \neq 0$, whereas $x y=0$, it follows that $R x \neq R y$. Thus $R$ has at least two nontrivial ideals. We assert that $\mathfrak{p} \notin \mathbb{A}(R)$. Suppose that $\mathfrak{p} \in \mathbb{A}(R)$. Then there exists $a \in R \backslash\{0\}$ such that $\mathfrak{p} a=(0)$. This implies that $a \in Z(R)=\mathfrak{p}$. Hence, $a^{2}=0$. This is impossible since $R$ is reduced and $a \neq 0$. Therefore, $\mathfrak{p} \notin \mathbb{A}(R)$. Hence, we obtain from Corollary 1 that $\left(\Omega_{R}^{*}\right)^{c}$ is not connected.

Let $R$ be a reduced ring which admits only a finite number $n \geq 2$ of maximal $N$-primes of (0). In Proposition 2, we classify such rings $R$ in order that $\left(\Omega_{R}^{*}\right)^{c}$ be connected. We use Lemmas 3 and 4 in the proof of Proposition 2 and some other results of this article.

Lemma 3. Let $R$ be a reduced ring which admits only a finite number $n \geq 2$ of maximal $N$-primes of ( 0 ). Let $\left\{\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{n}\right\}$ be the set of all maximal $N$-primes of $(0)$ in $R$. If $\left(\Omega_{R}^{*}\right)^{c}$ is connected, then $\cap_{i=1}^{n} \mathfrak{p}_{i}=(0)$.

Proof. Assume that $\left(\Omega_{R}^{*}\right)^{c}$ is connected. It follows from Corollary 1 that each nontrivial ideal of $R$ is an annihilating ideal of $R$. Hence, for each $i \in\{1,2, \ldots, n\}$, there exists $a_{i} \in R \backslash\{0\}$ such that $\mathfrak{p}_{i} a_{i}=(0)$. It follows from ([9], Lemma 3.6) that $a_{i} a_{j}=0$ for all distinct $i, j \in\{1,2, \ldots, n\}$. Let $i \in\{1,2, \ldots, n\}$. Note that $a_{i} \notin \mathfrak{p}_{i}$. Hence, we obtain that $a_{i} \in \cap_{j \in\{1,2, \ldots, n\} \backslash\{i\}} \mathfrak{p}_{j}$. Since $Z(R)=\cup_{i=1}^{n} \mathfrak{p}_{i}$, it follows that
$\sum_{i=1}^{n} a_{i} \notin Z(R)$. Let us denote $\sum_{i=1}^{n} a_{i}$ by $a$. Let $x \in \cap_{i=1}^{n} \mathfrak{p}_{i}$. It follows from $a x=0$ and $a \notin Z(R)$ that $x=0$. This proves that $\cap_{i=1}^{n} \mathfrak{p}_{i}=(0)$.

Lemma 4. Let $R$ be a ring. If $\left(\Omega_{R}^{*}\right)^{c}$ is connected, then each maximal $N$-prime $\mathfrak{p}$ of ( 0 ) in $R$ is a maximal ideal of $R$.

Proof. Assume that $\left(\Omega_{R}^{*}\right)^{c}$ is connected. Let $\mathfrak{p}$ be a maximal N-prime of (0) in $R$. Let $\mathfrak{m}$ be a maximal ideal of $R$ such that $\mathfrak{p} \subseteq \mathfrak{m}$. If $\mathfrak{p}=\mathfrak{m}$, then the proof is complete. Suppose that $\mathfrak{p} \neq \mathfrak{m}$. Since $\left(\Omega_{R}^{*}\right)^{c}$ is connected, there exists a path in $\left(\Omega_{R}^{*}\right)^{c}$ between $\mathfrak{p}$ and $\mathfrak{m}$. Hence, $\mathfrak{m}$ is not an isolated vertex of $\left(\Omega_{R}^{*}\right)^{c}$. This implies by Lemma 1 that $\mathfrak{m} \in \mathbb{A}(R)^{*}$. So, there exists $x \in R \backslash\{0\}$ such that $\mathfrak{m} x=(0)$. Hence, $\mathfrak{m} \subseteq Z(R)$ and so, $\mathfrak{p} \subset \mathfrak{m} \subseteq Z(R)$. This is impossible since $\mathfrak{p}$ is maximal with respect to the property of being contained in $Z(R)$. Therefore, $\mathfrak{p}$ is a maximal ideal of $R$.

Proposition 2. Let $R$ be a reduced ring. Suppose that $R$ has only a finite number $n \geq 2$ of maximal $N$-primes of ( 0 ). Then the following statements are equivalent:
(i) $\left(\Omega_{R}^{*}\right)^{c}$ is connected.
(ii) $R \cong F_{1} \times F_{2} \times \cdots \times F_{n}$ as rings, where $F_{i}$ is a field for each $i \in\{1,2, \ldots, n\}$.

Proof. $\quad(i) \Rightarrow(i i)$ Let $\left\{\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{n}\right\}$ denote the set of all maximal N-primes of (0) in $R$. We know from Lemma 3 that $\cap_{i=1}^{n} \mathfrak{p}_{i}=(0)$. It follows from Lemma 4 that $\mathfrak{p}_{i}$ is a maximal ideal of $R$ for each $i \in\{1,2, \ldots, n\}$. Observe that $\mathfrak{p}_{i}+\mathfrak{p}_{j}=R$ for all distinct $i, j \in\{1,2, \ldots, n\}$ and $\cap_{i=1}^{n} \mathfrak{p}_{i}=(0)$. Therefore, we obtain from the Chinese remainder theorem ([5], Proposition 1.10 (ii) and (iii)) that the mapping $f: R \rightarrow R / \mathfrak{p}_{1} \times R / \mathfrak{p}_{2} \times \cdots \times R / \mathfrak{p}_{n}$ defined by $f(r)=\left(r+\mathfrak{p}_{1}, r+\mathfrak{p}_{2}, \ldots, r+\mathfrak{p}_{n}\right)$ is an isomorphism of rings. Let $i \in\{1,2, \ldots, n\}$. Since $\mathfrak{p}_{i}$ is a maximal ideal of $R$, it follows that $R / \mathfrak{p}_{i}$ is a field. Let us denote $R / \mathfrak{p}_{i}$ by $F_{i}$. Then $F_{i}$ is a field for each $i \in\{1,2, \ldots, n\}$ and $R \cong F_{1} \times F_{2} \times \cdots \times F_{n}$ as rings.
(ii) $\Rightarrow(i)$ Let us denote the ring $F_{1} \times F_{2} \times \cdots \times F_{n}$ by $T$. Note that $T$ is reduced and each nontrivial ideal of $T$ is of the form $T e$ for some nontrivial idempotent $e$ of $T$. Hence, each nontrivial ideal of $T$ is an annihilating ideal of $T$. Therefore, we obtain from $(i i) \Rightarrow(i)$ of Proposition 1 that $\left(\Omega_{T}^{*}\right)^{c}$ is connected. Since $R \cong T$ as rings, it follows that $\left(\Omega_{R}^{*}\right)^{c}$ is connected.

Let $R$ be von Neumann regular and let $x \in R$. Note that there exists $y \in R$ such that $x=x^{2} y$. Observe that $e=x y$ is an idempotent element of $R$. It is not hard to verify that $u=x+1-e$ is a unit in $R$ and $x=u e$. Let $R$ be a von Neumann regular ring with at least two maximal ideals. In Proposition 3, we classify von Neumann regular rings $R$ in order that $\left(\Omega_{R}^{*}\right)^{c}$ be connected.

Proposition 3. Let $R$ be a von Neumann regular ring which is not a field. Then the following statements are equivalent:
(i) $\left(\Omega_{R}^{*}\right)^{c}$ is connected.
(ii) $R \cong F_{1} \times F_{2} \times \cdots \times F_{n}$ as rings for some $n \geq 2$, where $F_{i}$ is a field for each $i \in$ $\{1,2, \ldots, n\}$.

Proof. $\quad(i) \Rightarrow(i i)$ Since $\left(\Omega_{R}^{*}\right)^{c}$ is connected, we obtain from Corollary 1 that if $I$ is any nontrivial ideal of $R$, then $I \in \mathbb{A}(R)^{*}$. Let $\mathfrak{p}$ be any prime ideal of $R$. As $\mathfrak{p} \in \mathbb{A}(R)^{*}$, there exists $x \in R \backslash\{0\}$ such that $\mathfrak{p} x=(0)$. Since $\operatorname{dim} R=0$, it follows that $\mathfrak{p}$ is a maximal ideal of $R$. Hence, $\mathfrak{p}=\left((0):_{R} x\right)$. Note that $x=u e$, where $u$ is a unit of $R$ and $e$ is a nontrivial idempotent element of $R$. Therefore, $\mathfrak{p}=R(1-e)$. This proves that any prime ideal of $R$ is finitely generated and hence by Cohen's theorem ([5], Exercise 1, p.84), we obtain that $R$ is Noetherian. Therefore, it follows from ([12], Exercise 22, p.112) that $R \cong F_{1} \times \cdots \times F_{n}$ as rings, where $F_{i}$ is a field for each $i \in\{1, \ldots, n\}$. As $R$ is not a field, it is clear that $n \geq 2$.
$(i i) \Rightarrow(i)$ This follows immediately from $(i i) \Rightarrow(i)$ of Proposition 2.
Let $n \geq 2$ and let $R=F_{1} \times F_{2} \times \cdots \times F_{n}$, where $F_{i}$ is a field for each $i \in\{1,2, \ldots, n\}$. In Proposition 4, we determine $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right)$.

Proposition 4. Let $n \geq 2$ and let $R=F_{1} \times F_{2} \times \cdots \times F_{n}$, where $F_{i}$ is a field for each $i \in\{1,2, \ldots, n\}$. Then the following hold.
(i) $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=1$ if $n=2$.
(ii) $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=2$ if $n \geq 3$.

Proof. (i) Assume that $n=2$. Note that the set of all nontrivial ideals of $R$ equals $\left\{\mathfrak{m}_{1}=(0) \times F_{2}, \mathfrak{m}_{2}=F_{1} \times(0)\right\}$. Since $R$ is reduced and $\mathfrak{m}_{1} \mathfrak{m}_{2}=(0) \times(0)$, it follows from Lemma 2 that $\mathfrak{m}_{1}$ and $\mathfrak{m}_{2}$ are adjacent in $\left(\Omega_{R}^{*}\right)^{c}$. Therefore, $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=1$.
(ii) Assume that $n \geq 3$. Let $I, J$ be any two distinct nontrivial ideals of $R$. Observe that $I=R e$ and $J=R f$ for some nontrivial idempotent elements $e, f$ of $R$. Suppose that $I$ and $J$ are not adjacent in $\left(\Omega_{R}^{*}\right)^{c}$. Then either $A n n_{R} I \subseteq A n n_{R} J$ or $A n n_{R} J \subseteq$ $A n n_{R} I$. Without loss of generality, we can assume that $A n n_{R} I \subseteq A n n_{R} J$. Hence, $R(1-e) \subseteq R(1-f)$. This implies that $(1-e) f=0$. Observe that $\operatorname{IR}(1-e)=(0)$ and $J R(1-e)=(0)$. Since $R$ is reduced, it follows from Lemma 2 that $I-R(1-e)-J$ is a path of length 2 in $\left(\Omega_{R}^{*}\right)^{c}$. This proves that between any two nontrivial ideals $I, J$ of $R$, there exists a path of length at most two between $I$ and $J$ in $\left(\Omega_{R}^{*}\right)^{c}$. Therefore, $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right) \leq 2$. We next verify that $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=2$. Indeed, we show that $e(I)=2$ for any nontrivial ideal $I$ of $R$. Observe that either $I \in \operatorname{Max}(R)$ or $I \notin \operatorname{Max}(R)$. Suppose that $I \in \operatorname{Max}(R)$. Let $\mathfrak{m} \in \operatorname{Max}(R)$ be such that $I \neq \mathfrak{m}$. Since $n \geq 3$, it follows that $I \cap \mathfrak{m}$ is a nontrivial ideal of $R$. As $I \cap \mathfrak{m} \subset I$, it follows that $A n n_{R} I \subseteq A n n_{R}(I \cap \mathfrak{m})$ and so, $I$ and $I \cap \mathfrak{m}$ are not adjacent in $\left(\Omega_{R}^{*}\right)^{c}$. Hence, $d(I, I \cap \mathfrak{m})=2$ in $\left(\Omega_{R}^{*}\right)^{c}$. Suppose that $I \notin \operatorname{Max}(R)$. Let $\mathfrak{n} \in \operatorname{Max}(R)$ be such that $I \subset \mathfrak{n}$. Note that $I$ and $\mathfrak{n}$ are not adjacent in $\left(\Omega_{R}^{*}\right)^{c}$ and so, $d(I, \mathfrak{n})=2$ in $\left(\Omega_{R}^{*}\right)^{c}$. This proves that $e(I)=2$ for any nontrivial ideal $I$ of $R$ and therefore, $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=2$.

Let $R$ be a non-reduced ring. We next discuss the connectedness of $\left(\Omega_{R}^{*}\right)^{c}$. First, we consider non-reduced rings $R$ such that $R$ has only one maximal N -prime of (0). Recall that a principal ideal ring $R$ is said to be a special principal ideal ring (SPIR) if $R$ has only one prime ideal. If $\mathfrak{m}$ is the only prime ideal of a SPIR $R$, then $\mathfrak{m}$ is necessarily nilpotent. If $R$ is a SPIR with $\mathfrak{m}$ as its only prime ideal, then we denote it by saying that $(R, \mathfrak{m})$ is a SPIR. Suppose that $\mathfrak{m} \neq(0)$. Let $n \geq 2$ be least with the property that $\mathfrak{m}^{n}=(0)$. Then it follows from $(i i i) \Rightarrow(i)$ of ([5], Proposition 8.8) that $\left\{\mathfrak{m}^{i}: i \in\{1, \ldots, n-1\}\right\}$ is the set of all nontrivial ideals of $R$.

Proposition 5. Let $R$ be a non-reduced ring which admits $\mathfrak{p}$ as its unique maximal $N$-prime of (0) Then the following statements are equivalent:
(i) $\left(\Omega_{R}^{*}\right)^{c}$ is connected.
(ii) $(R, \mathfrak{p})$ is a SPIR with $\mathfrak{p}^{2}=(0)$.

Proof. $\quad(i) \Rightarrow(i i)$ Let $x \in R \backslash\{0\}$ be such that $x^{2}=0$. We claim that $\mathfrak{p}=R x$. Suppose that $\mathfrak{p} \neq R x$. Since, $\left(\Omega_{R}^{*}\right)^{c}$ is connected, there exists a path in $\left(\Omega_{R}^{*}\right)^{c}$ between $R x$ and $\mathfrak{p}$. Hence, there exists a nontrivial $I$ of $R$ such that $I$ and $\mathfrak{p}$ are adjacent in $\left(\Omega_{R}^{*}\right)^{c}$. This implies by Lemma 1 that $I \in \mathbb{A}(R)^{*}$. So, there exists $r \in R \backslash\{0\}$ such that $\operatorname{Ir}=(0)$. Hence, $I \subseteq Z(R)=\mathfrak{p}$. Therefore, $A n n_{R} \mathfrak{p} \subseteq A n n_{R} I$ and so, $I$ and $\mathfrak{p}$ are not adjacent in $\left(\Omega_{R}^{*}\right)^{c}$. This is a contradiction. Therefore, $\mathfrak{p}=R x$. We know from Lemma 4 that $\mathfrak{p} \in \operatorname{Max}(R)$. It follows from $\mathfrak{p}^{2}=(0)$, that $\mathfrak{p}$ is the unique maximal ideal of $R$ and it is the only nontrivial ideal of $R$. Hence, $(R, \mathfrak{p})$ is a SPIR with $\mathfrak{p}^{2}=(0)$.
$(i i) \Rightarrow(i)$ Note that $\mathfrak{p}$ is the only nontrivial ideal of $R$. Hence, $\left(\Omega_{R}^{*}\right)^{c}$ is a graph whose vertex set is $\{\mathfrak{p}\}$ and so, it is connected.

Let $R$ be a non-reduced ring such that $R$ admits only a finite number $n \geq 2$ of maximal N-primes of (0). In Theorem 7, we provide a sufficient condition for $\left(\Omega_{R}^{*}\right)^{c}$ to be connected. We need some preliminary results that are needed for proving Theorem 7.

Lemma 5. Let $R$ be a ring and let $I_{1}, I_{2} \in \mathbb{A}(R)^{*}$ be such that $I_{1}+I_{2} \notin \mathbb{A}(R)$. Then $I_{1}$ and $I_{2}$ are adjacent in $\left(\Omega_{R}^{*}\right)^{c}$.

Proof. Since $I_{1}+I_{2} \notin \mathbb{A}(R)$, we obtain that $A n n_{R} I_{1} \cap A n n_{R} I_{2}=(0)$. As $A n n_{R} I_{i} \neq$ (0) for each $i \in\{1,2\}$, it follows that $A n n_{R} I_{1} \nsubseteq A n n_{R} I_{2}$ and $A n n_{R} I_{2} \nsubseteq A n n_{R} I_{1}$. This proves that $I_{1}$ and $I_{2}$ are adjacent in $\left(\Omega_{R}^{*}\right)^{c}$.

For a ring $R$, we denote the Jacobson radical of $R$ by $J(R)$.
Lemma 6. Let $R$ be a ring such that each nontrivial ideal of $R$ is an annihilating ideal of $R$. Let $W=\left\{I: I \in \mathbb{A}(R)^{*}\right.$ such that $\left.I \nsubseteq J(R)\right\}$. Then the subgraph $H$ of $\left(\Omega_{R}^{*}\right)^{c}$ induced on $W$ is connected and moreover, $\operatorname{diam}(H) \leq 2$.

Proof. Let $I_{1}, I_{2} \in W$ be such that $I_{1} \neq I_{2}$. Suppose that $I_{1}$ and $I_{2}$ are not adjacent in $H$. Then either $A n n_{R} I_{1} \subseteq A n n_{R} I_{2}$ or $A n n_{R} I_{2} \subseteq A n n_{R} I_{1}$. Without loss of generality, we can assume that $A n n_{R} I_{1} \subseteq A n n_{R} I_{2}$. Since $I_{2} \in W$, there exists a maximal ideal $\mathfrak{m}$ of $R$ such that $I_{2} \nsubseteq \mathfrak{m}$. We assert that $I_{1} \nsubseteq \mathfrak{m}$. Suppose that $I_{1} \subseteq \mathfrak{m}$. Then we obtain that $A n n_{R} \mathfrak{m} \subseteq A n n_{R} I_{1}$. Since $A n n_{R} I_{1} \subseteq A n n_{R} I_{2}$, we get that $A n n_{R} \mathfrak{m} \subseteq A n n_{R} I_{2}$. This is impossible since $I_{2}+\mathfrak{m}=R$. This proves that $I_{1} \nsubseteq \mathfrak{m}$. Therefore, $I_{1}+\mathfrak{m}=I_{2}+\mathfrak{m}=R$. It is clear that $\mathfrak{m} \in W$ and it follows from Lemma 5 that $I_{1}-\mathfrak{m}-I_{2}$ is a path of length 2 between $I_{1}$ and $I_{2}$ in $H$. This shows that $H$ is connected and moreover, $\operatorname{diam}(H) \leq 2$.

Lemma 7. Let $n \geq 2$ and let $\left(R_{i}, \mathfrak{m}_{i}\right)$ be a quasilocal ring for each $i \in\{1,2, \ldots, n\}$. Suppose that each proper ideal of $R_{i}$ is an annihilating ideal of $R_{i}$ for each $i \in\{1,2, \ldots, n\}$. Let $R=R_{1} \times R_{2} \times \cdots \times R_{n}$. Then $\left(\Omega_{R}^{*}\right)^{c}$ is connected and moreover, $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right) \leq 3$.

Proof. Let $i \in\{1,2, \ldots, n\}$. Let $\mathfrak{M}_{i}=I_{1} \times I_{2} \times \cdots \times I_{n}$, where $I_{i}=\mathfrak{m}_{i}$ and $I_{j}=R_{j}$ for all $j \in\{1,2, \ldots, n\} \backslash\{i\}$. It is clear that $R$ is semiquasilocal with $\left\{\mathfrak{M}_{1}, \mathfrak{M}_{2}, \ldots, \mathfrak{M}_{n}\right\}$ as its set of all maximal ideals. As each proper ideal of $R_{i}$ is an annihilating ideal of $R_{i}$ for each $i \in\{1,2, \ldots, n\}$, we obtain that each proper ideal of $R$ is an annihilating ideal of $R$. Note that $J(R)=\mathfrak{m}_{1} \times \mathfrak{m}_{2} \times \cdots \times \mathfrak{m}_{n}$. Let $A, B$ be nontrivial ideals of $R$ with $A \neq B$. We now verify that there exists a path of length at most three between $A$ and $B$ in $\left(\Omega_{R}^{*}\right)^{c}$. We can assume that $A$ and $B$ are not adjacent in $\left(\Omega_{R}^{*}\right)^{c}$. We consider the following cases.
Case 1. $A \nsubseteq J(R)$ and $B \nsubseteq J(R)$.
In this case, we know from Lemma 6 that there exists a path of length at most two between $A$ and $B$ in $\left(\Omega_{R}^{*}\right)^{c}$.
Case 2. $A \subseteq J(R)$ whereas $B \nsubseteq J(R)$.
Note that $A$ is of the form $A=A_{1} \times A_{2} \times \cdots \times A_{n}$, where $A_{i}$ is an ideal of $R_{i}$ with $A_{i} \subseteq \mathfrak{m}_{i}$ for each $i \in\{1,2, \ldots, n\}$. Note that $A_{i} \neq(0)$ for at least one $i \in\{1,2, \ldots, n\}$. Fix $i \in\{1,2, \ldots, n\}$ such that $A_{i} \neq(0)$. Observe that $A n n_{R_{i}} A_{i}$ is a nontrivial ideal of $R_{i}$. It can happen that $A_{j}=(0)$ for each $j \in\{1,2, \ldots, n\} \backslash\{i\}$. Fix $j \in\{1,2, \ldots, n\}$ with $j \neq i$. Let $C$ be an ideal of $R$ defined by $C=C_{1} \times C_{2} \times \cdots \times C_{n}$ with $C_{j}=R_{j}$ and $C_{k}=(0)$ for all $k \in\{1,2, \ldots, n\} \backslash\{j\}$. It is clear that $C \nsubseteq J(R), A n n_{R} A \nsubseteq A n n_{R} C$, and $A n n_{R} C \nsubseteq A n n_{R} A$. Therefore, $A$ and $C$ are adjacent in $\left(\Omega_{R}^{*}\right)^{c}$. Suppose that $A_{t} \neq(0)$ for some $t \in\{1,2, \ldots, n\}$ with $t \neq i$. In such a case, define the ideal $D$ of $R$ by $D=D_{1} \times D_{2} \times \cdots \times D_{n}$ with $D_{i}=R_{i}$ and $D_{k}=(0)$ for all $k \in\{1,2, \ldots, n\} \backslash\{i\}$. It is clear that $D \nsubseteq J(R), A n n_{R} A \nsubseteq A n n_{R} D$, and $A n n_{R} D \nsubseteq A n n_{R} A$. Hence, $A$ and $D$ are adjacent in $\left(\Omega_{R}^{*}\right)^{c}$. We know from Lemma 6 that there exists a path of length at most two between $C$ and $B$ in $\left(\Omega_{R}^{*}\right)^{c}$ and there exists a path of length at most two between $D$ and $B$ in $\left(\Omega_{R}^{*}\right)^{c}$. This proves that there exists a path of length at most three between $A$ and $B$ in $\left(\Omega_{R}^{*}\right)^{c}$.
Case 3. $A \subseteq J(R)$ and $B \subseteq J(R)$.
Note that $A$ is of the form $A=A_{1} \times A_{2} \times \cdots \times A_{n}$ and $B$ is of the form $B=B_{1} \times$ $B_{2} \times \cdots \times B_{n}$, where for each $i \in\{1,2, \ldots, n\}, A_{i}, B_{i}$ are proper ideals of $R_{i}$. We are
assuming that $A$ and $B$ are not adjacent in $\left(\Omega_{R}^{*}\right)^{c}$. Hence, either $A n n_{R} A \subseteq A n n_{R} B$ or $A n n_{R} B \subseteq A n n_{R} A$. Without loss of generality, we can assume that $A n n_{R} A \subseteq$ $A n n_{R} B$. Then $A n n_{R_{i}} A_{i} \subseteq A n n_{R_{i}} B_{i}$ for each $i \in\{1,2, \ldots, n\}$. Note that $B_{i} \neq(0)$ for at least one $i \in\{1,2, \ldots, n\}$. It follows from $A n n_{R_{i}} A_{i} \subseteq A n n_{R_{i}} B_{i}$ that $A_{i} \neq(0)$. It can happen that there are distinct $i, t \in\{1,2, \ldots, n\}$ such that $B_{i} \neq(0)$ and $B_{t} \neq(0)$. In such a case, $A_{i} \neq(0)$ and $A_{t} \neq(0)$. In such a situation, we know from the proof of Case 2 of this lemma that both $A$ and $B$ are adjacent to $D=D_{1} \times D_{2} \times \cdots \times D_{n}$ in $\left(\Omega_{R}^{*}\right)^{c}$, where $D_{i}=R_{i}$ and $D_{k}=(0)$ for all $\mathrm{k} \in\{1,2, \ldots, n\} \backslash\{i\}$. Hence, $A-D-B$ is a path of length two between $A$ and $B$ in $\left(\Omega_{R}^{*}\right)^{c}$. Suppose that there exists a unique $i \in\{1,2, \ldots, n\}$ such that $B_{i} \neq(0)$. Then $A_{i} \neq(0)$. It can happen that $A_{j}=(0)$ for all $j \in\{1,2, \ldots, n\} \backslash\{i\}$. Fix $j \in\{1,2, \ldots, n\} \backslash\{i\}$. Observe that it follows from the proof of Case 2 of this lemma that both $A$ and $B$ are adjacent to $C=C_{1} \times C_{2} \times \cdots \times C_{n}$ in $\left(\Omega_{R}^{*}\right)^{c}$, where $C_{j}=R_{j}$ and $C_{k}=(0)$ for all $k \in\{1,2, \ldots, n\} \backslash\{j\}$. Hence, $A-C-B$ is a path of length two between $A$ and $B$ in $\left(\Omega_{R}^{*}\right)^{c}$. Suppose that there exists $j \in$ $\{1,2, \ldots, n\} \backslash\{i\}$ such that $A_{j} \neq(0)$. With $C, D$ as above, it is clear that $A-D-C-B$ is a path of length three between $A$ and $B$ in $\left(\Omega_{R}^{*}\right)^{c}$.
Thus for any distinct nontrivial ideals $A, B$ of $R$, there exists a path of length at most three between $A$ and $B$ in $\left(\Omega_{R}^{*}\right)^{c}$. This proves that $\left(\Omega_{R}^{*}\right)^{c}$ is connected and $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right) \leq 3$.

Theorem 1. Let $R$ be a non-reduced ring which has only a finite number $n \geq 2$ of maximal $N$-primes of ( 0 ). Let $\left\{\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{n}\right\}$ denote the set of all maximal $N$-primes of ( 0 ) in $R$. If $\cap_{i=1}^{n} \mathfrak{p}_{i}$ is nilpotent, then the following statements are equivalent:
(i) $\left(\Omega_{R}^{*}\right)^{c}$ is connected.
(ii) Each nontrivial ideal of $R$ is an annihilating ideal of $R$ and $R$ is semiquasilocal with $\left\{\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{n}\right\}$ as its set of all maximal ideals.

Proof. $\quad(i) \Rightarrow(i i)$ Assume that $\left(\Omega_{R}^{*}\right)^{c}$ is connected. It follows from Corollary 1 that any nontrivial ideal of $R$ is an annihilating ideal of $R$. We know from Lemma 4 that $\mathfrak{p}_{i} \in \operatorname{Max}(R)$ for each $i \in\{1,2, \ldots, n\}$. Note that $Z(R)=\cup_{i=1}^{n} \mathfrak{p}_{i}$. Let $\mathfrak{m} \in \operatorname{Max}(R)$. As $\mathfrak{m} \in \mathbb{A}(R)$, we get that $\mathfrak{m} \subseteq Z(R)=\cup_{i=1}^{n} \mathfrak{p}_{i}$. Therefore, we obtain from Prime avoidance lemma ([5], Proposition $1.11(i))$ that $\mathfrak{m} \subseteq \mathfrak{p}_{i}$ for some $i \in\{1,2, \ldots, n\}$ and so, $\mathfrak{m}=\mathfrak{p}_{i}$. This shows that $R$ is semiquasilocal with $\left\{\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{n}\right\}$ as its set of all maximal ideals.
(ii) $\Rightarrow(i)$ Note that for each $i \in\{1,2, \ldots, n\}$, there exists $a_{i} \in R \backslash\{0\}$ such that $\mathfrak{p}_{i}=\left((0):_{R} a_{i}\right)$. Note that $J(R)=\cap_{i=1}^{n} \mathfrak{p}_{i}$ and as $J(R)$ is nilpotent, there exists $k \geq 1$ such that $(J(R))^{k}=(0)$. Since $R$ is not reduced, it follows that $k \geq 2$. Observe that for all distinct $i, j \in\{1,2, \ldots, n\}, \mathfrak{p}_{\mathfrak{i}}{ }^{k}+\mathfrak{p}_{\mathfrak{j}}{ }^{k}=R$ and $\cap_{i=1}^{n} \mathfrak{p}_{i}^{k}=\prod_{i=1}^{n} \mathfrak{p}_{i}^{k}=(0)$. Therefore, we obtain from the Chinese remainder theorem ([5], Proposition 1.10 (ii) and (iii)) that the mapping $f: R \rightarrow R / \mathfrak{p}_{1}^{k} \times R / \mathfrak{p}_{2}^{k} \times \cdots \times R / \mathfrak{p}_{n}^{k}$ given by $f(r)=$ $\left(r+\mathfrak{p}_{i}^{k}, r+\mathfrak{p}_{2}^{k}, \ldots, r+\mathfrak{p}_{n}^{k}\right)$ is an isomorphism of rings. Let $i \in\{1,2, \ldots, n\}$ and let us denote the ring $R / \mathfrak{p}_{i}^{k}$ by $R_{i}$. Note that $R_{i}$ is quasilocal with $\mathfrak{m}_{i}=\mathfrak{p}_{i} / \mathfrak{p}_{i}^{k}$ as its unique maximal ideal. It is clear that $\mathfrak{m}_{i}^{k}=$ zero ideal of $R_{i}$. Let us denote the ring $R_{1} \times R_{2} \times \cdots \times R_{n}$ by $T$. We know from Lemma 7 that $\left(\Omega_{T}^{*}\right)^{c}$ is connected and
$\operatorname{diam}\left(\left(\Omega_{T}^{*}\right)^{c}\right) \leq 3$. Since $R \cong T$ as rings, we obtain that $\left(\Omega_{R}^{*}\right)^{c}$ is connected and moreover, $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right) \leq 3$.

Let $R, \mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{n}$ be as in the statement of Theorem 1. If $\cap_{i=1}^{n} \mathfrak{p}_{i}$ is nilpotent and if $\left(\Omega_{R}^{*}\right)^{c}$ is connected, then it is shown in the proof of $(i i) \Rightarrow(i)$ of Theorem 1 that $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right) \leq 3$. As an immediate consequence of Remark 2, we deduce in Corollary 2 that $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=3$.

Remark 2. Let $R$ be a ring. Let $\mathfrak{p}$ be a prime ideal of $R$ such that $\mathfrak{p}=\left((0):_{R} x\right)$ for some $x \in \mathfrak{p}$. Suppose that $\mathfrak{p} \neq R x$. Then the following hold.
(i) $R x$ and $\mathfrak{p}$ are not adjacent in $\left(\Omega_{R}^{*}\right)^{c}$.
(ii) There is no path of length 2 between $R x$ and $\mathfrak{p}$ in $\left(\Omega_{R}^{*}\right)^{c}$.

Proof. (i) Since $R x \subset \mathfrak{p}$, it is clear that $R x$ and $\mathfrak{p}$ are not adjacent in $\left(\Omega_{R}^{*}\right)^{c}$.
(ii) Suppose that there exists a path of length 2 between $R x$ and $\mathfrak{p}$ in $\left(\Omega_{R}^{*}\right)^{c}$. Let $R x-I-\mathfrak{p}$ be a path of length 2 in $\left(\Omega_{R}^{*}\right)^{c}$ between $R x$ and $\mathfrak{p}$. Since $R x$ and $I$ are adjacent in $\left(\Omega_{R}^{*}\right)^{c}$, it follows that $A n n_{R} R x \nsubseteq A n n_{R} I$ and $A n n_{R} I \nsubseteq A n n_{R} R x$. Note that $A n n_{R} R x=\mathfrak{p}$. Thus $A n n_{R} I \nsubseteq \mathfrak{p}$. It follows from $I A n n_{R} I=(0) \subseteq \mathfrak{p}$ and the hypothesis that $\mathfrak{p}$ is a prime ideal of $R$ that $I \subseteq \mathfrak{p}$. Hence, $I$ and $\mathfrak{p}$ are not adjacent in $\left(\Omega_{R}^{*}\right)^{c}$. This is a contradiction. Therefore, there exists no path of length 2 between $R x$ and $\mathfrak{p}$ in $\left(\Omega_{R}^{*}\right)^{c}$.

Corollary 2. Let $R$ be a non-reduced ring. Suppose that $R$ has only a finite number $n \geq 2$ of maximal $N$-primes of ( 0 ). Let $\left\{\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{n}\right\}$ be the set of all maximal $N$-primes of $(0)$ in $R$. If $\left(\Omega_{R}^{*}\right)^{c}$ is connected and if $\cap_{i=1}^{n} \mathfrak{p}_{i}$ is nilpotent, then $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=3$.

Proof. Assume that $\left(\Omega_{R}^{*}\right)^{c}$ is connected. We know from $(i) \Rightarrow(i i)$ of Theorem 1 that for each $i \in\{1,2, \ldots, n\}$, there exists $a_{i} \in R \backslash\{0\}$ such that $\mathfrak{p}_{i}=\left((0):_{R} a_{i}\right)$. Moreover, $R$ is semiquasilocal with $\operatorname{Max}(R)=\left\{\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{n}\right\}$. Under the assumption that $\cap_{i=1}^{n} \mathfrak{p}_{i}$ is nilpotent, it is shown in the proof of $(i i) \Rightarrow(i)$ of Theorem 1 that $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right) \leq 3$. Let $i \in\{1,2, \ldots, n\}$. Now, $\mathfrak{p}_{i} a_{i}=(0)$. As $\mathfrak{p}_{i} \nsubseteq \mathfrak{p}_{j}$ for each $j \in\{1,2, \ldots, n\} \backslash\{i\}$, it follows that $a_{i} \in \mathfrak{p}_{j}$ for all $j \in\{1,2, \ldots, n\} \backslash\{i\}$. We claim that $a_{k} \in \cap_{i=1}^{n} \mathfrak{p}_{i}$ for some $k \in\{1,2, \ldots n\}$. That is, equivalently $a_{k} \in \mathfrak{p}_{k}$ for some $k \in\{1,2, \ldots, n\}$. Suppose that $a_{k} \notin \mathfrak{p}_{k}$ for each $k \in\{1,2, \ldots, n\}$. Note that for each $k \in\{1,2, \ldots, n\}, a_{k} \in \mathfrak{p}_{i}$ for all $i \in\{1,2, \ldots, n\} \backslash\{k\}$. Let us denote the element $\sum_{i=1}^{n} a_{i}$ by $a$. Since $Z(R)=\cup_{i=1}^{n} \mathfrak{p}_{i}$, it follows that $a \notin Z(R)$. As $R$ is not reduced, we obtain that $\cap_{i=1}^{n} \mathfrak{p}_{i} \neq(0)$. Let $x \in \cap_{i=1}^{n} \mathfrak{p}_{i}, x \neq 0$. From $a x=0$ and $a \notin Z(R)$, we get that $x=0$. This is a contradiction. Therefore, $a_{k} \in \cap_{i=1}^{n} \mathfrak{p}_{i}$ for some $k \in\{1,2, \ldots, n\}$. Note that $\mathfrak{p}_{k}=\left((0)_{R}: a_{k}\right), a_{k} \in \mathfrak{p}_{k}$, and it is clear that $R a_{k} \neq \mathfrak{p}_{k}$. Now, it follows from Remark 2 that $d\left(R a_{k}, \mathfrak{p}_{k}\right) \geq 3$ in $\left(\Omega_{R}^{*}\right)^{c}$. As is already noted that $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right) \leq 3$, we obtain that $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=3$.

Remark 3. Let $R$ be a non-reduced Artinian ring. If $R$ is local with $\mathfrak{m}$ as its unique maximal ideal, then as $\mathfrak{m}$ is the unique maximal $N$-prime of (0) in $R$, it follows from Proposition 5 that $\left(\Omega_{R}^{*}\right)^{c}$ is connected if and only if $(R, \mathfrak{m})$ is a SPIR with $\mathfrak{m}^{2}=(0)$. Suppose that $R$ is not local. Since $R$ is Artinian, we know from ([5], Proposition 8.3) that $R$ has only a finite number of maximal ideals. Let $\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}, \ldots, \mathfrak{m}_{n}\right\}$ be the set of all maximal ideals of $R$. Note that $J(R)=\cap_{i=1}^{n} \mathfrak{m}_{i}$. It follows from ([5], Corollary 8.2 and Proposition 8.4) that there exists $k \in \mathbb{N}$ such that $(J(R))^{k}=(0)$. It is clear that $k \geq 2$. Let $i \in\{1,2, \ldots, n\}$. Let us denote $\{1,2, \ldots, n\} \backslash\{i\}$ by $A_{i}$. Observe that $\prod_{j \in A_{i}} \mathfrak{m}_{j}^{k} \neq(0)$. It is convenient to denote $\prod_{j \in A_{i}} \mathfrak{m}_{j}^{k}$ by $I_{i}$. Note that $\mathfrak{m}_{i}^{k} I_{i}=(0)$. We can choose $t \geq 1$ least with the property that $\mathfrak{m}_{i}^{t} I_{i}=(0)$. Let $x_{i} \in \mathfrak{m}_{i}^{t-1} I_{i} \backslash\{0\}$. Then it is clear that $\mathfrak{m}_{i}=\left((0):_{R} x_{i}\right)$. This shows that $\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}, \ldots, \mathfrak{m}_{n}\right\}$ is the set of all maximal $N$-primes of $(0)$ in $R$ and each proper ideal of $R$ is an annihilating ideal of $R$. Now, it follows from $(i i) \Rightarrow(i)$ of Theorem 1 that $\left(\Omega_{R}^{*}\right)^{c}$ is connected. Moreover, we obtain from Corollary 2 that $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=3$.

Let $n \geq 2$ and let $R, \mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{n}$ be as in the statement of Theorem 1. It is shown in Theorem 1 that $(i i) \Rightarrow(i)$ of Theorem 1 holds under the assumption that $\cap_{i=1}^{n} \mathfrak{p}_{i}$ is nilpotent. We provide an example in Example 1 to illustrate that the above assumption is not necessary.

Example 1. Let $S=K[[X, Y]]$ be the power series ring in two variables $X, Y$ over a field $K$. Let $I=S X^{2}+S X Y$. Let $T=S / I$. Let $R=T \times T$. Then $\left(\Omega_{R}^{*}\right)^{c}$ is connected and moreover, $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=3$.

Proof. Observe that $S$ is local with $\mathfrak{m}=S X+S Y$ as its unique maximal ideal. Note that $\mathfrak{m}=\left(I:_{S} X\right)$. It is clear that $T$ is local with $\mathfrak{m} / I$ as its unique maximal ideal. Observe that $(\mathfrak{m} / I)(X+I)=(0+I)$ and $X \notin I$. Hence, each proper ideal of $T$ is an annihilating ideal of $T$. As $R=T \times T$, we obtain from Lemma 7 that $\left(\Omega_{R}^{*}\right)^{c}$ is connected and $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right) \leq 3$. Note that $Z(T)=\mathfrak{m} / I$. Therefore, $\left\{\mathfrak{p}_{1}=\right.$ $\left.\mathfrak{m} / I \times T, \mathfrak{p}_{2}=T \times \mathfrak{m} / I\right\}$ is the set of all maximal N-primes of the zero ideal in $R$. As $(Y+I)^{k} \neq 0+I$ for any $k \geq 1$, it follows that $\mathfrak{p}_{1} \cap \mathfrak{p}_{2}=\mathfrak{m} / I \times \mathfrak{m} / I$ is not nilpotent. Observe that $\mathfrak{p}_{1}=\left((0+I, 0+I):_{R}(X+I, 0+I)\right), \mathfrak{p}_{1} \neq R(X+I, 0+I)$. Therefore, we obtain from Remark 2 that $d\left(R(X+I, 0+I), \mathfrak{p}_{1}\right) \geq 3$ in $\left(\Omega_{R}^{*}\right)^{c}$ and so, $\operatorname{diam}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=3$.

In Theorem 2, we classify rings $R$ such that $\left(\Omega_{R}^{*}\right)^{c}$ is a path of order 4 .

Theorem 2. Let $R$ be a ring. Then the following statements are equivalent:
(i) $\left(\Omega_{R}^{*}\right)^{c}$ is a path of order 4.
(ii) $R \cong F \times S$ as rings, where $F$ is a field and $(S, \mathfrak{m})$ is a SPIR with $\mathfrak{m} \neq(0)$ but $\mathfrak{m}^{2}=(0)$.

Proof. $\quad(i) \Rightarrow(i i)$ It follows from $(i)$ that $\left(\Omega_{R}^{*}\right)^{c}$ is connected and $R$ has exactly four nontrivial ideals. Therefore, $R$ is necessarily Artinian. If $R$ is local, then we obtain from $(i) \Rightarrow(i i)$ of Proposition 5 that $R$ has only one nontrivial ideal. Hence, $R$ must have at least two maximal ideals. Let $n$ be the number of maximal ideals of $R$. If $n \geq 3$, then $R$ admits at least six nontrivial ideals. This is impossible. Hence,
$n=2$. Let $\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}\right\}$ denote the set of all maximal ideals of $R$. If $\mathfrak{m}_{1} \cap \mathfrak{m}_{2}=(0)$, then $R$ is isomorphic to the direct product of two fields. In such a case, $R$ has exactly two nontrivial ideals. This is a contradiction. Therefore, $\mathfrak{m}_{1} \cap \mathfrak{m}_{2} \neq(0)$. Since $R$ has exactly four nontrivial ideals, it follows that either $\mathfrak{m}_{1}=\mathfrak{m}_{1}^{2}$ or $\mathfrak{m}_{2}=\mathfrak{m}_{2}^{2}$. Without loss of generality, we can assume that $\mathfrak{m}_{1}=\mathfrak{m}_{1}^{2}$. Note that $J(R)=\mathfrak{m}_{1} \cap \mathfrak{m}_{2}$. As $J(R) \neq(0)$, it follows from Nakayama's lemma ([5], Proposition 2.6) that $J(R) \neq(J(R))^{2}$. Hence, it follows that $\mathfrak{m}_{2} \neq \mathfrak{m}_{2}^{2}$. Therefore, $\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}, \mathfrak{m}_{2}^{2}, \mathfrak{m}_{1} \cap \mathfrak{m}_{2}\right\}$ is the set of all nontrivial ideals of $R$. Moreover, $(J(R))^{2}=(0)$. Note that $\mathfrak{m}_{1}+\mathfrak{m}_{2}^{2}=R$ and $\mathfrak{m}_{1} \cap \mathfrak{m}_{2}^{2}=(0)$. Hence, we obtain from the Chinese remainder theorem ([5], Proposition 1.10 (ii) and (iii)) that the mapping $f: R \rightarrow R / \mathfrak{m}_{1} \times R / \mathfrak{m}_{2}^{2}$ given by $f(r)=\left(r+\mathfrak{m}_{1}, r+\mathfrak{m}_{2}^{2}\right)$ is an isomorphism of rings. Let us denote $R / \mathfrak{m}_{1}$ by $F$ and $R / \mathfrak{m}_{2}^{2}$ by $S$. Observe that for any $x \in \mathfrak{m}_{2} \backslash\left(\mathfrak{m}_{1} \cup \mathfrak{m}_{2}^{2}\right), \mathfrak{m}_{2}=R x$. Let us denote $\mathfrak{m}_{2} / \mathfrak{m}_{2}^{2}$ by $\mathfrak{m}$. It is clear that $(S, \mathfrak{m})$ is a local ring with $\mathfrak{m}=S\left(x+\mathfrak{m}_{2}^{2}\right) \neq\left(0+\mathfrak{m}_{2}^{2}\right)$ and $\mathfrak{m}^{2}=\left(0+\mathfrak{m}_{2}^{2}\right)$. Note that $F$ is a field and $(S, \mathfrak{m})$ is a SPIR with $\mathfrak{m} \neq$ zero ideal but $\mathfrak{m}^{2}=$ zero ideal and $R \cong F \times S$ as rings.
(ii) $\Rightarrow(i)$ Assume that $R \cong F \times S$ as rings, where $F$ is a field and $(S, \mathfrak{m})$ is a SPIR with $\mathfrak{m} \neq(0)$ but $\mathfrak{m}^{2}=(0)$. It is not hard to show that $\left(\Omega_{R}^{*}\right)^{c}$ is the path of order 4 given by $(0) \times \mathfrak{m}-F \times(0)-(0) \times S-F \times \mathfrak{m}$.

Let $R$ be a ring such that $\left|\mathbb{A}(R)^{*}\right| \geq 2$. Let $H$ be the subgraph of $\left(\Omega_{R}^{*}\right)^{c}$ induced on $\mathbb{A}(R)^{*}$. In Proposition 6 , we classify rings $R$ such that $H$ is a complete bipartite graph. We use Lemma 8 in the proof of Proposition 6.

Lemma 8. Let $R$ be a reduced ring such that $R$ has exactly two minimal prime ideals. Let $H$ be the subgraph of $\left(\Omega_{R}^{*}\right)^{c}$ induced on $\mathbb{A}(R)^{*}$. Then $H=\mathbb{A} \mathbb{G}(R)=(\Omega(R))^{c}$.

Proof. Note that the vertex set of $H=$ the vertex set of $\mathbb{A}(R)=$ the vertex set of $(\Omega(R))^{c}=\mathbb{A}(R)^{*}$. Let $I, J \in \mathbb{A}(R)^{*}$ be such that $I \neq J$. If $I$ and $J$ are adjacent in $\mathbb{A} \mathbb{G}(R)$, then we know from Lemma 2 that $I$ and $J$ are adjacent in $\left(\Omega_{R}^{*}\right)^{c}$. Suppose that $I$ and $J$ are adjacent in $\left(\Omega_{R}^{*}\right)^{c}$. We assert that $I$ and $J$ are adjacent in $\mathbb{A} \mathbb{G}(R)$, that is, $I J=(0)$. Suppose that $I J \neq(0)$. Let $\left\{\mathfrak{p}_{1}, \mathfrak{p}_{2}\right\}$ denote the set of all minimal prime ideals of $R$. Note that $\mathfrak{p}_{1} \cap \mathfrak{p}_{2}=(0)$ and $Z(R)=\mathfrak{p}_{1} \cup \mathfrak{p}_{2}$. Moreover, if $A \in \mathbb{A}(R)^{*}$, then $A \subseteq Z(R)$ and so, either $A \subseteq \mathfrak{p}_{1}$ or $A \subseteq \mathfrak{p}_{2}$. From $I J \neq(0)$, it follows that either $I J \nsubseteq \mathfrak{p}_{1}$ or $I J \nsubseteq \mathfrak{p}_{2}$. Without loss of generality, we can assume that $I J \nsubseteq \mathfrak{p}_{1}$. Then $I \nsubseteq \mathfrak{p}_{1}$ and $J \nsubseteq \mathfrak{p}_{1}$. Hence, $A n n_{R} I \subseteq \mathfrak{p}_{1}$ and $A n n_{R} J \subseteq \mathfrak{p}_{1}$. Observe that $I \subseteq \mathfrak{p}_{2}$ and $J \subseteq \mathfrak{p}_{2}$. Hence, $I \mathfrak{p}_{1}=J \mathfrak{p}_{1}=(0)$ and so, $\mathfrak{p}_{1} \subseteq A n n_{R} I \cap A n n_{R} J$. Therefore, $A n n_{R} I=A n n_{R} J=\mathfrak{p}_{1}$. This is in contradiction to the assumption that $I$ and $J$ are adjacent in $\left(\Omega_{R}^{*}\right)^{c}$. Hence, $I J=(0)$ and so, $I$ and $J$ are adjacent in $\mathbb{A} \mathbb{G}(R)$. Therefore, we obtain that $H=\mathbb{A} \mathbb{G}(R)$.
We next verify that $H=(\Omega(R))^{c}$. Let $I, J \in \mathbb{A}(R)^{*}$ be such that $I \neq J$. Suppose that $I$ and $J$ are adjacent in $(\Omega(R))^{c}$. This implies that $I+J \notin \mathbb{A}(R)$. Hence, we obtain from Lemma 5 that $I$ and $J$ are adjacent in $\left(\Omega_{R}^{*}\right)^{c}$. Suppose that $I$ and $J$ are adjacent in $\left(\Omega_{R}^{*}\right)^{c}$. Then it is shown in the previous paragraph that $I J=(0)$. Without loss of generality, we can assume that $I \subseteq \mathfrak{p}_{1}$ and $J \subseteq \mathfrak{p}_{2}$. Note that $I \nsubseteq \mathfrak{p}_{2}$
and $J \nsubseteq \mathfrak{p}_{1}$. Hence, we get that $I+J \nsubseteq \mathfrak{p}_{1} \cup \mathfrak{p}_{2}$. Since any annihilating ideal of $R$ is contained in $Z(R)$ and $Z(R)=\mathfrak{p}_{1} \cup \mathfrak{p}_{2}$, it follows that $I+J \notin \mathbb{A}(R)$. Therefore, $I$ and $J$ are adjacent in $(\Omega(R))^{c}$. This proves that $H=(\Omega(R))^{c}$.

Proposition 6. Let $R$ be a ring with $\left|\mathbb{A}(R)^{*}\right| \geq 2$. Let $H$ be the subgraph of $\left(\Omega_{R}^{*}\right)^{c}$ induced on $\mathbb{A}(R)^{*}$. Then the following statements are equivalent:
(i) $H$ is a complete bipartite graph.
(ii) $R$ is reduced and has exactly two minimal prime ideals.

Proof. $\quad(i) \Rightarrow($ ii $)$ We adapt an argument found in the proof of $(i) \Rightarrow(i i)$ of ([19], Proposition 2.10). Let $H$ be a complete bipartite graph with vertex partition $V_{1}$ and $V_{2}$. Note that $V_{1}$ and $V_{2}$ are nonempty, $V_{1} \cap V_{2}=\emptyset$, and $\mathbb{A}(R)^{*}=V_{1} \cup V_{2}$. Let us denote $\cup_{I \in V_{1}} I$ by $A$ and $\cup_{J \in V_{2}} J$ by $B$. We claim that $A$ and $B$ are ideals of $R$. Let $a_{1}, a_{2} \in A$. Then there exist $I_{1}, I_{2} \in V_{1}$ such that $a_{1} \in I_{1}$ and $a_{2} \in I_{2}$. If $I_{1}=I_{2}$, then it is clear that $a_{1}+a_{2} \in I_{1} \subseteq A$. If $I_{1} \neq I_{2}$, then $I_{1}$ and $I_{2}$ are not adjacent in $\left(\Omega_{R}^{*}\right)^{c}$. Hence, it follows from Lemma 5 that $I_{1}+I_{2} \in \mathbb{A}(R)$. If $I_{1}+I_{2} \in V_{2}$, then we obtain that $I_{1}$ and $I_{1}+I_{2}$ are adjacent in $\left(\Omega_{R}^{*}\right)^{c}$. This is impossible. Therefore, $I_{1}+I_{2} \in V_{1}$. Hence, we get that $a_{1}+a_{2} \in I_{1}+I_{2} \subseteq A$. Let $r \in R$ and $a \in A$. Note that there exists $I \in V_{1}$ such that $a \in I$. Hence, $r a \in I \subseteq A$. This proves that $A$ is an ideal of $R$. Similarly, it can be shown that $B$ is an ideal of $R$. Now, it can be shown as in the proof of $(i) \Rightarrow(i i)$ of ([19], Proposition 2.10) that both $A$ and $B$ are maximal N -primes of $(0)$ in $R$ and $A \cap B=(0)$. It is now clear that $R$ is a reduced ring and $\{A, B\}$ is the set of all minimal prime ideals of $R$.
(ii) $\Rightarrow(i)$ Assume that $R$ is reduced and has exactly two minimal prime ideals. Let $\left\{\mathfrak{p}_{1}, \mathfrak{p}_{2}\right\}$ denote the set of all minimal prime ideals of $R$. Note that $\mathbb{A} \mathbb{G}(R)$ is a complete bipartite graph with vertex partition $V_{1}=\left\{I \in \mathbb{A}(R)^{*}: I \subseteq \mathfrak{p}_{1}\right\}$ and $V_{2}=\left\{J \in \mathbb{A}(R)^{*}: J \subseteq \mathfrak{p}_{2}\right\}$. We know from Lemma 8 that $H=\mathbb{A} \mathbb{G}(R)$. Therefore, $H$ is a complete bipartite graph.

Proposition 7. Let $R$ be a ring with $\left|\mathbb{A}(R)^{*}\right| \geq 2$. Let $H$ be the subgraph of $\left(\Omega_{R}^{*}\right)^{c}$ induced on $\mathbb{A}(R)^{*}$. Then the following statements are equivalent:
(i) $H$ is complete.
(ii) $R \cong F_{1} \times F_{2}$ as rings, where $F_{i}$ is a field for each $i \in\{1,2\}$.
(iii) $\left(\Omega_{R}^{*}\right)^{c}$ is complete.

Proof. $\quad(i) \Rightarrow(i i)$ Let $I \in \mathbb{A}(R)^{*}$. Let $J$ be any nonzero ideal of $R$ such that $J \subseteq I$. Then it is clear that $J \in \mathbb{A}(R)^{*}$ and $A n n_{R} I \subseteq A n n_{R} J$. If $I \neq J$, then $I$ and $J$ are not adjacent in $\left(\Omega_{R}^{*}\right)^{c}$. This contradicts the assumption that $H$ is complete. Therefore, $J=I$. This shows that each $I \in \mathbb{A}(R)^{*}$ is a minimal ideal of $R$. Hence, we obtain from ([10], Theorem 1.1) that $R$ is Artinian. It is already noted in Remark 3 that if $I$ is any proper ideal of $R$, then $I \in \mathbb{A}(R)$. We know from ([5], Proposition 8.3) that $R$ has only a finite number of maximal ideals. Let $\left\{\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{n}\right\}$ denote the set of all maximal ideals of $R$. If $R$ is local, then $\mathfrak{m}_{1}$ is the only element of $\mathbb{A}(R)^{*}$ and this is in contradiction to the hypothesis that $\left|\mathbb{A}(R)^{*}\right| \geq 2$. Hence, we obtain that $n \geq 2$. As
$\mathfrak{m}_{1}$ is a minimal ideal of $R$ and $\mathfrak{m}_{1} \cap \mathfrak{m}_{2} \subset \mathfrak{m}_{1}$, it follows that $\mathfrak{m}_{1} \cap \mathfrak{m}_{2}=(0)$. Since $\mathfrak{m}_{1}+\mathfrak{m}_{2}=R$, we obtain from the Chinese remainder theorem ([5], Proposition 1.10 (ii) and (iii)) that the mapping $f: R \rightarrow R / \mathfrak{m}_{1} \times R / \mathfrak{m}_{2}$ defined by $f(r)=\left(r+\mathfrak{m}_{1}, r+\mathfrak{m}_{2}\right)$ is an isomorphism of rings. Let us denote $R / \mathfrak{m}_{i}$ by $F_{i}$ for each $i \in\{1,2\}$. Then $F_{i}$ is a field for each $i \in\{1,2\}$ and $R \cong F_{1} \times F_{2}$ as rings.
(ii) $\Rightarrow$ (iii) Let us denote the ring $F_{1} \times F_{2}$ by $T$, where $F_{1}$ and $F_{2}$ are fields. It is already noted in Proposition $4(i)$ that $\left(\Omega_{T}^{*}\right)^{c}$ is complete. Since $R \cong T$ as rings, it follows that $\left(\Omega_{R}^{*}\right)^{c}$ is complete.
(iii) $\Rightarrow$ (i) It follows from Corollary 1 that if $I$ is any nontrivial ideal of $R$, then $I \in \mathbb{A}(R)^{*}$. Hence, we obtain that $H=\left(\Omega_{R}^{*}\right)^{c}$ and so, $H$ is complete.

Proposition 8. Let $R$ be a ring with $\left|\mathbb{A}(R)^{*}\right| \geq 3$. Let $H$ be the subgraph of $\left(\Omega_{R}^{*}\right)^{c}$ induced on $\mathbb{A}(R)^{*}$. Then the following statements are equivalent:
(i) $H$ is a star graph.
(ii) $R \cong D \times F$ as rings, where $F$ is a field and $D$ is an integral domain but not a field.

Proof. $\quad(i) \Rightarrow(i i)$ Let $H$ be a star graph with vertex partition $V_{1}$ and $V_{2}$ such that $\left|V_{1}\right|=1$. Let $V_{1}=\{I\}$. Since $H$ is a complete bipartite graph with vertex partition $V_{1}$ and $V_{2}$, it follows from the proof of $(i) \Rightarrow(i i)$ of Proposition 6 that $R$ is reduced and has exactly two minimal prime ideals $A$ and $B$, where $A=I$ and $B=\cup_{J \in V_{2}} J$. We know from Lemma 8 that $H=(\Omega(R))^{c}$. Hence, $(\Omega(R))^{c}$ is star and so, we obtain from $(i) \Rightarrow(i i)$ of ([19], Proposition 2.12) that $R \cong D \times F$ as rings, where $F$ is a field and $D$ is an integral domain but not a field.
(ii) $\Rightarrow(i)$ Let us denote $D \times F$ by $T$, where $F$ is a field and $D$ is an integral domain but not a field. From $(i i) \Rightarrow(i)$ of ([19], Proposition 2.12), we obtain that $(\Omega(T))^{c}$ is a star graph. As $R \cong T$ as rings, we get that $(\Omega(R))^{c}$ is a star graph. Since $R$ is reduced and has exactly two minimal prime ideals, it follows from Lemma 8 that $H=(\Omega(R))^{c}$. Therefore, $H$ is a star graph.

## 3. On the girth of $\left(\Omega_{R}^{*}\right)^{c}$

Let $R$ be a ring with $\left|\mathbb{A}(R)^{*}\right| \geq 2$. In this section, we discuss regarding $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)$. Let $H$ be the subgraph of $\left(\Omega_{R}^{*}\right)^{c}$ induced on $\mathbb{A}(R)^{*}$. We know from Lemma 1 that if $I$ is an ideal of $R$ such that $I \notin \mathbb{A}(R)$, then $I$ is an isolated vertex of $\left(\Omega_{R}^{*}\right)^{c}$. Hence, it follows that $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=$ girth of $H$. Moreover, we know from Lemma 5 that $(\Omega(R))^{c}$ is a subgraph of $H$. Hence, in this section, we use results that were proved on the $\operatorname{girth}\left((\Omega(R))^{c}\right)$ in ([19], Section 3).

Proposition 9. Let $R$ be a reduced ring with $\left|\mathbb{A}(R)^{*}\right| \geq 2$. If $R$ has a unique maximal $N$-prime of $(0)$, then $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=3$.

Proof. First, we claim that $R$ has an infinite number of minimal prime ideals. Suppose that $R$ has only a finite number $n \geq 2$ of minimal prime ideals. Let
$\left\{\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{n}\right\}$ denote the set of all minimal prime ideals of $R$. Note that $\cap_{i=1}^{n} \mathfrak{p}_{i}=(0)$ and $Z(R)=\cup_{i=1}^{n} \mathfrak{p}_{i}$. This implies that $\left\{\mathfrak{p}_{1}, \mathfrak{p}_{2}, \ldots, \mathfrak{p}_{n}\right\}$ is the set of all maximal Nprimes of (0) in $R$. This is in contradiction to the assumption that $R$ has a unique maximal N -prime of ( 0 ). Therefore, $R$ has an infinite number of minimal prime ideals. Now, it follows from ([19], Proposition 3.8) that $\operatorname{girth}\left((\Omega(R))^{c}\right)=3$. Since $(\Omega(R))^{c}$ is a subgraph of $\left(\Omega_{R}^{*}\right)^{c}$, we obtain that $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=3$.

Proposition 10. Let $R$ be a reduced ring such that $R$ has exactly two maximal $N$-primes of ( 0 ). Then $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right) \in\{3,4, \infty\}$.

Proof. If $R$ has at least three minimal prime ideals, then we know from ([19], Proposition 3.8) that $\operatorname{girth}\left((\Omega(R))^{c}\right)=3$ and so, $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=3$. Suppose that $R$ has exactly two minimal prime ideals. Let $H$ be the subgraph of $\left(\Omega_{R}^{*}\right)^{c}$ induced on $\mathbb{A}(R)^{*}$. We know from $(i i) \Rightarrow(i)$ of Proposition 6 that $H$ is a complete bipartite graph. Therefore, $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=\operatorname{girth}(H) \in\{4, \infty\}$. This proves that $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right) \in\{3,4, \infty\}$.

We next present some examples to illustrate Propositions 9 and 10. Example 2 given below is found in ([13], Example, page 16).

Example 2. Let $K$ be a field and $\left\{X_{i}\right\}_{i=1}^{\infty}$ be a set of independent indeterminates over $K$. Let $D=\cup_{n=1}^{\infty} K\left[\left[X_{1}, \ldots, X_{n}\right]\right]$, where $K\left[\left[X_{1}, \ldots, X_{n}\right]\right]$ is the power series ring in $n$ variables $X_{1}, \ldots, X_{n}$ over $K$. Let $I$ be the ideal of $D$ generated by $\left\{X_{i} X_{j}: i, j \in \mathbb{N}, i \neq j\right\}$. Let $R=D / I$. Then $R$ is a reduced ring, $R$ has a unique maximal N -prime of ( 0 ), and $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=3$.

Proof. Let $i \in \mathbb{N}$. It is convenient to denote $X_{i}+I$ by $x_{i}$. The following facts about the ring $R$ have been mentioned in ([13], Example, page 16).
(1) $R$ is quasilocal with $\mathfrak{m}=$ the ideal of $R$ generated by $\left\{x_{i}: i \in \mathbb{N}\right\}$ as its unique maximal ideal.
(2) Let $i \in \mathbb{N}$ and $\mathfrak{p}_{i}$ be the ideal of $R$ generated by $\left\{x_{j}: j \in \mathbb{N}, j \neq i\right\}$. Then $\left\{\mathfrak{p}_{i}: i \in \mathbb{N}\right\}$ is the set of all minimal prime ideals of $R$.
It was shown in ([17], Example $3.4(i)$ ) that $\mathfrak{m}=Z(R)$. Hence, $R$ has $\mathfrak{m}$ as its unique maximal N -prime of (0). It follows from $\cap_{i=1}^{\infty} \mathfrak{p}_{i}=(0)$ that $R$ is reduced. It follows from Proposition 9 that $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=3$. We verify here that $(\Omega(R))^{c}$ admits an infinite clique. Since $R$ is reduced, it is clear that $\mathfrak{m} \notin \mathbb{A}(R)$. Observe that for each $i \in \mathbb{N}, \mathfrak{p}_{i}=\left((0+I):_{R} x_{i}\right)$ and so, $\mathfrak{p}_{i} \in \mathbb{A}(R)^{*}$. Note that for all distinct $i, j \in \mathbb{N}$, $\mathfrak{p}_{i}+\mathfrak{p}_{j}=\mathfrak{m} \notin \mathbb{A}(R)$. Hence, the subgraph of $(\Omega(R))^{c}$ induced on $\left\{\mathfrak{p}_{i}: i \in \mathbb{N}\right\}$ is an infinite clique. Since $(\Omega(R))^{c}$ is a subgraph of $\left(\Omega_{R}^{*}\right)^{c}$, it follows that $\left(\Omega_{R}^{*}\right)^{c}$ admits an infinite clique.

Example 3. Let $R$ be as in Example 2 and let $T=R \times R$. Then $T$ is a reduced ring, $T$ has exactly two maximal N -primes of its zero ideal, and $\operatorname{girth}\left(\left(\Omega_{T}^{*}\right)^{c}\right)=3$.

Proof. We know from Example 2 that $R$ is reduced. Hence, it follows that $T$ is reduced. Also, it is noted in the verification of Example 2 that $Z(R)=\mathfrak{m}$, where $\mathfrak{m}$ is the unique maximal ideal of $R$. Observe that $T$ has exactly two maximal N-primes of $(0,0)$ and they are given by $\mathfrak{P}_{1}=\mathfrak{m} \times R$ and $\mathfrak{P}_{2}=R \times \mathfrak{m}$. It is observed in the proof of Example 2 that the subgraph of $(\Omega(R))^{c}$ induced on $\left\{\mathfrak{p}_{i}: i \in \mathbb{N}\right\}$ is an infinite clique. Hence, we obtain that the subgraph of $(\Omega(T))^{c}$ induced by $\left\{\mathfrak{p}_{i} \times R: i \in \mathbb{N}\right\}$ is an infinite clique. Therefore, $\operatorname{girth}\left((\Omega(T))^{c}\right)=\operatorname{girth}\left(\left(\Omega_{T}^{*}\right)^{c}\right)=3$.

Example 4. If $R=\mathbb{Z} \times \mathbb{Z}$, then $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=4$.

Proof. It is clear that $R$ is reduced and $\left\{\mathfrak{p}_{1}=(0) \times \mathbb{Z}, \mathfrak{p}_{2}=\mathbb{Z} \times(0)\right\}$ is the set of all minimal prime ideals of $R$. We know from Lemma 8 that $H=\mathbb{A}(R)$, where $H$ is the subgraph of $\left(\Omega_{R}^{*}\right)^{c}$ induced by $\mathbb{A}(R)^{*}$. Observe that $\mathbb{A} \mathbb{G}(R)$ is a complete bipartite graph with vertex partition $V_{1}=\left\{A \in \mathbb{A}(R)^{*}: A \subseteq \mathfrak{p}_{1}\right\}$ and $V_{2}=\{B \in$ $\left.\mathbb{A}(R)^{*}: B \subseteq \mathfrak{p}_{2}\right\}$. As $V_{i}$ contains at least two elements for each $i \in\{1,2\}$, it follows that $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=\operatorname{girth}(H)=4$.

Example 5. If $R=\mathbb{Z} \times \mathbb{Q}$, then $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=\infty$.

Proof. Let $H$ be the subgraph of $\left(\Omega_{R}^{*}\right)^{c}$ induced by $\mathbb{A}(R)^{*}$. We know from $(i i) \Rightarrow(i)$ of Proposition 8 that $H$ is a star graph. Hence, $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=\operatorname{girth}(H)=\infty$.

Example 6. Let $R=F_{1} \times F_{2}$, where $F_{1}, F_{2}$ are fields. Then $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=\infty$.

Proof. It is already noted in the proof of Proposition $4(i)$ that $\left(\Omega_{R}^{*}\right)^{c}$ is a complete graph on two vertices. Therefore, $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=\infty$.

Let $R$ be a ring which is possibly non-reduced. We next discuss regarding $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)$. We are not able to determine $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)$ in the case when $R$ has at most two maximal N-primes of (0). However, we present some remarks and examples of rings $R$ describing the nature of cycles of $\left(\Omega_{R}^{*}\right)^{c}$.

Remark 4. Recall that a ring $R$ is a chained ring if the ideals of $R$ are comparable under the inclusion relation. Thus if $R$ is a chained ring, then $Z(R)$ is an ideal of $R$ and hence, $R$ has a unique maximal $N$-prime of ( 0 ). Let $R$ be a chained ring with at least one nontrivial ideal. Then $\left(\Omega_{R}^{*}\right)^{c}$ has no edges and so, $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=\infty$.

Example 7. Let $T=K[[X]]$ be the power series ring in one variable $X$ over a field $K$ and let $R=T / X^{5} T$. Then $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=\infty$.

Proof. It is well-known that $T$ is a discrete valuation ring and $\left\{X^{n} T: n \in \mathbb{N}\right\}$ is the set of all nontrivial ideals of $T$. Observe that $R$ is a chained ring and the set of all
nontrivial ideals of $R$ equals $\left\{X^{i} T / X^{5} T: i \in\{1,2,3,4\}\right\}$. It follows from Remark 4 that $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=\infty$.

We next provide an example of a quasilocal ring $(R, \mathfrak{p})$ in Example 8 such that $\mathfrak{p}$ is the unique maximal N -prime of $(0)$ and $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=3$. The ring $R$ given in Example 8 is from ([16], Exercises 6 and 7, pages 62-63).

Example 8. Let $S=K[X, Y]$ be the polynomial ring in two variables $X, Y$ over a field $K$. Let $\mathfrak{m}=S X+S Y$. Let $T=S_{\mathfrak{m}}$. Let $\mathcal{P}$ be the set of all pairwise nonassociate prime elements of the unique factorization domain $T$. Let $W=\bigoplus_{p \in \mathcal{P}}(T / T p)$ be the direct sum of the $T$ - modules $T / T p$, where $p$ varies over $\mathcal{P}$. Let $R=T \oplus W$ be the ring obtained on using Nagata's principle of idealization. Then $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=3$.

Proof. Since $T$ is local with $\mathfrak{m} T$ as its unique maximal ideal, it follows that $R$ is quasilocal with $\mathfrak{p}=\mathfrak{m} T \oplus W$ as its unique maximal ideal. It was shown in ([18], Example 2.8) that $\mathfrak{p}$ is the unique maximal N -prime ideal of the zero ideal in $R$. It was verified in ([19], Remark $3.2(i i))$ that $\operatorname{girth}\left((\Omega(R))^{c}\right)=3$. Indeed, it was shown in ([19], Remark $3.2(i i))$ that $(\Omega(R))^{c}$ contains an infinite clique. Since $(\Omega(R))^{c}$ is a subgraph of $\left(\Omega_{R}^{*}\right)^{c}$, we get that $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=3$.

Example 9. Let $R=F \times S$, where $F$ is a field and $(S, \mathfrak{m})$ is a SPIR with $\mathfrak{m} \neq(0)$ but $\mathfrak{m}^{2}=(0)$. Then $R$ has exactly two maximal N-primes of $(0,0)$ and $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=\infty$.

Proof. It is clear that $\left\{\mathfrak{p}_{1}=(0) \times S, \mathfrak{p}_{2}=F \times \mathfrak{m}\right\}$ is the set of all maximal N-primes of $(0,0)$ in $R$. We know from $(i i) \Rightarrow(i)$ of Theorem 2 that $\left(\Omega_{R}^{*}\right)^{c}$ is a path of order 4. Hence, $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=\infty$.

Remark 5. Let $R_{1}, R_{2}$ be rings such that $Z\left(R_{i}\right) \in \mathbb{A}\left(R_{i}\right)^{*}$ for each $i \in\{1,2\}$. Let $R=R_{1} \times R_{2}$. Then $R$ has exactly two maximal N-primes of $(0,0)$ and $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=3$.

Proof. Observe that $\left\{\mathfrak{p}_{1}=Z\left(R_{1}\right) \times R_{2}, \mathfrak{p}_{2}=R_{1} \times Z\left(R_{2}\right)\right\}$ is the set of all maximal N-primes of $(0,0)$ in $R$. Let $I_{1}=R_{1} \times(0), I_{2}=(0) \times R_{2}$, and $I_{3}=Z\left(R_{1}\right) \times Z\left(R_{2}\right)$. As $I_{1}+I_{2}=R \notin \mathbb{A}(R)$, it follows from Lemma 5 that $I_{1}$ and $I_{2}$ are adjacent in $\left(\Omega_{R}^{*}\right)^{c}$. By assumption, $A n n_{R_{i}} Z\left(R_{i}\right)$ is a nontrivial ideal of $R_{i}$ for each $i \in\{1,2\}$. Observe that $A n n_{R} I_{1}=(0) \times R_{2} \nsubseteq A n n_{R} I_{3}=A n n_{R_{1}} Z\left(R_{1}\right) \times A n n_{R_{2}} Z\left(R_{2}\right)$ and $A n n_{R} I_{3} \nsubseteq A n n_{R} I_{1}$. Similarly, $A n n_{R} I_{2}=R_{1} \times(0) \nsubseteq A n n_{R} I_{3}$ and $A n n_{R} I_{3} \nsubseteq A n n_{R} I_{2}$. Hence, we obtain that $I_{3}$ is adjacent to both $I_{1}$ and $I_{2}$ in $\left(\Omega_{R}^{*}\right)^{c}$. From the above discussion, it is clear that $I_{1}-I_{2}-I_{3}-I_{1}$ is a cycle of length 3 in $\left(\Omega_{R}^{*}\right)^{c}$. Therefore, we get that $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=3$.

Example 10. Let $R$ be as in Example 7 and let $S=R \times R$. Then $\operatorname{girth}\left(\left(\Omega_{S}^{*}\right)^{c}\right)=3$.

Proof. Observe that $Z(R)=X T / X^{5} T \in \mathbb{A}(R)^{*}$. Hence, on applying Remark 5 with $R_{1}=R_{2}=R$, we obtain that $\operatorname{girth}\left(\left(\Omega_{S}^{*}\right)^{c}\right)=3$.

Proposition 11. If $R$ is a ring which admits at least three maximal $N$-primes of ( 0 ), then $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=3$.

Proof. We know from ([19], Corollary 3.11) that $\operatorname{girth}\left((\Omega(R))^{c}\right)=3$. Since $(\Omega(R))^{c}$ is a subgraph of $\left(\Omega_{R}^{*}\right)^{c}$, it follows that $\operatorname{girth}\left(\left(\Omega_{R}^{*}\right)^{c}\right)=3$.

## Acknowledgements

We are thankful to the referees for their comments.

## References

[1] G. Aalipour, S. Akbari, R. Nikandish, M.J. Nikmehr, and F. Shaveisi, On the coloring of the annihilating-ideal graph of a commutative ring, Discrete Math. 312 (2012), no. 17, 2620-2626.
[2] A. Alilou, J. Amjadi, and S.M. Sheikholeslami, A new graph associated to a commutative ring, Discrete Math. Algorithms Appl. 8 (2016), no. 2, Article ID: 1650029 (13 pages).
[3] D.F. Anderson, M.C. Axtell, and J.A. Stickles, Zero-divisor graphs in commutative rings, Commutative Algebra, Noetherian and Non-Noetherian Perspectives, eds. M. Fontana, S.E. Kabbaj, B. Olberding and I. Swanson (Spring-Verlag, New York) (2011), 23-45.
[4] D.F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008), no. 7, 2706-2719.
[5] M. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra, AddisonWesley, Massachusetts, 1969.
[6] M. Axtell, J. Coykendall, and J.A. Stickles, Zero-divisor graphs of polynomials and power series over commutative rings, Comm. Algebra 33 (2005), no. 6, 20432050.
[7] A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra 42 (2014), no. 1, 108-121.
[8] R. Balakrishnan and K. Ranganathan, A text book of graph theory, Springer Science \& Business Media, 2000.
[9] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), no. 1, 208-226.
[10] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (2011), no. 4, 727-739.
[11] __ The annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (2011), no. 4, 741-753.
[12] R. Gilmer, Multiplicative Ideal Theory, vol. 12, Marcel-Dekker, New York, 1972.
[13] R. Gilmer and W. Heinzer, The Laskerian property, power series rings and Noetherian spectra, Proc. Amer. Math. Soc. 79 (1980), no. 1, 13-16.
[14] M. Hadian, Unit action and the geometric zero-divisor ideal graph, Comm. Algebra 40 (2012), no. 8, 2920-2931.
[15] W. Heinzer and J. Ohm, On the Noetherian-like rings of E. G. Evans, Proc. Amer. Math. Soc. 34 (1972), no. 1, 73-74.
[16] I. Kaplansky, Commutative Rings, The University of Chicago Press, Chicago, 1974.
[17] S. Visweswaran, Some results on the complement of the zero-divisor graph of a commutative ring, J. Algebra Appl. 10 (2011), no. 3, 573-595.
[18] S. Visweswaran and H.D. Patel, A graph associated with the set of all non-zero annihilating ideals of a commutative ring, Discrete Math. Algorithms Appl. 6 (2014), no. 4, Article ID: 1450047 (22 pages).
[19] S. Visweswaran and P. Sarman, On the complement of a graph associated with the set of all non-zero annihilating ideals of a commutative ring, Discrete Math. Algorithms Appl. 8 (2016), no. 3, Article ID: 1650043 (22 pages).


[^0]:    * Corresponding Author

