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Abstract: Time-varying network optimization problem, which is NP-complete in the
ordinary sense, are traditionally solved by specialized algorithms. This paper considers

the time-varying shortest path problem, which can be optimally solved in O
(
T (m+n)

)
time, where T is a given integer. For this problem with arbitrary waiting times, we
propose an approximate algorithm, which can find an acceptable solution of the problem

with O
(T (m+n)

k

)
time complexity such that it evaluates only a subset of the values for

t ∈ {0, 1, . . . , T}.
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1. Introduction

Time-varying shortest path problem has in important applications, such as telecom-

munication, computer networks and transportation. This problem finds shortest path

from a source vertex to a target vertex, such that the total cost of the path is mini-

mized. Moreover, the total time of the path is at most T , where T is a given integer

time horizon. The transit times, the transit costs along each arc and all other pa-

rameters of the network are considered as functions of the departure time along the

arcs. This problem is called ”time-varying shortest path” (TV-SP) problem. The

waiting times at all vertices are the decision variables, then the TV-SP problem can

be categorized as problems with arbitrary waiting times (TV-SP-AW), zero waiting

times (TV-SP-ZW) and bounded waiting times (TV-SP-BW).
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140 Approximate solutions for time-varying shortest path problem

The TV-SP problem was first proposed in discrete time by Cooke and Halsey [6].

They considered the transit time b(i, j, t) and the transit cost c(i, j, t) are needed to

traverse the arc (i, j) with departure time t from vertex i. They proposed a discrete

model, where b(i, j, t) = c(i, j, t), with no waiting time at a vertex, i.e., the TV-SP-ZW

problem.

The TV-SP problem has been widely studied by optimization researchers. Some

notable works between 1966 and 2000 are [2, 3, 5–8, 10–12, 14–16, 21, 22]. Recently,

the time-varying optimization problems have been studied in both continuous and

discrete models by Ahuja et al. [1] and Cai et al. [4]. The TV-SP problem has been

surveyed in their books [1, 4]. S.M Hashemi et al. [9] presented the shortest path

problem from one node to all other nodes in a network, where the arc costs can vary

with time. R. Koch and E. Nasrabadi [13] studied the shortest path problems with

negative transit time in continuous model. They extend the work of Philpott [15]

to the cost of negative transit time. Shirdel and Rezapour [16] studied a k-objective

time-varying shortest path problem, which cannot be combined into a single aggregate

objective. They considered the minimum cost flow problem in dynamic networks with

uncertain costs and proposed a robust formulation for their problem [18]. The time-

varying shortest path problem with the fuzzy transit costs and the speed-up on this

problem was studied by Shirdel and Rezapour [17, 20]. Moreover, they presented the

maximum capacity path problem in the time-varying network, where waiting time at

a vertex is not allowed. [19].

In this paper, the TV-SP problem is considered, where Cai et al. [4] studied it in

three situations TV-SP-AW, TV-SP-ZW and TV-SP-BW. Some important results of

TV-SP-AW [4] are reviewed in section 2. The main contributions of this paper appear

in sections 3, where we want to find approximate solutions of TV-SP-AW. The time

complexity of the algorithm is dependent on the parameter T , thus the key idea is

to calculate only a suitable subset of the values t ∈ {0, 1, . . . , T}. In this section, we

propose an approximate algorithm for TV-SP-AW that can be extended to TV-SP-

ZW and TV-SP-BW in a similar way . In section 4, a numerical example is solved by

the proposed algorithm.

2. Preliminary

Consider a time-varying network G(V,A, b, c), where the sets of vertices and arcs are

shown by V and A, respectively with a single source s. Let b(i, j, t) and c(i, j, t) be

the transit time and the transit cost of an arc (i, j) ∈ A, respectively, where t is the

departure time of vertex i. Both of b and c are dependent on the time t = 0, 1, . . . , T

and T is a given integer time horizon. Maximum waiting time at vertex i for the

period of the time t to t+ 1 is denoted by w(i, t). Moreover, waiting cost c(i, t) must

be paid when waiting takes place at vertex i during the time period from t to t + 1.

Meanwhile, suppose that the waiting time at vertex i, w(i), the waiting cost at vertex

i from t to t+ 1, c(i, t) and the transit costs c(i, j, t) are integers, whereas the transit

time b(i, j, t) is a non-negative integer. Finally, let |A| = m and |V | = n.
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In the following, without loss of generality, we can assume a time-varying net-

work G(V,A, b, c) contains neither loops nor parallel arcs. Otherwise, let network

G(V,A, b, c) have a loop (i, i) with the transit time and the transit cost b(i, i, t) and

c(i, i, t), respectively. Delete the loop (i, i) and introduce a new node i′. Then, insert

two new arcs (i, i′) and (i′, i) and let: b(i, i′, t) = 0, c(i, i′, t) = 0, b(i′, i, t) = b(i, i, t)

and c(i′, i, t) = c(i, i, t) for any time t. Similarly, assume the network has two parallel

arcs (i, j) with b1(i, j, t), c1(i, j, t), b2(i, j, t) and c2(i, j, t). Remove one of them associ-

ated with b1(i, j, t) and c1(i, j, t), insert a new node i′′, two new arcs (i, i′′) and (i′′, j)

then set b(i, i′′, t) = 0, c(i, i′′, t) = 0, b(i′′, j, t) = b1(i, j, t) and c(i′′, j, t) = c1(i, j, t).

Definition 1. Let P (i1 − i2 − . . . − ik) be a path from i1 to ik. The arrival time of a
vertex ir on P is denoted by α(ir) such that α(i1) = t0 ≥ 0 (for the source vertex s, let
α(S) = 0), then we have:

α(ir) = α(ir−1) + w(ir−1) + b
(
ir−1, ir, τ(ir−1)

)
for r = 2, . . . , k,

where τ(ir) (departure time of a vertex ir on P ) is defined as follows:

τ(ir) = α(ir) + w(ir) for r = 1, . . . , k − 1.

Definition 2. P (i1 − i2 − . . . − ik) is said to be a dynamic path from i1 to ik, if all the
α(ir), w(ir) and the τ(ir) for all 1 ≤ r ≤ k on the path are specified. Furthermore, the time
of P is defined as α(ik) +w(ik)− α(i1). A path is said to have time at most t, if its time is
less than or equal to t. Specifically, a path is said to have time t, if its time equals t.

Definition 3. [4] Let P (i1 − i2 − . . . − ik) be a dynamic path from i1 to ik. Let

ξ(i1) =
w(i1)−1∑

t′=0

c
(
i1, t

′ + α(i1)
)

and define recursively:

ξ(ir) = ξ(ir−1) + c
(
ir−1, ir, τ(ir−1)

)
+

w(ir)∑
t′=0

c
(
ir, t

′ + α(ir)
)
,

for r = 2, . . . , k. The cost (or length) of P , ξ(P ), is defined as ξ(ik).

Waiting times at vertices are decision variables in the time-varying shortest path

problem. They can be arbitrary, zero or it can have an upper bound. The time-varying

shortest path problem with arbitrary waiting times (TV-SP-AWT) is considered in

this paper.

The cost of the TV-SP with arbitrary waiting time can be computed using the re-

cursive formula provided in the following lemma. Consider da(j, t) shows the cost of

shortest path from source vertex s to vertex j of time exactly t, where waiting times

at vertices are arbitrary.

Lemma 1. [4] da(s, 0) = 0 and da(j, 0) =∞ for all j 6= S. For t > 0, we have:

da(j, t) = min
{
da(j, t− 1) + c(j, t− 1), min

(i,j)∈A
min

u|u+b(i,j,u)=t

{
dA(i, u) + c(i, j, u)

}}

Lemma 2. [4] The optimal solution of TV-SP-AWT can be found in O
(
T (m+n)

)
time.
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3. Finding approximate solutions for TV-SP

By finding approximate solutions, the time complexity of the algorithms could be

improved as shown in this section. The time complexity of the algorithms depend

on the parameter T , thus, the vital idea is to calculate only a suitable subset of the

values t ∈ {0, 1, . . . , T}. In the following, It is assumed that waiting at any vertex is

not bounded and all waiting costs are equal to zero i.e. w(i) =∞ and c(i, t) = 0 for

all i ∈ V and all time t. The approach is valid for others versions TV-SP problems

with zero or bounded waiting times, too.

For a given network N(V,A, b, c), a new problem is presented for finding the ap-

proximate solutions for TV-SP problem. This problem is the same as the TV-

SP original problem with t = 0, k, 2k, . . . , k.bTk c and b′(i, j, t) = k.d b(i,j,t)k e for

t = 0, k, 2k, . . . , k.bTk c. An optimal solution P 0 for the TV-SP problem with ap-

proximate solutions (TV-SP-AWT*) can be found in time complexity O
(

T (m+n)
k

)
,

which can be made sufficiently small if k is large.

The following lemma shows that how to ensure the solution P 0 be a suitable ap-

proximate solution when it is applied to the original problem. TV-SP-AWT* finds

approximate solutions for TV-SP-AW problem.

Lemma 3. If TV-SP-AWT* finds a solution P 0, then there is a path P in the original
network N such that d(P 0) = d(P ).

Proof. Let the approximate solution of TV-SP-AWT*, P 0(s = x0 − x1 − . . . − xk)

be a path from x0 to xk, where α0(xi), τ
0(xi) and w0(xi) are arrival time, departure

time and waiting time at vertex (xi) for 0 ≤ i ≤ k, respectively. A path P can be

constructed with the same topological structure as P 0 and let τ(xi) = τ0(xi) such

that 0 ≤ i ≤ k, for path P . Furthermore, let α(xi) = τ(xi−1) + b
(
xi−1, xi, τ(xi−1)

)
.

Consequently, w(xi) = α0(xi) − α(xi) + w0(xi). Note that α0(xi) ≥ α(xi), thus,

the path P with all α(xi), τ(xi) and w(xi) is a feasible dynamic path in the original

network, which can be traversed in the time T , Since τ(xi) = τ0(xi) for all i ∈ V ,

therefore d(P 0) = d(P ).

Let d′a(j, t) be the cost of a shortest path from s to j of time exactly t for the problem

TV-SP-AW*, where waiting at any vertex is not restricted. The following algorithm

finds the approximate solutions of the problem.

Algorithm TV-SP-AW*

Begin

Initialize d′a(j, t) := 0 and d′a(j, 0) :=∞ for t = 0, k, 2k, . . . , k.bTk c.
Let b′(i, j, t) := k.d b(i,j,t)k e for t = 0, k, 2k, . . . , k.bTk c and each (i, j) ∈ A.

Sort all values u+ b′(i, j, u) for all u = 0, k, 2k, . . . , k.bTk c , ∀(i, j) ∈ A.

For t = 0, k, 2k, . . . , k.bTk c
For each j ∈ V \ s do

d′a(j, t) := min
(i,j)∈A

min
u|u+b′(i,j,u)=t

{
d′a(i, t− k),

{
d′a(i, u) + c(i, j, u)

}}
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For every vertex j do:

d′a(j) = min
0≤k≤kb t

k c
d′a(j, t)

End

Let δmin = min{c(i, j, t)|(i, j) ∈ A, t ∈ T} and δmax = max{c(i, j, t)|(i, j) ∈ A, t ∈ T}.
Further, let ∆ = δmax−δmin, moreover, the minimum arc costs are denoted by Cmin.

If the error of the solution P 0 is defined by E, then we have:

E = d(P 0)−d(P∗)
d(P∗)

where, P ∗ and P 0 are the optimal solutions of TV-SP-AWT and TV-SP-AWT*, re-

spectively. The following theorem indicates that P 0 is a suitable approximate solution

for TV-SP-AWT.

Theorem 1. The problem TV-SP-AWT* can find an approximate optimal solution P 0,
where E ≤ ε.

Proof. Let P ∗ and P 0 are optimal solutions of TV-SP-AWT and TV-SP-AWT*,

respectively. Moreover, suppose that P ′ is the feasible solution, which has the same

topological structure as P 0 with the departure time at the beginning vertex t =

0, k, 2k, . . . , k.bTk c, then :

d(P ′) ≥ d(P 0) ≥ d(P ∗)

therefore,

E = d(P 0)−d(P∗)
d(P∗) ≤ d(P ′)−d(P∗)

d(P∗) ≤ nk∆
d(P∗) ≤

nk∆
Cmin

if k := [Cminε
n∆ ] then E ≤ ε, i.e. the solution P 0 is the suitable approximate optimal

solution for TV-SP-AWT, where E ≤ ε.

Theorem 2. Algorithm TV-SP-AWT* can be implemented in O
(T (m+n)

k

)
.

Proof. The initialization can be done in O
(
Tn
k

)
. The step 2 can be performed

in O
(
Tm
k

)
time for mentioned values sorting. The values d′a(j, t) are calculated

in O
(
Tm
k

)
. Finally, it follows that the complexity of algorithm is bounded by

O
(T (m+n)

k

)
.

4. Numerical Example

In this section, an example is examined to illustrate the Algorithm TV-SP-AW* and

how to obtain approximate solutions of TV-SP-AW problem. Consider a time-varying

network N as shown in Fig. 1, where if M =
{

(1, 2), (2, 4), (4, 7), (7, 10)
}

, let(
c(i, j, t), b(i, j, t)

)
= (92, 2) for (i, j) ∈M and t ∈ {0, 1, . . . , 12}.
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Moreover, if N =
{

(1, 3), (3, 6), (6, 9)
}

, then(
c(i, j, t), b(i, j, t)

)
= (95, 1) for (i, j) ∈ N and t ∈ {0, 1, . . . , 12}.

All other b and c are given in Table 1.

Table 1. The transit time b(i, j, t) and the transit cost c(i, j, t).

t (2, 5) (3, 5) (4, 8) (5, 8) (6, 8) (7, 8) (8, 10) (9, 8) (9, 10)

0 2,93 2,93 1,94 2,95 3,95 2,92 3,98 2,100 3,90

1 2,93 4,96 2,96 3,98 1,92 1,95 4,99 1,98 3,100

2 3,91 3,94 1,94 1,95 2,97 3,93 2,92 2,91 2,90

3 2,91 2,95 2,98 2,92 3,98 4,94 1,93 1,92 1,92

4 2,95 2,92 1,99 1,100 1,95 1,94 1,95 1,93 3,93

5 1,97 1,93 3,100 2,93 2,97 2,95 2,96 2,93 2,94

6 2,94 1,93 1,100 1,100 2,99 3,97 1,98 3,92 1,95

7 1,94 2,94 4,95 1,93 1,90 1,90 2,95 1,94 1,99

8 1,95 3,90 2,92 2,98 2,100 1,90 2,95 2,95 2,98

9 2,96 4,91 2,94 1,98 4,97 1,98 3,98 1,96 3,97

10 1,90 6,98 6,99 3,94 5,98 2,99 4,100 1,90 1,98

11 4,90 5,100 5,98 1,90 6,99 3,100 1,97 3,100 2,100

12 5,90 3,100 4,95 5,98 1,100 4,100 6,95 2,100 4,98

Table 2. Calculation of shortest path.

t 1 2 3 4 5 6 7 8 9 10

0 0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
1 0 92 95 ∞ ∞ ∞ ∞ ∞ ∞ ∞
2 0 92 95 ∞ ∞ 190 ∞ ∞ ∞ ∞
3 0 92 95 ∞ ∞ 190 ∞ ∞ 285 ∞
4 0 92 95 182 ∞ 190 ∞ 277 285 377

5 0 92 95 182 183 190 272 277 285 372

6 0 92 95 182 183 190 272 277 285 372

7 0 92 95 182 183 190 272 277 285 372

8 0 92 95 182 183 190 272 276 285 362

9 0 92 95 182 183 190 272 276 285 362

10 0 92 95 182 5 190 272 276 285 362

11 0 92 95 182 182 190 272 276 285 362

12 0 92 95 182 182 190 272 276 285 362

d∗a(j) 0 92 95 182 182 190 272 272 285 362

The results in Table 2 can be obtained by applying Lemma 1. This table shows the

cost of the shortest paths problem connecting the source vertex to other vertices.
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Fig 1. A numerical example

The approximate solutions are found using the algorithm TV-SP-AWT*, where ε = 4.

In this example ∆ = 10, Cmin = 90 and n = 10, therefore k = 3 and b′(i, j, t) =

3d b(i,j,t)3 e. Hence, if M =
{

(1, 2), (2, 4), (4, 7), (7, 10)
}

then(
c(i, j, t), b′(i, j, t)

)
= (92, 3) for (i, j) ∈M and t ∈ {0, 3, 6, 9, 12}.

Moreover, if N =
{

(1, 3), (3, 6), (6, 9)
}

then(
c(i, j, t), b′(i, j, t)

)
= (95, 3) for (i, j) ∈ N and t ∈ {0, 3, 6, 9, 12}.

Other transit times b′(i, j, t) and transit costs c(i, j, t) are listed in Table 3.

Table 3. The transit time b′(i, j, t) and the transit cost c(i, j, t).

t (2, 5) (3, 5) (4, 8) (5, 8) (6, 8) (7, 8) (8, 10) (9, 8) (9, 10)

0 3,93 3,93 3,94 3,95 3,95 3,92 3,98 3,100 3,90

3 3,91 3,95 3,98 3,92 3,98 6,94 3,93 3,92 3,92

6 3,94 3,93 3,100 3,100 3,99 3,97 3,98 3,92 3,95

9 3,96 6,91 3,94 3,98 6,97 3,98 3,98 3,98 3,97

12 6,90 3,100 6,95 6,98 3,100 6,100 6,95 3,100 6,98

Approximate solutions are reported in Table 4, by applying algorithm TV-SP-AWT*.

Table 4. Calculation of approximate solutions of shortest path.

t 1 2 3 4 5 6 7 8 9 10

d′∗a (j) 0 92 95 182 182 190 272 273 285 362

We can compare each d′∗a (j) in Table 4 with d∗a(j) in the last row of Table 2. It

contains one difference at vertex j = 8, where d′∗a (8) = 273 while d∗a(8) = 272, then

we have: E = 1
273 < 4. Therefore, there is an approximate solution in Table 4 with

an error bound 4, while the computation of the procedure was reduced.
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5. Conclusion

In this paper we studied the time-varying shortest path problem with arbitrary wait-

ing times at vertices, where each arc has a transit time. In this problem, the cost

for traversing an arc as well as the cost for waiting at a vertex vary over time. TV-

SP problem is a NP-complement with O
(
T (m+ n)

)
time complexity. Our attention

was restricted to find approximate solutions of TV-SP problem. An algorithm with

time complexity O
(T (m+n)

k

)
was proposed and a numerical example was solved, i.e

we showed that the time complexity of the approximate solutions TV-SP-AW is re-

ducible from O
(
T (m+ n)

)
to O

(T (m+n)
k

)
. Finding approximate solutions of TV-SP

problem may appear as a subproblem in the process of solving other time-varying net-

work optimization problems and plays an important role in time-varying optimization

problems.
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