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Abstract: A graceful labeling of a graph G = (V,E) with m edges is an in-

jection f : V (G) → {0, 1, . . . ,m} such that the resulting edge labels obtained by

|f(u) − f(v)| on every edge uv are pairwise distinct. For natural numbers n and k,
where n > 2k, a generalized Petersen graph P (n, k) is the graph whose vertex set is

{u1, u2, . . . , un}∪{v1, v2, . . . , vn} and its edge set is {uiui+1, uivi, vivi+k : 1 ≤ i ≤ n},
where subscript arithmetic is done modulo n. We propose a backtracking algorithm
with a specific static variable ordering and dynamic value ordering to find graceful la-

belings for generalized Petersen graphs. Experimental results show that the presented

approach strongly outperforms the standard backtracking algorithm. The proposed
algorithm is able to find graceful labelings for all generalized Petersen graphs P (n, k)

with n ≤ 75 within only several seconds.

Keywords: graceful labeling, generalized Petersen graph, heuristic

AMS Subject classification: 05C15, 05C85

1. Introduction

Let G be a graph with n vertices and m edges. An injection f : V (G)→ {0, 1, . . . ,m}
is called a graceful labeling of G if the resulting edge labels obtained by |f(u)− f(v)|
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on every edge uv are pairwise distinct. If a graph G admits a graceful labeling, then

we say that G is graceful. The graceful labeling problem is to determine whether a

given graph is graceful or not.

Several graph labelings have been developed since Rosa [4] introduced the graceful

labeling (called the β-valuation of a graph at the time). The dynamic survey of graph

labelings [2] presents an overview of extensive developments in this area.

It is shown [1] that gracefully labeled graphs can be used for modeling in a wide range

of applications. The most known examples are coding theory and communication

network addressing.

Although an unpublished result of Erdös [2] shows that most graphs are not graceful,

it is known that many graphs that have some sort of regularity of structure are

graceful. The graph which are known to be graceful are for example paths, wheels, as

well as families of cycles C4k and C4k+3 (see [2] for the complete list of graphs that

are know to be graceful).

For natural numbers n and k, where n > 2k, a generalized Petersen graph P (n, k)

is the graph whose vertex set is {u1, u2, . . . , un} ∪ {v1, v2, . . . , vn} and its edge set is

{uiui+1, uivi, vivi+k : 1 ≤ i ≤ n}, where subscript arithmetic is done modulo n using

the residues 0, 1, . . . , n− 1.

Redl [3] established that the Petersen graph P (n, k) is graceful with n up to 10. In

this paper, we show that the generalized Petersen graph P (n, k) is graceful for all

5 ≤ n ≤ 75.

The paper is organized as follows. In Section 2, a backtracking algorithm with a spe-

cific static variable ordering and dynamic value ordering is introduced. The presented

algorithm is the main computer search method applied in the computation, the re-

sults of which are given in Section 3. This section also includes a comparison of the

introduced algorithm with a standard backtracking algorithm and with an approach

based on an integer programming formulation.

2. Algorithmic search

A constraint satisfaction problem (CSP) consists of a set of n variables, x1, . . . , xn, and

a set of constraints. For each variable xi a domain Di with r elements di1 , di2 , . . . , dir
is specified; a variable can only be assigned a value from its domain. A constraint

specifies a subset of the variables and which combinations of value assignments are

allowed for that subset. A solution to a CSP is an assignment of values to all the

variables such that no constraint is violated.

It is straightforward to see that the graceful labeling problem for a graph G is an

example of a constraint satisfaction problem where the vertices of a given graph

correspond to the set of variables of CSP such that the domain of each variable is

{0, 1, . . . , |E(G)|}.
Most algorithms for solving CSP search systematically through the possible assign-

ment of values to variables. A well known example of a systematic search is a back-

tracking algorithm, which has been used for the graceful labeling problem by the



Z. Shao, F. Deng, Z. Li, A. Vesel 151

authors of this paper.

The backtrack search process is usually represented as a search tree, where each node

represents a choise of value of a variable, and each branch represents a candidate

partial solution.

2.1. Variable ordering

A backtracking algorithm needs the order in which variables are to be considered

to be determined. The ordering may be static where the order of the variables is

specified before the search begins. On the other hand, a dynamic ordering requires

that the choice of the next variable to be considered depends on the values of the

variables that have been already determined. In order to find an efficient algorithm

for the the graceful labeling problem various ordering have been considered. The best

results have been achieved by using the following static ordering.

Let |V (G)| = n and let σ = v1, v2, . . . , vn be a sequence of all vertices of G. We

treat σ as a function σ : {1, 2, . . . , n} → V (G) where σ(i) denote the i-th vertex in σ

and σ−1(u) gives the position of u in σ. Let Vu denote the set of vertices of G that

appear earlier in σ then u i.e. Vu = {v ∈ V (G) | σ−1(v) < σ−1(u)}. We say that the

sequence σ is internally connected if for every vertex u ∈ V (G) there exists an edge

uv ∈ E(G) such that v ∈ Vu.

2.2. Value ordering

When a current variable is selected, a backtracking algorithm has to choose a value

to assign. As with variable ordering, an algorithm could decide the order in which

values of the domain are to be assigned. A proper value ordering could accelerate the

search provided that a solution exists and that only one solution is needed. For the

graceful labeling problem, we define the following dynamic value ordering.

Let σ = v1, v2, . . . , vn be an internally connected sequence of vertices of G and let

v ∈ V (G). Let also N(u, σ) denote the set of neighbors of u that appear earlier in σ

than u. More formally, N(u, σ) = {v ∈ Vu | uv ∈ E(G)}.
Let f : V (G) → {1, . . . , |E(G)|} be a function, where for u ∈ V (G) the value f(u) is

obtained by the algorithm Backtracking presented in the next subsection. Then the

restriction of f to Vu is denoted by fu.

For an internally connected sequence σ of vertices of G we define a function w :

V (G)× V (G){1,2,...,n} × {0, 1, . . . , |E(G)|}V (G) → IR as

w(u, σ, f) =
1

|N(u, σ)|
∑

v∈N(u,σ)

f(v).

Note that v belongs to N(u, σ) ⊆ Vu in the definition of w. Thus, f is used in fact as

the restriction of f to Vu. Since the algorithm uses the variable ordering defined by σ

for the current vertex u, the restriction of f to Vu is already defined when u is selected.

The value of w(u, σ, f) is therefore well defined for every step of the algorithm.
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The ordering of values for a current vertex u depends on the value of w(u, σ, f) as

follows. If w(u, σ, f) ≥ |E(G)|
2 , then the ordering 0, 1, . . . , |E(G)| is used. Otherwise,

the algorithm uses the ordering |E(G)|, |E(G)| − 1, . . . , 0.

2.3. Algorithm

We first give the outline of the algorithm.

a) Before the search, we rearrange the order of vertices of G randomly such that

the resulting sequence of vertices σ = v1, v2, . . . , vn is internally connected.

b) The label of the vertex v1 is set to 0 at the beginning of the computation. The

algorithm then labels the vertices of the sequence v2, . . . , vn vertex by vertex

with labels from the set {0, 1, . . . , |E(G)|}. The order of labels used for the

current vertex vi depends on the value w(vi, σ, f) as described in section 2.2.

c) If the procedure runs for more than a given a period of time, the procedure is

restarted until a valid graceful labeling is found (see lines 13-16 of the algorithm).

The parameters of algorithm are described as follows.

• G: a graph to be tested, the vertices of G are ordered in the sequence σ =

v1, v2, . . . , vn;

• m: the number of the edges of G;

• n: the number of the vertices of G;

• i: the index of the vertex in σ, it also denotes the level of the search tree of the

backtracking procedure;

• c: the label to be assigned to vi;

• T : the time bound;

• T0: the starting time of the algorithm.

Procedure Backtracking(G, m, n, i, c, T , T0);

begin

1: f(vi) := c;

2: if f restricted to v1, v2, . . . , vi is not a graceful labeling

3: return false;

4: end if

5: if i = n

6: if f is a graceful labeling

7: report the graceful labeling;

8: return true;
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9: else

10: return false;

11: end if

12: end if

13: T1 := get current time;

14: if T1 − T0 > T

15: return false;

16: end if

17: if i > 1 and w(vi, σ, f) ≥ m/2
18: for each ` from 0 to m

19: if Backtracking(G, m, n, i+ 1, `, T , T0)

20: return true;

21: endif

22: endfor

23: end if

24: if i > 1 and w(vi, σ, f) ≤ m/2
25: for each ` from m downto 0

26: if Backtracking(G, m, n, i+ 1, `, T , T0)

27: return true;

28: endif

29: endfor

30: end if

31: return false;

end.

We will show in the next section that the algorithm Backtracking strongly outperforms

the standard backtracking algorithm with a random static variable ordering and a

static value ordering. In particular, the standard backtracking algorithm has managed

to compute graceful labelings of generalized Petersen graph P (n, k) only for n up to

11, while Backtracking has enabled us to find graceful labelings for all graphs P (n, k)

with n ≤ 75.

3. Computation

The following result presented in [5] can be used to reduce the number of graphs

tested by the algorithm.

Theorem 1. Let n > 3 and k1, k2 relatively prime to n with k1k2 ≡ 1 mod n. Then
P (n, k1) ∼= P (n, k2).

Table 1 depicts all triples of values n, k1, k2, with 11 ≤ n ≤ 100, which imply

P (n, k1) ∼= P (n, k2) .
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Table 1. Triples n, k1, k2 which for 11 ≤ n ≤ 100 imply P (n, k1) ∼= P (n, k2)

n k1 k2 n k1 k2 n k1 k2 n k1 k2 n k1 k2

11 2 5 11 3 4 13 2 6 14 3 5 15 2 7

17 2 8 17 3 6 19 2 9 19 4 5 20 3 7

21 2 10 23 2 11 23 3 8 23 4 6 25 2 12

26 3 9 27 2 13 27 4 7 29 2 14 29 3 10

29 5 6 31 2 15 31 4 8 32 3 11 33 2 16

34 5 7 35 2 17 35 3 12 35 4 9 37 2 18

38 3 13 39 2 19 39 4 10 39 5 8 41 2 20

41 3 14 41 6 7 43 2 21 43 4 11 44 3 15

44 5 9 45 2 22 47 2 23 47 3 16 47 4 12

47 6 8 49 2 24 49 5 10 50 3 17 51 2 25

51 4 13 53 2 26 53 3 18 53 6 9 54 5 11

55 2 27 55 4 14 55 7 8 56 3 19 57 2 28

59 2 29 59 3 20 59 4 15 59 5 12 59 6 10

61 2 30 62 3 21 62 7 9 63 2 31 63 4 16

64 5 13 65 2 32 65 3 22 65 6 11 67 2 33

67 4 17 68 3 23 69 2 34 69 5 14 69 7 10

71 2 35 71 3 24 71 4 18 71 6 12 71 8 9

73 2 36 74 3 25 74 5 15 75 2 37 75 4 19

76 7 11 77 2 38 77 3 26 77 6 13 79 2 39

79 4 20 79 5 16 79 8 10 80 3 27 81 2 40

83 2 41 83 3 28 83 4 21 83 6 14 83 7 12

84 5 17 85 2 42 86 3 29 87 2 43 87 4 22

87 8 11 89 2 44 89 3 30 89 5 18 89 6 15

89 9 10 90 7 13 91 2 45 91 4 23 92 3 31

93 2 46 94 5 19 95 2 47 95 3 32 95 4 24

95 6 16 95 8 12 97 2 48 97 7 14 98 3 33

98 9 11 99 2 49 99 4 25 99 5 20

3.1. Results

We are ready now to present the main result of the paper.

Theorem 2. The Petersen graph P (n, k) is graceful for any 5 ≤ n ≤ 75.

Proof. It is proved in [3] that the Petersen graph P (n, k) is graceful with n up to 10.

With respect to the isomorphic pairs given by Theorem 1, graceful labelings for all

graphs P (n, k) with 11 ≤ n ≤ 75 have been obtained by the algorithm Backtracking

presented in Section 2. These labelings are presented in Table 2 for n ≤ 20, while the

others can be obtained by the authors or at the web page http://omr.fnm.um.si/wp-

content/uploads/Zaposleni/claniOddelka/aleksander.vesel/labelings.pdf. The la-

bels of the vertices of P (n, k) are listed with respect to the sequence

u1, u2, . . . , un, v1, v2, . . . , vn given in the definition of the generalized Petersen graph



Z. Shao, F. Deng, Z. Li, A. Vesel 155

P (n, k). As an example, see the graceful labeling of P (11, 2) shown in Table 2 which

is depicted in Figure 1.

Figure 1. A graceful labeling of P (11, 2)

Table 2: Results

graph labeling
P (11, 2) 3,30,2,31,1,32,0,33,7,29,4,27,19,6,21,24,12,5,20,22,13,16

P (11, 3) 6,29,15,31,1,32,0,28,2,27,5,25,22,23,4,13,12,33,18,8,9,20

P (12, 2) 7,34,16,4,18,9,22,2,33,1,35,0,31,8,12,14,29,17,6,32,11, 3, 10, 36

P (12, 3) 7,33,15,5,16,10,3,34,1,35,0,29,28,8,13,9,31,18,23,4,17, 11, 36, 26
P (12, 4) 3, 7, 33, 4, 24, 14, 2, 34, 1, 35, 0, 28, 10, 31, 6, 25, 8, 20, 5, 16, 23, 12, 36, 11

P (12, 5) 8, 35, 0, 34, 1, 33, 2, 32, 15, 21, 16, 20, 31, 13, 36, 14, 19, 5, 23, 7, 6, 22, 3, 4

P (13, 2) 5, 34, 4, 35, 3, 36, 2, 37, 1, 38, 0, 39, 11, 32, 24, 6, 16, 28, 33, 7, 22, 25, 15,

9, 19, 23
P (13, 3) 36, 2, 37, 1, 38, 0, 39, 6, 35, 3, 34, 4, 8, 9, 11, 13, 27, 18, 19, 14, 28, 20, 26,

17, 25, 10
P (13, 4) 6, 34, 23, 30, 11, 2, 37, 1, 38, 0, 33, 3, 35, 8, 9, 31, 16, 32, 5, 15, 28, 12, 39,

10, 13, 29

P (13, 5) 32, 0, 38, 1, 37, 2, 36, 18, 21, 9, 25, 34, 3, 8, 39, 23, 29, 14, 28, 6, 10, 4, 20,
30, 7, 24

P (14, 2) 3, 39, 2, 40, 1, 41, 0, 42, 7, 38, 4, 37, 5, 33, 32, 25, 6, 27, 28, 16, 8, 23, 31, 35,
10, 19, 15, 34

P (14, 3) 3, 39, 2, 40, 1, 41, 0, 42, 7, 38, 4, 37, 5, 33, 32, 18, 8, 13, 16, 25, 26, 20, 30,

14, 11, 12, 15, 19
P (14, 4) 3, 39, 2, 40, 1, 41, 0, 42, 7, 38, 4, 37, 5, 33, 32, 23, 9, 21, 6, 20, 27, 29, 31, 18,

10, 14, 19, 22

P (14, 6) 3, 39, 2, 40, 1, 41, 0, 42, 7, 38, 4, 37, 5, 33, 32, 17, 29, 31, 26, 22, 6, 28, 8, 15,
9, 19, 13, 18

P (15, 2) 36, 8, 20, 31, 18, 26, 6, 24, 2, 42, 1, 44, 0, 37, 4, 5, 43, 30, 16, 39, 40, 22, 17,

41, 13, 3, 14, 45, 11, 9

P (15, 3) 36, 8, 22, 19, 38, 18, 5, 41, 3, 43, 1, 44, 0, 37, 6, 12, 35, 21, 7, 13, 28, 39, 15,
20, 4, 30, 26, 45, 14, 17

Continued on next page
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Table 2 – continued from previous page
graph labeling
P (15, 4) 9, 42, 26, 22, 27, 15, 33, 41, 2, 43, 1, 44, 0, 38, 3, 40, 8, 6, 39, 4, 34, 20, 14,

5, 19, 31, 12, 45, 28, 10

P (15, 5) 34, 8, 41, 4, 39, 15, 17, 42, 2, 43, 1, 44, 0, 32, 3, 19, 38, 7, 27, 28, 5, 11, 6, 20,
24, 22, 16, 45, 40, 12

P (15, 6) 10, 31, 23, 36, 12, 38, 3, 42, 2, 43, 1, 44, 0, 37, 4, 41, 30, 32, 9, 40, 22, 7, 20,

14, 11, 15, 39, 45, 17, 33

P (16, 2) 9, 1, 47, 0, 44, 2, 43, 8, 38, 11, 35, 14, 33, 4, 19, 45, 46, 3, 7, 48, 6, 5, 10, 39,

15, 17, 28, 42, 16, 22, 30, 13
P (16, 3) 40, 1, 47, 0, 45, 2, 46, 19, 33, 13, 21, 34, 28, 5, 41, 3, 7, 36, 18, 48, 14, 30, 6,

4, 9, 15, 20, 16, 32, 39, 11, 29
P (16, 4) 38, 1, 47, 0, 45, 2, 46, 4, 31, 12, 40, 9, 23, 6, 17, 5, 15, 41, 8, 48, 11, 3, 10, 7,

26, 28, 16, 39, 33, 19, 37, 13

P (16, 5) 30, 1, 47, 0, 45, 2, 46, 4, 44, 28, 33, 15, 36, 12, 21, 20, 5, 40, 11, 48, 43, 25, 8,
39, 7, 32, 18, 27, 6, 38, 35, 26

P (16, 6) 36, 1, 47, 0, 45, 2, 46, 4, 44, 3, 7, 32, 23, 35, 11, 26, 6, 39, 10, 48, 17, 20, 14,

5, 13, 9, 33, 18, 43, 12, 30, 31
P (16, 7) 30, 1, 47, 0, 45, 2, 46, 4, 44, 3, 42, 9, 21, 32, 13, 14, 6, 38, 12, 48, 18, 17, 20,

27, 8, 37, 10, 5, 39, 15, 7, 22

P (17, 2) 0, 40, 6, 44, 17, 26, 8, 20, 37, 22, 25, 4, 45, 2, 48, 1, 50, 51, 7, 12, 14, 43, 46,

27, 10, 13, 33, 38, 5, 16, 47, 11, 3, 15
P (17, 3) 0, 39, 2, 40, 23, 12, 31, 38, 18, 27, 48, 5, 47, 3, 49, 1, 50, 51, 6, 34, 15, 24, 7,

25, 46, 21, 29, 20, 45, 13, 32, 4, 36, 19

P (17, 4) 0, 39, 6, 44, 7, 37, 16, 29, 28, 4, 46, 3, 47, 2, 49, 1, 50, 51, 8, 13, 22, 15, 10,
41, 40, 9, 45, 12, 23, 24, 5, 17, 27, 34

P (17, 5) 0, 41, 3, 40, 5, 39, 44, 34, 46, 7, 47, 4, 48, 2, 49, 1, 50, 51, 16, 11, 10, 9, 15,

38, 37, 17, 24, 14, 20, 6, 30, 22, 33, 29
P (17, 7) 0, 42, 4, 45, 15, 30, 19, 41, 22, 24, 47, 3, 48, 2, 49, 1, 50, 51, 6, 37, 5, 9, 35,

12, 25, 23, 16, 8, 38, 17, 39, 21, 10, 26

P (18, 2) 0, 42, 6, 46, 16, 43, 25, 38, 24, 44, 28, 47, 4, 48, 2, 51, 1, 53, 54, 7, 13, 12, 45,

37, 8, 14, 39, 40, 17, 19, 5, 9, 50, 18, 3, 15
P (18, 3) 0, 41, 2, 42, 34, 17, 36, 24, 8, 7, 9, 51, 5, 50, 3, 52, 1, 53, 54, 6, 35, 16, 27, 13,

39, 18, 28, 21, 43, 23, 48, 14, 33, 4, 38, 22

P (18, 4) 0, 42, 6, 47, 7, 18, 37, 13, 35, 22, 4, 49, 3, 50, 2, 52, 1, 53, 54, 8, 41, 17, 15,
28, 16, 40, 19, 23, 48, 12, 36, 38, 5, 14, 10, 24

P (18, 5) 0, 39, 3, 41, 38, 14, 22, 15, 5, 49, 7, 50, 4, 51, 2, 52, 1, 53, 54, 18, 34, 9, 42,
25, 44, 29, 46, 26, 37, 16, 23, 6, 27, 19, 36, 40

P (18, 6) 0, 11, 44, 6, 49, 10, 50, 9, 31, 25, 4, 48, 3, 51, 2, 52, 1, 53, 54, 47, 15, 26, 18,
28, 8, 12, 5, 13, 41, 20, 7, 17, 29, 45, 16, 37

P (18, 7) 0, 44, 4, 47, 6, 34, 26, 35, 31, 30, 5, 50, 3, 51, 2, 52, 1, 53, 54, 9, 37, 28, 45,
12, 21, 41, 43, 13, 25, 8, 39, 19, 18, 14, 27, 32

P (18, 8) 0, 44, 5, 48, 8, 15, 36, 25, 41, 22, 4, 50, 3, 51, 2, 52, 1, 53, 54, 12, 47, 18, 43,
46, 27, 49, 28, 32, 9, 14, 6, 17, 10, 24, 13, 26

P (19, 2) 8, 49, 7, 50, 6, 51, 5, 52, 4, 53, 3, 54, 2, 55, 1, 56, 0, 57, 17, 47, 39, 9, 23, 43,

45, 10, 21, 40, 34, 11, 31, 37, 48, 12, 44, 32, 29, 18

P (19, 3) 8, 49, 7, 50, 6, 51, 5, 52, 4, 53, 3, 54, 2, 55, 1, 56, 0, 57, 17, 47, 37, 35, 12, 33,
30, 42, 20, 29, 19, 9, 32, 38, 26, 25, 23, 16, 39, 43

P (19, 4) 8, 49, 7, 50, 6, 51, 5, 52, 4, 53, 3, 54, 2, 55, 1, 56, 0, 57, 17, 47, 36, 24, 16, 9,
26, 29, 23, 41, 37, 31, 19, 10, 22, 13, 20, 30, 43, 39

P (19, 6) 8, 49, 7, 50, 6, 51, 5, 52, 4, 53, 3, 54, 2, 55, 1, 56, 0, 57, 17, 47, 16, 34, 32, 14,

28, 9, 18, 10, 37, 35, 43, 39, 19, 36, 27, 13, 26, 42

P (19, 7) 8, 49, 7, 50, 6, 51, 5, 52, 4, 53, 3, 54, 2, 55, 1, 56, 0, 57, 17, 47, 45, 9, 21, 12,
15, 31, 14, 22, 19, 28, 24, 10, 34, 36, 37, 32, 29, 48

P (19, 8) 8, 49, 7, 50, 6, 51, 5, 52, 4, 53, 3, 54, 2, 55, 1, 56, 0, 57, 17, 47, 32, 14, 15, 26,
19, 11, 21, 9, 20, 13, 18, 28, 27, 38, 45, 34, 41, 35

Continued on next page
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Table 2 – continued from previous page
graph labeling
P (20, 2) 23, 48, 19, 10, 43, 1, 59, 0, 56, 2, 55, 4, 52, 6, 58, 13, 36, 53, 31, 50, 11, 9, 39,

46, 8, 3, 18, 60, 22, 5, 15, 54, 20, 7, 28, 51, 49, 35, 25, 24

P (20, 3) 16, 31, 22, 14, 58, 1, 59, 0, 55, 2, 54, 5, 53, 3, 49, 6, 48, 18, 44, 21, 29, 43, 28,
51, 4, 25, 23, 60, 26, 37, 9, 7, 19, 50, 24, 39, 10, 8, 12, 17

P (20, 4) 21, 11, 42, 2, 58, 1, 59, 0, 54, 3, 56, 4, 53, 6, 52, 7, 30, 46, 14, 57, 50, 38, 8,

5, 25, 12, 20, 60, 45, 27, 18, 10, 32, 34, 17, 51, 13, 16, 22, 9
P (20, 5) 46, 8, 37, 36, 16, 25, 57, 2, 58, 1, 59, 0, 53, 3, 55, 7, 56, 11, 51, 9, 5, 52, 10,

32, 40, 38, 6, 33, 30, 22, 24, 60, 23, 14, 47, 41, 13, 4, 29, 35

P (20, 6) 21, 23, 38, 16, 35, 3, 57, 2, 58, 1, 59, 0, 52, 4, 55, 5, 54, 8, 53, 9, 47, 6, 20, 46,
12, 7, 33, 44, 19, 11, 32, 60, 41, 10, 26, 42, 29, 13, 25, 50

P (20, 8) 25, 42, 44, 4, 56, 3, 57, 2, 58, 1, 59, 0, 50, 5, 54, 6, 21, 40, 13, 55, 41, 8, 7, 9,

24, 15, 22, 10, 27, 30, 20, 60, 17, 33, 16, 53, 47, 51, 23, 14
P (20, 9) 1, 15, 55, 4, 56, 3, 57, 2, 58, 1, 59, 0, 49, 5, 36, 20, 34, 33, 30, 42, 13, 52, 10,

45, 14, 35, 40, 29, 48, 47, 24, 60, 19, 53, 16, 25, 11, 27, 22, 46

3.2. Comparison with other methods

In [3], an integer programming formulation (ILP) and a constraint programming

(CSP) formulation were proposed to solve the graceful labeling problem. The ap-

proach was applied for some generalized Petersen graphs, double cones graphs as well

as for product graphs of the form K4 × Pn. The results obtained by CSP are better

then the ones obtained by ILP for most graphs. Therefore, in order to demonstrate

the performance of our algorithm on generalized Petersen graphs, we compare our

results with the results obtained by using CSP. The comparison is shown in Table 3.

All results are obtained by a computer program in the C++ programming language

so that the computations were performed on a personal computer.

Table 3. Comparison of the execution time (in seconds) with the results from [2]

graph n e CSP B graph n e CSP B

P (5, 1) 10 15 0.04 0.003 P (5, 2) 10 15 < 0.01 0.003

P (6, 1) 12 18 0.06 0.004 P (6, 2) 12 18 0.54 0.004

P (7, 1) 14 21 0.43 0.002 P (7, 2) 14 21 3.69 0.003

P (7, 3) 14 21 0.70 0.003 P (8, 1) 16 24 3.95 0.003

P (8, 2) 16 24 19.23 0.001 P (8, 3) 16 24 77.04 0.005

P (9, 1) 18 27 71.07 0.004 P (9, 2) 18 27 636.93 0.004

P (9, 3) 18 27 144.78 0.004 P (9, 4) 18 27 58.28 0.003

P (10, 1) 20 30 16.26 0.003 P (10, 2) 20 30 7311.20 0.005

P (10, 3) 20 30 1648.89 0.003 P (10, 4) 20 30 1109.34 0.003

In Table 3, the CSP column shows the execution time of solving constraint program-

ming presented in [3], while the B column gives the execution time of the algorithm

Backtracking. All timing data listed is in seconds. It can be seen that our algorithm

outperforms CSP for almost every instance of the generalized Petersen graphs. For

graphs of order around 20, CSP needs thousands of seconds, while the running time of

the algorithm Backtracking does not exceed five milliseconds. It is worth mentioning
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that the running time of the program did not exceed one minute even for the largest

graphs being tested.

In order to compare the algorithm Backtracking with a standard backtracking algo-

rithm, we consider the number of nodes of search trees of both approaches. As usual,

a search tree is developed until a solution (a graceful labeling) is found.

Experimental results show that the number of nodes of a search tree developed by

the algorithm Backtracking is much smaller then the number of nodes of a search tree

developed by a standard backtracking algorithm for all connected 3-regular graphs.

In most cases it is even impossible to determine the number of nodes developed

by a standard backtracking algorithm, since the corresponding computation is not

concluded within a reasonable time. If a graph of interest is very small, the difference

between these two numbers is substantial. For instance, if our approach is performed

on K3,3, the number of nodes of the obtained search tree is 13, while the number of

nodes developed by a standard backtracking algorithm is 1768 for this graph.

4. Conclusions

In this paper, we propose a backtracking algorithm for the graceful labeling problem.

The algorithm is based on a specific static variable ordering and dynamic value or-

dering. The presented approach was applied to find graceful labelings for generalized

Petersen graphs.

We argue that the presented approach strongly outperforms the standard backtrack-

ing algorithm. In particular, we have been able to to find graceful labelings for all

generalized Petersen graphs P (n, k) with n ≤ 75, while the standard algorithm has

managed to compute graceful labelings of these graphs only for n up to 11.
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