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Abstract: Let R be a non-domain commutative ring with identity and A∗(R) be
the set of non-zero ideals with non-zero annihilators. We call an ideal I1 of R, an
annihilating-ideal if there exists a non-zero ideal I2 of R such that I1I2 = (0). The
annihilating-ideal graph of R is defined as the graph AG(R) with the vertex set A∗(R)
and two distinct vertices I1 and I2 are adjacent if and only if I1I2 = (0). In this paper,
we characterize all commutative Artinian non-local rings R for which AG(R) has genus
one.
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1. Terminology and introduction

The study of algebraic structures, using the properties of graphs, became an exciting

research topic in the past twenty years, leading to many fascinating results and ques-

tions. In the literature, there are many papers assigning graphs to rings, groups and

semigroups, see [3–7, 11, 17, 22]. For related graph, see the annihilator graph as in

[9, 10]. For recent survey article on the zero-divisor graph see [6]. In ring theory, the

structure of a ring R is closely tied to ideal’s behavior more than elements, and so it is

deserving to define a graph with vertex set as ideals instead of elements. Recently M.

Behboodi and Z. Rakeei [12, 13] have introduced and investigated the annihilating-

ideal graph of a commutative ring. For a non-domain commutative ring R, let A∗(R)
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94 Classification of rings with toroidal annihilating-ideal graph

be the set of non-zero ideals with non-zero annihilators. We call an ideal I1 of R,

an annihilating-ideal if there exists a non-zero ideal I2 of R such that I1I2 = (0).

The annihilating-ideal graph of R is defined as the graph AG(R) with the vertex set

A∗(R) and two distinct vertices I1 and I2 are adjacent if and only if I1I2 = (0). Sev-

eral properties of AG(R) were studied by the authors in [1, 2, 12, 13, 15, 19]. In this

paper, we characterize all commutative Artinian non-local rings R for which AG(R)

has genus one.

By a graph G = (V,E), we mean an undirected simple graph with vertex set V and

edge set E. A graph in which each pair of distinct vertices is joined by the edge is

called a complete graph. We use Kn to denote the complete graph with n vertices.

An r-partite graph is one whose vertex set can be partitioned into r subsets so that no

edge has both ends in any one subset. A complete r-partite graph is one in which each

vertex is joined to every vertex that is not in the same subset. The complete bipartite

graph (2-partite graph) with part sizes m and n is denoted by Km,n. The girth of G

is the length of a shortest cycle in G and is denoted by gr(G). If G has no cycles, we

define the girth of G to be infinite. A graph G is said to be planar if it can be drawn

in the plane so that its edges intersect only at their ends. A subdivision of a graph is

a graph obtained from it by replacing edges with pairwise internally-disjoint paths.

A remarkably simple characterization of planar graphs was given by Kuratowski in

1930. Kuratowski’s Theorem says that a graph G is planar if and only if it contains

no subdivision of K5 or K3,3(see [14, p.153]).

A minor of G is a graph obtained from G by contracting edges in G or deleting edges

and isolated vertices in G. A classical theorem due to K. Wagner [21] states that a

graph G is planar if and only if G does not have K5 or K3,3 as a minor. It is well

known that if G′ is a minor of G, then γ(G′) ≤ γ(G). For xy ∈ E(G), we denote the

contracted edge by the vertex [x, y]. Also if H is a subgraph of G and H ′ is a minor

of H , then we call H ′ as a minor subgraph of G.

The main objective of topological graph theory is to embed a graph into a surfaces.

By a surfaces, we mean a connected two-dimensional real manifold, i.e., a connected

topological space such that each point has a neighborhood homeomorphic to an open

disk. It is well known that any compact surfaces is either homeomorphic to a sphere,

or to a connected sum of g tori, or to a connected sum of k projective planes (see

[18, Theorem 5.1]). We denote Sg for the surfaces formed by a connected sum of

g tori. The number g is called the genus of the surfaces Sg. When considering the

orientability, the surfaces Sg and sphere are among the orientable class. In this paper,

we mainly focus on the orientable cases.

A simple graph which can be embedded in Sg but not in Sg−1 is called a graph of genus

g. The notations γ(G) is denoted for the genus. It is easy to see that γ(H) ≤ γ(G)

for all subgraph H of G. For details on the notion of embedding of graphs in surfaces,

one can refer to A. T. White [23].

The following results about the planarity are very useful in the subsequent sections.

Theorem 1. [19] Let R be a commutative Artinian ring with identity. Then AG(R) is

planar if and only if one of the following condition holds:
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(i) R ∼= F1 × F2 or R ∼= F1 × F2 × F3 where Fi, i = 1, 2, 3 are Fields.

(ii) R ∼= R1 × R2 where (Ri,mi), i = 1, 2 is a local ring with mi 6= {0} and one of the

following condition holds:

(a) n1 = 2, n2 = 3 and m1 is the only non-trivial ideal in R1 and m2,m
2

2 are the only

non-trivial ideals in R2.

(b) n1 = 3, n2 = 2 and m1,m
2

1 are the only non-trivial ideals in R1 and m2 is the

only non-trivial ideal in R2.

(c) n1 = n2 = 2 and m1 and m2 are the only non-trivial ideal in R1 and R2 respec-

tively.

(iii) R = R1 × F1 × F2, n1 = 2 and m1 is the only non-trivial ideal in R1.

(iv) R = R1 × F1 and one of the following holds:

(a) n1 = 2 and m1 is the only non-trivial ideal in R1.

(b) n1 = 3 and m1,m
2

1 are the only non-trivial ideals in R1.

(c) n1 = 4 and m1,m
2

1,m
3

1 are the only non-trivial ideals in R1.

The following results about the genus are very useful in the subsequent sections.

Lemma 1. [23] γ(Kn) =
⌈

1

12
(n− 3)(n− 4)

⌉

, where ⌈x⌉ is the least integer that is greater

than or equal to x. In particular, γ(Kn) = 1 if n = 5, 6, 7.

Lemma 2. [23] γ(Km,n) =
⌈

1

4
(m− 2)(n− 2)

⌉

, where ⌈x⌉ is the least integer that is

greater than or equal to x. In particular, γ(K4,4) = γ(K3,n) = 1 if n = 3, 4, 5, 6.

Lemma 3. [16] Suppose that H and H ′ are two subgraphs of a graph G such that H and

H ′ are isomorphic to K3,3 or K5. If H ∩H ′ = {v}, where v is a vertex of G, then γ(G) > 1.

Lemma 4. [23] (Euler formula) If G is a finite connected graph with n vertices, m edges,

and genus γ, then n − m + f = 2 − 2γ, where f is the number of faces created when G is

minimally embedded on a surfaces of genus γ.

Lemma 5. [8] If G is a graph with n vertices, m edges, girth gr(G), and genus γ, then

m(gr(G)− 2)

2gr(G)
−

n

2
+ 1 ≤ γ.

2. Genus of annihilating-ideal graph

The main goal of this section is to determine all commutative Artinian non-local rings

R for which AG(R) has genus one.

Theorem 2. Let R = F1 ×F2 × · · · ×Fn be a commutative ring with identity where each

Fi is a field and n ≥ 2. Then γ(AG(R)) = 1 if and only if n = 4.
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Proof. Assume that γ(AG(R)) = 1. Suppose n > 4. Consider the non-trivial ideals

u1 = F1 × (0)× (0)× (0)× (0)× · · · × (0), u2 = (0)× F2 × (0)× (0)× (0)× · · · × (0),

u3 = F1 × F2 × (0)× (0)× (0)× · · · × (0), v1 = (0)× (0)× F3 × (0)× (0)× · · · × (0),

v2 = (0)× (0)× (0)× F4 × (0)× · · · × (0), v3 = (0)× (0)× (0)× (0)× F5 × · · · × (0),

v4 = (0)× (0)× F3 × F4 × (0)× · · · × (0), v5 = (0)× (0)× F3 × (0)× F5 × · · · × (0),

v6 = (0)× (0)× (0)× F4 × F5 × · · · × (0), v7 = (0)× (0)×F3 ×F4 × F5 × · · · × (0) in

R. Then uivj = (0) for every i, j and so K3,7 is a subgraph of AG(R). By Lemma 2,

γ(AG(R)) > 1, a contradiction. Hence by Theorem 1, n = 4.

b b

b b

b

b

b

b

b
b

b

b b

b

F1 × (0) × (0) × (0) (0) × F2 × (0) × (0)

F1 × (0) × (0) × (0) (0) × F2 × (0) × (0)

(0) × (0) × F3 × (0) (0) × (0) × F3 × (0)

(0) × (0) × (0) × F4 (0) × (0) × (0) × F4

(0) × (0) × F3 × F4

F1 × (0) × (0) × F4

F1 × F2 × (0) × (0)

(0) × F2 × F3 × (0)
(0) × F2 × (0) × F4

F1 × (0) × F3 × (0)

Fig 2.1: Torus embedding of AG(F1 × F2 × F3 × F4)

Converse follows from Fig 2.1.

The following two results are very useful in the subsequent sections.

Lemma 6. [20] Let (R,m) be a local ring. If dim(m/m2) = 1 and for some positive

integer t, mt = (0), then the set of all non-trivial ideals of R is the set {mi : 1 ≤ i < t}.

Proposition 1. [20] If (R,m) is a local ring and there is an ideal I of R such that I 6= m
i

for every i, then R has at least three distinct non-trivial ideals J, K and L such that J, K,

L 6= m
i for every i.

Theorem 3. Let R = R1 × R2 × · · · × Rn be a commutative ring with identity where

each (Ri,mi) is a local ring with mi 6= {0} and n ≥ 2. Let ni be the nilpotency of mi. Then

γ(AG(R)) = 1 if and only if n = 2 and one of the following condition holds:

(i) n1 = 2, n2 = 4, m1 is the only non-trivial ideal in R1 and m2,m
2

2,m
3

2 are the only

non-trivial ideals in R2;

(ii) n1 = 4, n2 = 2, m1,m
2

1,m
3

1 are the only non-trivial ideals in R1 and m2 is the only

non-trivial ideal in R2.

Proof. Assume that γ(AG(R)) = 1. Suppose that n > 2. Consider the non-trivial

ideals u1 = m
n1−1
1 ×(0)×(0)×· · ·×(0), u2 = (0)×m

n2−1
2 ×(0)×· · ·×(0), u3 = m

n1−1
1 ×
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m
n2−1
2 ×· · ·×(0), v1 = (0)×(0)×m3×(0) · · ·×(0), v2 = m1×(0)×m3×(0)×· · ·×(0),

v3 = (0)×m2×m3×(0)×· · ·×(0), v4 = m1×m2×m3×(0)×· · ·×(0), v5 = (0)×(0)×

R3×(0)×· · ·×(0), v6 = m1×(0)×R3×(0)×· · ·×(0), v7 = (0)×m2×R3×(0)×· · ·×(0)

in R. Then uivj = (0) for every i, j and so K3,7 is a subgraph of AG(R). Hence by

Lemma 2, γ(AG(R)) > 1, a contradiction. Hence n = 2.

Suppose that ni ≥ 3 for every i = 1, 2. Consider the subgraph G of AG(R) induced

by the non-trivial ideals u1 = (0) × m
n2−1
2 , u2 = m

n1−1
1 × (0), u3 = m

n1−1
1 × m

n2−1
2 ,

v1 = m
n1−2
1 × (0), v2 = (0) × m

n2−2
2 , v3 = m

n1−2
1 × m

n2−2
2 , v4 = m

n1−1
1 × m

n2−2
2 ,

v5 = m
n1−2
1 × m

n2−1
2 , x1 = R1 × (0), x2 = (0) × R2, x3 = R1 × m

n2−1
2 , x4 =

m
n1−1
1 ×R2, x5 = R1×m

n2−2
2 , x6 = m

n1−2
1 ×R2 of R. Let G′ = G−{x3, x4, x5, x6}−

{u1u2, u2u3, u1u3, v1v2, v1v4, v2v5, v4v5} and G′′ = G′ − {x1, x2}. Then G′′ ∼= K3,5

and so γ(G′′) = 1. Since γ(G) = 1 and γ(G′′) ≤ γ(G′) ≤ γ(G), we get γ(G′) = 1.

Note that |V (G′)| = 10, |E(G′)| = 20. Then by Euler’s formula, there are 10 faces

when drawing G′ on a torus. Fix a representation of G′ and let {F ′
1, . . . , F

′
10} be the

set of faces of G′ corresponding to the representation. Let {F ′′
1 , . . . , F

′′
n } be the set of

faces of G′′ obtained by deleting x1, x2 and all the edges incident with x1, x2 from the

representation of G′. Notice that G′′ ∼= K3,5. From the fact that n−m+ f = 2− 2g,

K3,5 has 7 faces, six with 4 boundary edges and one with 6 boundary edges. So

n = 7. Moreover, for every i, each boundary of F ′′
i cannot have consecutive repetition

of a single edge. Therefore in K3,5, the only way to have a closed walk of length

6 without consecutive repetition of single edge is to have 6−cycle. Then in K3,5,

all faces boundaries are 4−cycles but with one 6−cycle. We may assume that the

boundary of F ′′
7 is 6. Now {F ′

1, . . . , F
′
10} can be recovered by inserting x1, x2 and all

the edges incident with x1, x2 into the representation corresponds to {F ′′
1 , . . . , F

′′
7 }.

u1

v1

u2

v2
x1

x2

u1 v1

u2

v2

x1

x2

Fig 2.2
(a) (b)

b

b b
bb

b

b

b

b

b b

b

bb

Note that x1x2 ∈ E(G′). Hence x1, x2 should be inserted to the same face say F ′′
m

of G′′ to avoid crossing. Also note that x1u1, x1v2, x2u2, x2v1 ∈ E(G′) and therefore

u1, v2, u2, v1 are the boundary vertices of F ′′
m. Consider the following edges of G:

e1 = x1u1, e2 = x1v2, e3 = x2u2, e4 = x2v1, e5 = x1x2, e6 = u1u2, e7 = v1v2. After

inserting x1, x2 and ei, i = 1 to 5 into the face F ′′
m, m 6= 7, we obtain Fig 2.2(a) as

above. Then the edge e6 can be inserted into the face F ′′
7 . But there is no other face

with v1 and v2 as the boundary vertices and so there is no way to insert the edge

e7 without crossing in the embedding of G. After inserting x1, x2 and ei, i = 1 to

5 into the face F ′′
7 , we obtain Fig 2.2(b) as above. Then the edge e6 can be inserted

into the face F ′′
m where m 6= 7. But there is no other face with v1 and v2 as the
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boundary vertices and so there is no way to insert the edge e7 without crossing in

the embedding of G. Hence we conclude that γ(AG(R)) > 1, a contradiction. Hence

ni = 2 for some i.

Without loss of generality, assume that n1 = 2. Suppose that n2 > 4. Consider the

non-trivial ideals u1 = (0)×m
n2−1
2 , u2 = m1 ×m

n2−1
2 , u3 = m1 × (0), v1 = (0)×m2,

v2 = (0)×m
n2−2
2 , v3 = (0)×m

n2−3
2 , v4 = m1×m2, v5 = m1×m

n2−2
2 , v6 = m1×m

n2−3
2

in R. Then uivj = (0) for every i, j so K3,6 is a subgraph of AG(R). Further, the

subgraph K of AG(R) induced by the vertices {u1, u2, u3} is K3, V (K) ⊂ V (K3,6)

and E(K) ∩ E(K3,6) = ∅. Since K3 cannot be embedded in the torus along with an

embedding with only rectangle as faces, one cannot have an embedding of K and K3,6

together in a torus. This implies that γ(AG(R)) > 1, a contradiction. Hence n2 ≤ 4.

Suppose that n2 = 4. Let J1 be any non-trivial ideal in R2 such that J1 6= m
i
2 for

i = 1, 2, 3. Consider the non-trivial ideals u1 = (0)×m
3
2, u2 = m1×m

3
2, u3 = m1×(0),

v1 = (0)×m
2
2, v2 = m1×m

2
2, v3 = (0)×m2, v4 = m1×m2, v5 = (0)×J1, v6 = m1×J1

in R. Then uivj = (0) for every i, j and so K3,6 is a subgraph of AG(R). Further, the

subgraph H of AG(R) induced by the vertices {u1, u2, u3} is K3, V (H) ⊂ V (K3,6)

and E(H) ∩ E(K3,6) = ∅. Since K3 cannot be embedded in the torus along with

an embedding with only rectangle as faces, one cannot have an embedding of H and

K3,6 together in a torus. This implies that γ(AG(R)) > 1, a contradiction. Hence

m2,m
2
2,m

3
2 are the only non-trivial ideal in R2.

Let I1 be any non-trivial ideal in R1 such that I1 6= m1. Consider the non-trivial

ideals u1 = (0) × m
3
2, u2 = m1 × m

3
2, u3 = I1 × m

3
2, v1 = (0) × m

2
2, v2 = m1 × m

2
2,

v3 = I1 × m
2
2, v4 = m1 × (0), v5 = m1 × m2, v6 = I1 × m2, v7 = (0) × m2 in R.

Then uivj = (0) for every i, j and so K3,7 is a subgraph of AG(R). By Lemma 2,

γ(AG(R)) > 1, a contradiction. Hence m1 is the only non-trivial ideal in R1.

b b

b b

b b

b b

b

b

b

b

b

bbb

b
b

m1 × m
2
2

(0) × m
2
2 m1 × m

2
2

m1 × m
2
2m1 × m

2
2 (0) × m

2
2

(0) × m
3
2

(0) × m
3
2

m1 × (0)m1 × (0)

m1 × m
3
2

m1 × m
3
2

R1 × m
2
2

R1 × m
3
2

R1 × (0)

(0) × R2

(0) × m2

Fig 2.3: Torus embedding of AG(R1 × R2) with n1 = 2 and n2 = 4

m1 × m2

Suppose that n2 = 3. Let J1, J2, J3 be the distinct non-trivial ideals in R2 such that
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Ji 6= m1,m
2
1, (i = 1, 2). Consider the non-trivial ideals u1 = (0)×m

2
2, u2 = m1 × (0),

u3 = m1×m
2
2, v1 = (0)×m2, v2 = m1×m2, v3 = (0)×J1, v4 = m1×J1, v5 = (0)×J2,

v6 = m1 × J2, v7 = (0) × J3 in R. Then uivj = (0) for every i, j and so K3,7 is

a subgraph of AG(R). By Lemma 2, γ(AG(R)) > 1, a contradiction. Hence by

Proposition 1 and Lemma 6, m2,m
2
2 are the only non-trivial ideals in R2.

Let I1 be any non-trivial ideal in R1 such that I1 6= m1. Consider the non-trivial ideals

u1 = (0)×m
2
2, u2 = m1×(0), u3 = I1×(0), v1 = (0)×m2, v2 = m1×m2, v3 = I1×m2,

v4 = m1 ×m
2
2, v5 = I1 ×m

2
2, v6 = [R1 × (0), (0)×R2] in R. Then uivj = (0) for every

i, j and so K3,6 is a subgraph of AG(R). Further, the subgraph H of AG(R) induced

by the vertices {u1, u2, u3} is K3, V (H) ⊂ V (K3,6) and E(H) ∩ E(K3,6) = ∅. Since

K3 cannot be embedded in the torus along with an embedding with only rectangle as

faces, one cannot have an embedding of H and K3,6 together in a torus. This implies

that γ(AG(R)) > 1, a contradiction. Hence m1 is the only non-trivial ideal in R1.

Therefore by Theorem 1, γ(AG(R)) = 0, a contradiction.

Suppose that n2 = 2. By Proposition 1, R2 has at least 3 non-trivial ideals different

from m2. Let J1, J2, J3 be the distinct non-trivial ideals in R2 such that Ji 6= m2 for

all i. Consider the non-trivial ideals u1 = (0) × m2, u2 = (0) × J1, u3 = (0) × J2,

v1 = m1×(0), v2 = m1×m2, v3 = m1×J1, v4 = m1×J2, v5 = R1×(0), v6 = R1×m2,

v7 = R1×J1 in R. Then uivj = (0) for every i, j and so K3,7 is a subgraph of AG(R).

By Lemma 2, γ(AG(R)) > 1, a contradiction. Hence by Lemma 6, m2 is the only

non-trivial ideal in R2. Similarly one can prove that m1 is the only non-trivial ideal

in R1. Hence by Theorem 1, γ(AG(R)) = 0, a contradiction. Similar argument for

other possibilities also.

Converse follows from Fig 2.3.

Theorem 4. Let R = R1 × R2 × F1 be a commutative ring with identity, where each

(Ri,mi) is a local ring with mi 6= {0} and each F1 is a field. Let ni be the nilpotency of mi.

Then γ(AG(R)) > 1.

Proof. Suppose that ni > 2 for some i. Let us assume that n2 > 2. Consider the

non-trivial ideals u1 = (0)× (0)×F1, u2 = m
n1−1
1 × (0)×F1, u3 = (0)×m

n2−1
2 ×F1,

u4 = m
n1−1
1 × m

n2−1
2 × F1, v1 = m1 × (0) × (0), v2 = (0) × m

n2−1
2 × (0), v3 =

m1 × m
n2−1
2 × (0), v4 = (0) × m2 × (0), v5 = m1 × m2 × (0) in R. Then uivj = (0)

for every i, j and so K4,5 is a subgraph of AG(R). By Lemma 2, γ(AG(R)) > 1.

Similarly one can prove that γ(AG(R)) > 1 in other possibilities also.

Suppose that n1 = 2 and n2 = 2. Assume that m1 and m2 are the only non-trivial

ideal in R1 and R2 respectively. Consider the non-trivial ideals u1 = m1 × (0)× (0),

u2 = (0) × m2 × (0), u3 = m1 × m2 × (0), v1 = (0) × (0) × F1, v2 = m1 × (0) × F1,

v3 = (0) × m2 × F1, v4 = m1 × m2 × F1, x1 = R1 × (0) × (0), x2 = (0) × R2 × (0),

x3 = m1 × R2 × (0), x4 = R1 × m2 × (0), x5 = (0) × R2 × F1, x6 = R1 × (0) × F1,

x7 = m1 × R2 × F1, x8 = R1 ×m2 × F1, x9 = R1 ×R2 × (0) of R. Let G = AG(R),

G′ = G−{x3, x4, x7, x8, x9}−{u1u2, u2u3, u1u3} and G′′ = G′−{x1, x2, x5, x6}. Then

G′′ ∼= K3,4 and so γ(G′′) = 1. Since γ(G) = 1 and γ(G′′) ≤ γ(G′) ≤ γ(G), we get

γ(G′) = 1. Note that |V (G′)| = 11, |E(G′)| = 23. Then by Euler’s formula, there are
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12 faces when drawing G′ on a torus. Fix a representation of G′ and let {F ′
1, . . . , F

′
12}

be the set of faces of G′ corresponding to the representation. Let {F ′′
1 , . . . , F

′′
n } be

the set of faces of G′′ obtained by deleting x1, x2, x5, x6 and all the edges incident

with x1, x2, x5, x6 from the representation of G′. Notice that G′′ ∼= K3,4. From the

fact that n−m+ f = 2− 2g, K3,4 has 5 faces, one octagonal face and 4 rectangular

faces, or two hexagonal faces and 3 rectangular faces. So n = 5. Moreover, for

every i, each boundary of F ′′
i cannot have consecutive repetition of a single edge.

Therefore in K3,4, the only way to have a closed walk of length 6 without consecutive

repetition of single edge is to have 6−cycle and the only way to have a closed walk

of length 8 without consecutive repetition of single edge is to have 8−cycle. Then in

K3,4, all faces boundaries are 4−cycles but with two 6−cycle or one 8−cycle. Now

{F ′
1, . . . , F

′
12} can be recovered by inserting x1, x2, x5, x6 and all the edges incident

with x1, x2, x5, x6 into the representation corresponds to {F ′′
1 , . . . , F

′′
5 }.

b b

b

b

bb
b

b

b

b b

b

bb

b b

b

b b

b

u1 v1

u3

v3

u2v2

v4

x6

x2
x1 u1

v1 u3

v3

u2v2

x1x2

x6

F ′′
m : F ′′

n :

Fig 2.4
(a) (b)

Note that x1x2 ∈ E(G′). Hence x1, x2 should be inserted to the same faces say F ′′
m of

G′′ to avoid crossing. Also note that x1u2, x1v1, x1v3, x2u1, x2v1, x2v2 ∈ E(G′) and

therefore u1, u2, v1, v2, v3 are the boundary vertices of F ′′
m. Consider the following

edges of G. Let e1 = x1x2, e2 = x1u2, e3 = x1v1, e4 = x1v3, e5 = x2u1, e6 = x2v1,

e7 = x2v2, e8 = x2x6, e9 = x6u2, e10 = x1x5, e11 = x5u1. From this, it is clear that

x1, x2, x5, x6 should be inserted into the same face. Suppose if we insert x1, x2, x6

and ei, i = 1 to 9 in the octagonal face F ′′
m, then we obtain the Fig 2.4(a). However

from Fig 2.4(a), it is clear that there is no way to insert the vertex x5 into the faces

F ′′
m without crossing in the embedding of G′. Suppose if we insert x1, x2, x6 and ei,

i = 1 to 9 in the hexagonal face F ′′
n , then we obtain the Fig 2.4(b). However from Fig

2.4(b), it is clear that there is no way to insert x5 into the face F ′′
n without crossing

in the embedding of G′. Hence we conclude that γ(AG(R)) > 1.

Corollary 1. Let R = R1 ×R2 × · · · ×Rn × F1 × F2 × · · · × Fm be a commutative ring

with identity, where each (Ri,mi) is a local ring with mi 6= {0} and n ≥ 2 and each Fj is a

field with m ≥ 1. Let ni be the nilpotency of mi. Then γ(AG(R)) > 1.
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b

b

b

b

b

b

b

b

b

b

b

u1

v2

v1

u3

u2

x1

x2v3 y3

y2

y1

Fig 2.5

Theorem 5. Let R = R1 × F1 × F2 × · · · × Fm be a commutative ring with identity,

where (R1,m1) is a local ring with m1 6= {0} and each Fj is a field with m ≥ 3. Let n1 be

the nilpotency of m1. Then γ(AG(R)) > 1.

Proof. Assume that m > 2. Consider the set Ω = {u1, u2, u3, v1, v2, v3, x1, x2, y1,

y2, y3} where u1 = (0)× (0)×F2× (0)×· · ·× (0), u2 = (0)× (0)× (0)×F3×· · ·× (0),

u3 = (0)×(0)×F2×F3×· · ·×(0), v1 = R1×(0)×(0)×(0)×· · ·×(0), v2 = (0)×F1×(0)×

(0)×· · ·×(0), v3 = R1×F1×(0)×(0)×· · ·×(0), x1 = m
n1−1
1 ×(0)×(0)×(0)×· · ·×(0),

x2 = m
n1−1
1 × F1 × (0) × (0) × · · · × (0), y1 = m1 × (0) × F2 × (0) × · · · × (0),

y2 = m1 × (0) × (0) × F3 × · · · × (0), y3 = m1 × (0) × F2 × F3 × · · · × (0) are the

non-trivial ideals in R. Then the subgraph induced by Ω contains two blocks, both

isomorphic to K3,3 as in Fig 2.5 and by Lemma 2, γ(K3,3) = 1. Hence by Lemma 3,

γ(AG(R)) > 1.

Theorem 6. Let R = R1 × F1 × F2 be a commutative ring with identity, where (R1,m1)
is a local ring with m1 6= {0} and F1, F2 are fields. Let n1 be the nilpotency of m1. Then

γ(AG(R)) = 1 if and only if n1 = 3 and m1,m
2

1 are the only non-trivial ideals in R1.

Proof. Assume that γ(AG(R)) = 1. Suppose that n1 > 3. Consider the set Ω1 =

{u1, u2, u3, v1, v2, v3, x1, x2, y1, y2, y3} where u1 = (0)×F1 × (0), u2 = (0)× (0)×F2,

u3 = (0)×F1×F2, v1 = R1×(0)×(0), v2 = m
n1−1
1 ×(0)×(0), v3 = m1×(0)×(0), x1 =

m
n1−1
1 ×(0)×F2, x2 = m

n1−2
1 ×(0)×F2, y1 = m

n1−1
1 ×F1×(0), y2 = m

n1−2
1 ×F1×(0),

y3 = m
n1−2
1 × (0) × (0) are non-trivial ideals in R. Then the subgraph induced by

Ω1 contains two blocks, both isomorphic to K3,3 as in Fig 2.5 and by Lemma 2,

γ(K3,3) = 1. Hence by Lemma 3, γ(AG(R)) > 1, a contradiction. Hence n1 ≤ 3.

Suppose n1 = 3. Let I be any non-trivial ideal in R1 such that I 6= m1,m
2
1. Consider

the non-trivial ideals u1 = m1 × (0) × (0), u2 = m1 × (0) × F2, u3 = I × (0) × F2,

v1 = m
2
1 × F1 × (0), v2 = m

2
1 × (0) × (0), v3 = (0) × F1 × (0), x1 = m

2
1 × (0) × F2,

x2 = (0)× (0) × F2, y1 = m1 × F1 × (0), y2 = I × F1 × (0), y3 = I × (0)× (0) in R.

Then the subgraph induced by Ω2 = {u1, u2, u3, v1, v2, v3, x1, x2, y1, y2, y3} contains

two blocks, both isomorphic to K3,3 as in Fig 2.5 and by Lemma 2, γ(K3,3) = 1.

Hence by Lemma 3, γ(AG(R)) > 1, a contradiction. Hence m1,m
2
1 are the only

non-trivial ideals in R1.
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Suppose n1 = 2. By Proposition 1, R1 has at least three distinct non-trivial ideals

different from m1. Let I1, I2, I3 be the distinct non-trivial ideals in R1 such that

Ii 6= m1 for all i. Consider the non-trivial ideals u1 = m1×(0)×(0), u2 = m1×F1×(0),

u3 = I1 × F1 × (0), u4 = (0) × F1 × (0), v1 = I1 × (0) × (0), v2 = m1 × (0) × F2,

v3 = I1 × (0) × F2, v4 = (0) × (0) × F2, v5 = I2 × (0) × (0), v6 = I3 × (0) × (0).

Then uivj = (0) for every i, j and so K4,5 is a subgraph of AG(R). By Lemma 2,

γ(AG(R)) > 1, a contradiction. Hence by Lemma 6, m1 is the only non-trivial ideal

in R1. Then by Theorem 1, γ(AG(R)) = 0, a contradiction.

b b

bb

b b

b b

b b

b b
b

b

b

b

b

b

m
2
1 × F1 × (0) m

2
1 × F1 × (0)

m
2
1 × F1 × (0) m

2
1 × F1 × (0)

(0) × (0) × F2

(0) × (0) × F2

m1 × (0) × (0)

m1 × (0) × (0)

m1 × (0) × F2 m1 × (0) × F2

m
2
1 × (0) × (0) m

2
1 × (0) × (0)

R1 × (0) × (0)

(0) × F1 × F2
m1 × F1 × (0)

m
2
1 × (0) × F2

(0) × F1 × (0)

m
2
1 × F1 × F2

Fig 2.6: Torus embedding of AG(R1 × F1 × F2) with n1 = 3

Converse follows from Fig 2.6.

Theorem 7. Let R = R1 × F1 be a commutative ring with identity, where each (R1,m1)
is a local ring with m1 6= {0} and each F1 is a field. Let n1 be the nilpotency of m1. Then

γ(AG(R)) = 1 if and only if one of the following condition holds:

(i) n1 = 3 and one of the following condition holds:

(a) R1 has exactly 7 distinct non-trivial ideals, say m1,m
2

1, I1, I2, I3, I4, I5 with

Iim1 6= (0) for every i and IjIk = (0) for at most one k 6= j.

(b) R1 has exactly 6 distinct non-trivial ideals, say m1,m
2

1, I1, I2, I3, I4 with Iim1 6=
(0) for every i and IjIk = (0) for some k 6= j.

(c) R1 has exactly 5 distinct non-trivial ideals, say m1,m
2

1, I1, I2, I3 with Iim1 = (0)
for some i and IjIk 6= (0) for k 6= j 6= i.

(d) R1 has exactly 5 distinct non-trivial ideals, say m1,m
2

1, I1, I2, I3 with Iim1 6= (0)
for every i and IjIk = (0) for every k 6= j.

(ii) n1 = 4 and one of the following condition holds:
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(a) R1 has exactly 7 distinct non-trivial ideals, say m1,m
2

1,m
3

1, I1, I2, I3, I4 with

Iim1 6= (0) for every i and I1m
2

1 = (0), Ijm
2

1 6= (0) for every j 6= 1 and I1Ik 6= (0)
for every k 6= 1, IsIt = (0) for at most one t 6= s, (s, t 6= 1).

(b) R1 has exactly 7 distinct non-trivial ideals, say m1,m
2

1,m
3

1, I1, I2, I3, I4 with

Iim1 6= (0), Iim
2

1 6= (0) for every i and IjIk = (0) for at most one k 6= j.

(c) R1 has exactly 6 distinct non-trivial ideals, say m1,m
2

1,m
3

1, I1, I2, I3 with Iim1 6=
(0) for every i and I1m

2

1 = I2m
2

1 = (0), I3m
2

1 6= (0) and I1I2 6= (0), IjI3 = (0)
for some j 6= 3.

(d) R1 has exactly 6 distinct non-trivial ideals, say m1,m
2

1,m
3

1, I1, I2, I3 with Iim1 6=
(0) for every i and I1m

2

1 = (0), I2m
2

1 6= (0), I3m
2

1 6= (0) and IjIk = (0) for some

k 6= j.

(e) R1 has exactly 6 distinct non-trivial ideals, say m1,m
2

1,m
3

1, I1, I2, I3 with Iim1 6=
(0), Iim

2

1 6= (0) for every i and IjIk = (0) for some k 6= j.

(iii) n1 = 5 and one of the following condition holds:

(a) R1 has exactly 7 distinct non-trivial ideals, say m1,m
2

1,m
3

1,m
4

1, I1, I2, I3 with

Iim
j
1
6= (0) for every i, j = 1, 2, 3 and IkIl = (0) for at most one k 6= l.

(b) R1 has exactly 4 distinct non-trivial ideals, say m1,m
2

1,m
3

1,m
4

1.

(iv) n1 = 6 and R1 has exactly 5 distinct non-trivial ideals, say m1,m
2

1,m
3

1,m
4

1,m
5

1.

Proof. Assume that γ(AG(R)) = 1. Suppose n1 > 6. Consider the non-trivial ideals

u1 = m
n1−1
1 ×(0), u2 = m

n1−2
1 ×(0), u3 = m

n1−3
1 ×(0), v1 = (0)×F1, v2 = m

n1−1
1 ×F1,

v3 = m
n1−2
1 × F1, v4 = m

n1−3
1 × F1, v5 = m

n1−4
1 × F1, v6 = m

n1−4
1 × (0) in R. Then

uivj = (0) for every i, j and so K3,6 is a subgraph of AG(R). Recall that the genus

of K3,6 is one and hence one can fix an embedding of K3,6 on the surfaces of torus.

By Euler’s formula, there are 9 faces in the embedding of K3,6, say {F1, . . . , F9}. Let

sFi
be the length of the faces Fi. Note that

9∑

i=1

sFi
= 36 and sFi

≥ 4 for every i.

Thus sFi
= 4 for every i. Further, the subgraph H of AG(R) induced by the vertices

{u1, u2, u3} is K3, V (H) ⊂ V (K3,6) and E(H) ∩ E(K3,6) = ∅. Since K3 cannot be

embedded in the torus along with an embedding with only rectangle as faces, one

cannot have an embedding of H and K3,6 together in a torus. This implies that

γ(AG(R)) > 1, a contradiction. Hence n1 ≤ 6.

Case 1: n1 = 2.

Suppose there is an ideal I of R1 such that I 6= m1. Then by Proposition 1, R1

has at least three distinct non-trivial ideals I1, I2 and I3 such that m1 /∈ {I1, I2, I3}.

Consider the non-trivial ideals u1 = m1×(0), u2 = I1×(0), u3 = I2×(0), u4 = I3×(0),

v1 = (0) × F1, v2 = m1 × F1, v3 = I1 × F1, v4 = I2 × F1, v5 = I3 × F1 in R.

Then uivj = (0) for every i, j and so K4,5 is a subgraph of AG(R). By Lemma 2,

γ(AG(R)) > 1, a contradiction. Then by Proposition 1 and Lemma 6, m1 is the only

non-trivial ideal in R1. Therefore by Theorem 1, γ(AG(R)) = 0, a contradiction.

Case 2: n1 = 3.

Suppose there is an ideal I of R1 such that I 6= m1,m
2
1. Then by Proposition 1,

R1 has at least three distinct non-trivial ideals different from m1,m
2
1. Suppose that
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R1 has at least 6 non-trivial ideals I1, I2, I3, I4, I5, I6 such that Ii 6= m1, m
2
1 for

1 ≤ i ≤ 6. Consider the non-trivial ideals u1 = (0)×F1, u2 = m
2
1×F1, u3 = m

2
1× (0),

v1 = m1 × (0), v2 = I1 × (0), v3 = I2 × (0), v4 = I3 × (0), v5 = I4 × (0), v6 = I5 × (0),

v7 = I6× (0) in R. Then uivj = (0) for every i, j and so K3,7 is a subgraph of AG(R).

By Lemma 2, γ(AG(R)) > 1, a contradiction. Hence R1 has at most 5 non-trivial

ideals different from m1,m
2
1. Then by Theorem 1 and Proposition 1, 5 ≤ t1 ≤ 7,

where t1 is the number of non-trivial ideals in R1.

Subcase 2.1. Assume that R1 has exactly 7 distinct non-trivial ideals, say m1, m
2
1,

I1, I2, I3, I4, I5. Suppose Iim1 = (0) for some i. Consider the non-trivial ideals

a1 = (0)×F1, a2 = m
2
1 ×F1, a3 = Ii ×F1, b1 = m

2
1 × (0), b2 = I1 × (0), b3 = I2 × (0),

b4 = I3 × (0), b5 = I4 × (0), b6 = I5 × (0), b7 = m1 × (0) in R. Then aibj = (0)

for every i, j and so K3,7 is a subgraph of AG(R). By Lemma 2, γ(AG(R)) > 1, a

contradiction. Hence Iim1 6= (0) for every i.

Suppose IjIk = (0) for some k 6= j. Let us assume that I1I2 = (0) and I1I3 = (0).

Consider the non-trivial ideals u1 = (0)×F1, u2 = m
2
1×F1, u3 = m

2
1×(0), v1 = I4×(0),

v2 = I5 × (0), v3 = I1 × (0), v4 = I2 × (0), v5 = I3 × (0), v6 = m1 × (0), x1 = m1×F1,

x2 = I4 × F1, x3 = I1 × F1, x4 = I2 × F1, x5 = I3 × F1, x6 = I5 × F1, x7 = R1 × (0)

in R. Let G = AG(R), G′ = G − {x1, x2, x6, x7} − {u1u3, u2u3, v3v4, v3v5} and

G′′ = G′ − {x3, x4, x5}. Then G′′ ∼= K3,6 and so γ(G′′) = 1. Since γ(G) = 1 and

γ(G′′) ≤ γ(G′) ≤ γ(G), we get γ(G′) = 1. Note that |V (G′)| = 12, |E(G′)| = 25.

Then by Euler’s formula, there are 13 faces when drawing G′ on a torus. Fix a

representation of G′ and let {F ′
1, . . . , F

′
13} be the set of faces of G′ corresponding to

the representation. Let {F ′′
1 , . . . , F

′′
n } be the set of faces of G′′ obtained by deleting

x3, x4, x5 and all the edges incident with x3, x4, x5 from the representation of G′.

Notice that G′′ ∼= K3,6. By Euler formula, K3,6 has 9 faces. So n = 9. Let sFi
be the

length of the faces Fi. Note that
9∑

i=1

sFi
= 36 and sFi

≥ 4 for every i. Thus sFi
= 4

for every i. Moreover, for every i, each boundary of F ′′
i cannot have consecutive

repetition of a single edge. Therefore in K3,6, the only way to have a closed walk

of length 4 without consecutive repetition of single edge is to have 4−cycle. Then

in K3,6, all faces boundaries are 4−cycles. Now {F ′
1, . . . , F

′
13} can be recovered by

inserting x3, x4, x5 and all the edges incident with x3, x4, x5 into the representation

corresponds to {F ′′
1 , . . . , F

′′
9 }.

b b b

b b b

b

b

b

u3v4 v3

v5

x3

x4

x5

Fig 2.7

F ′′

m

F ′′

n

Consider the following edges of G. Let e1 = x3u3, e2 = x3v4, e3 = x3v5, e4 = x4u3,

e5 = x4v3, e6 = x5u3, e7 = x5v3, e8 = v3v5, e9 = v3v4. Now if we insert the vertices

x3, x4, x5 and the edges ei where 1 ≤ i ≤ 8 into the faces F ′′
m and F ′′

n in the embedding
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of G, then from Fig 2.7, it is clear that v3, v4 are in different faces and there is no other

face containing v3 and v4 as boundary vertices. So there is no way to insert the edge

e9 without crossing in the embedding of G. Hence we conclude that γ(AG(R)) > 1,

a contradiction. Hence I1I2 = (0) or I1I3 = (0). Hence IjIk = (0) for at most one

k 6= j.

b b

bb

bb b

b b b

b

b

b

b

b

b

b

b b

bb

I2 × (0) I2 × (0)

I2 × (0) I2 × (0)

I1 × (0)

I1 × (0)

I4 × (0)

I4 × (0)

I3 × (0)

I3 × (0)

(0) × F1

m
2
1 × F1

m1 × (0) m1 × (0)

I5 × (0) I5 × (0)
I1 × F1 I2 × F1

I3 × F1
I4 × F1

m
2
1 × (0)

Fig 2.8: Torus embedding of AG(R1 × F1) with n1 = 3, Iim1 6= (0) ∀i, I1I2 = (0), I3I4 = (0)

Subcase 2.2. Assume that R1 has exactly 6 distinct non-trivial ideals, say m1,

m
2
1, I1, I2, I3, I4. Suppose Iim1 = (0) for some i. Consider the non-trivial ideals

a1 = (0)×F1, a2 = m
2
1 ×F1, a3 = Ii ×F1, a4 = m

2
1 × (0), b1 = I1 × (0), b2 = I2 × (0),

b3 = I3 × (0), b4 = I4 × (0), b5 = m1 × (0) in R. Then aibj = (0) for every i, j and so

K4,5 is a subgraph of AG(R). By Lemma 2, γ(AG(R)) > 1, a contradiction. Hence

Iim1 6= (0) for every i.

Suppose IjIk = (0) for every k 6= j. Let us assume that I1I2 = I1I3 = I1I4 = I2I3 =

I2I4 = (0). Consider the non-trivial ideals u1 = (0)×F1, u2 = m
2
1×F1, u3 = m

2
1×(0),

v1 = I1 × (0), v2 = I2 × (0), v3 = I3 × (0), v4 = I4 × (0), v5 = m1 × (0), x1 = I1 ×F1,

x2 = I2 × F1, x3 = I3 × F1, x4 = I4 × F1, x5 = m1 × F1, x6 = R1 × (0) of R.

Let G = AG(R), G′ = G − {x3, x4, x5, x6} − {u1u3, u2u3, v1v2, v1v3, v1v4, v2v3, v2v4}

and G′′ = G′ − {x1, x2}. Then G′′ ∼= K3,5 and so γ(G′′) = 1. Since γ(G) = 1 and

γ(G′′) ≤ γ(G′) ≤ γ(G), we get γ(G′) = 1. Note that |V (G′)| = 10, |E(G′)| = 23.

Then by Euler’s formula, there are 13 faces when drawing G′ on a torus. Fix a

representation of G′ and let {F ′
1, . . . , F

′
13} be the set of faces of G′ corresponding to

the representation. Let {F ′′
1 , . . . , F

′′
n } be the set of faces of G′′ obtained by deleting

x1, x2 and all the edges incident with x1, x2 from the representation of G′. Notice

that G′′ ∼= K3,5. From the fact that n −m + f = 2 − 2g, K3,5 has 7 faces, six with

4 boundary edges and one with 6 boundary edges. So n = 7. Moreover, for every i,

each boundary of F ′′
i cannot have consecutive repetition of a single edge. Therefore

in K3,5, the only way to have a closed walk of length 6 without consecutive repetition

of single edge is to have 6−cycle. Then in K3,5, all faces boundaries are 4−cycles but

with one 6−cycle. We may assume that the boundary of F ′′
7 is 6. Now {F ′

1, . . . , F
′
13}
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can be recovered by inserting x1, x2 and all the edges incident with x1, x2 into the

representation corresponds to {F ′′
1 , . . . , F

′′
7 }. Let e1 = x1u3, e2 = x1v2, e3 = x1v3,

e4 = x1v4 be the edges incident with x1 and e5 = x2u3, e6 = x2v1, e7 = x2v3,

e8 = x2v4 be the edges incident with x2. Since the vertices x1 and x2 have three

neighbors in common, they should be inserted in different faces in the embedding of

G′. Since x1 is adjacent to u3, v2, v3, v4 and x2 is adjacent to u3, v1, v3, v4, they should

be inserted into the hexagonal faces. But K3,5 contains only one hexagonal face. So

there is no way to insert one of the vertices without crossing in the embedding of G′.

Hence we conclude that γ(AG(R)) > 1, a contradiction. Hence IjIk 6= (0) for some

k 6= j.
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b b

b b

b b

b

b

b

b

b

b

b

b

b

b

I2 × (0) I1 × (0) I4 × (0) I2 × (0)

I2 × (0)I2 × (0) I1 × (0) I4 × (0)

I3 × (0)

m1 × (0)m1 × (0)

I3 × (0) (0) × F1

m
2
1 × (0)

m
2
1 × F1I2 × F1

I3 × F1

I1 × F1

Fig 2.9: Torus embedding of AG(R1 × F1) with n1 = 3, Iim1 6= (0)

and I1I2 = I1I3 = I1I4 = I2I3 = (0)

Subcase 2.3. Assume that R1 has exactly 5 distinct non-trivial ideals, say m1, m
2
1,

I1, I2, I3. Suppose Iim1 = (0) for some i. Let us assume that I1m1 = I2m1 = (0).

Consider the non-trivial ideals c1 = (0)×F1, c2 = m
2
1×F1, c3 = I1×F1, c4 = I2×F1,

d1 = m
2
1 × (0), d2 = I1 × (0), d3 = I2 × (0), d4 = I3 × (0), d5 = m1 × (0) in R.

Then cidj = (0) for every i, j and so K4,5 is a subgraph of AG(R). By Lemma 2,

γ(AG(R)) > 1, a contradiction. Hence Iim1 = (0) for at most one i.

Suppose that I1m1 = (0) and Iim1 6= (0) for every i 6= 1. Suppose I2I3 = (0).

Consider the non-trivial ideals u1 = (0) × F1, u2 = m
2
1 × F1, u3 = I1 × F1, v1 =

m
2
1 × (0), v2 = I1 × (0), v3 = I2 × (0), v4 = I3 × (0), v5 = m1 × (0), x1 = I2 × F1,

x2 = I3×F1, x3 = m1×F1, x4 = R1× (0) in R. Let G = AG(R), G′ = G−{x3, x4}−

{v1v2, v1v3, v1v4, v1v5, v2v3, v2v4, v2v5, v3v4} and G′′ = G′−{x1, x2}. Then G′′ ∼= K3,5

and so γ(G′′) = 1. Since γ(G) = 1 and γ(G′′) ≤ γ(G′) ≤ γ(G), we get γ(G′) = 1.

Note that |V (G′)| = 10, |E(G′)| = 21. Then by Euler’s formula, there are 11 faces

when drawing G′ on a torus. Fix a representation of G′ and let {F ′
1, . . . , F

′
11} be the

set of faces of G′ corresponding to the representation. Let {F ′′
1 , . . . , F

′′
n } be the set of

faces of G′′ obtained by deleting x1, x2 and all the edges incident with x1, x2 from the

representation of G′. Notice that G′′ ∼= K3,5. From the fact that n−m+ f = 2− 2g,
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K3,5 has 7 faces, six with 4 boundary edges and one with 6 boundary edges. So

n = 7. Moreover, for every i, each boundary of F ′′
i cannot have consecutive repetition

of a single edge. Therefore in K3,5, the only way to have a closed walk of length

6 without consecutive repetition of single edge is to have 6−cycle. Then in K3,5,

all faces boundaries are 4−cycles but with one 6−cycle. We may assume that the

boundary of F ′′
7 is 6. Now {F ′

1, . . . , F
′
11} can be recovered by inserting x1, x2 and all

the edges incident with x1, x2 into the representation corresponds to {F ′′
1 , . . . , F

′′
7 }.

Consider the following edges of G′. Let e1 = x1v1, e2 = x1v2, e3 = x1v4, e4 = x2v1,

e5 = x2v2, e6 = x2v3. Since x1 is adjacent to v1, v2, v4 and x2 is adjacent to v1,

v2, v3, they should be inserted into the faces with 6 boundary edges. But in K3,5,

there is only one face with 6 boundary edges. So there is no way to insert one of

the vertices x1, x2 in the embedding of G′ without crossing. Hence we conclude that

γ(AG(R)) > 1, a contradiction. Hence I2I3 6= (0).
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bb

b b

b b
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b

b

b

b

b

b

b

b

m
2
1 × (0) m

2
1 × (0)

m
2
1 × (0) m

2
1 × (0)

I1 × (0) I2 × (0)

I1 × (0) I2 × (0)

I3 × (0) I3 × (0)

m1 × (0) m1 × (0)

(0) × F1

m
2
1 × F1

I1 × F1

m1 × F1

I2 × F1

I3 × F1

Fig 2.10: Torus embedding of AG(R1 × F1) with n1 = 3, I1m1 = (0),

Iim1 6= (0) ∀i 6= 1 and I2I3 6= (0)

Clearly proof of (ii)(d) follows from proof of (ii)(b).

Case 3: Suppose n1 = 4.

Suppose there is an ideal I of R1 such that I 6= m
i
1 for all i = 1, 2. Then by Proposition

1, R1 has at least three distinct non-trivial ideals different from m
i
1 for all i = 1, 2, 3.

Suppose that R1 has at least 5 distinct non-trivial ideals I1, I2, I3, I4, I5 such that

Ii 6= m
j
1 for i = 1 to 5 and j = 1 to 3. Consider the non-trivial ideals u1 = (0) × F1,

u2 = m
3
1×F1, u3 = m

3
1×(0), v1 = m

2
1×(0), v2 = m1×(0), v3 = I1×(0), v4 = I2×(0),

v5 = I3 × (0), v6 = I4 × (0), v7 = I5 × (0) in R. Then uivj = (0) for every i, j and so

K3,7 is a subgraph of AG(R). By Lemma 2, γ(AG(R)) > 1, a contradiction. Hence

R1 has at most 4 non-trivial ideals different from m
i
1 for all i = 1, 2, 3. Then by

Theorem 1 and Proposition 1, 6 ≤ t1 ≤ 7, where t1 is the number of non-trivial ideals

in R1.

Subcase 3.1. Suppose R1 has exactly 7 distinct non-trivial ideals, say m1, m
2
1,

m
3
1, I1, I2, I3, I4. Suppose Iim1 = (0) for some i. Consider the non-trivial ideals
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a1 = (0)×F1, a2 = m
3
1×F1, a3 = m

3
1× (0), a4 = Ii×F1, b1 = m

2
1× (0), b2 = m1× (0),

b3 = I1 × (0), b4 = I2 × (0), b5 = I3 × (0) in R. Then aibj = (0) for every i, j and so

K4,5 is a subgraph of AG(R). By Lemma 2, γ(AG(R)) > 1, a contradiction. Hence

Iim1 6= (0) for every i.

Suppose that Iim
2
1 = (0) for i = 1, 2 and Ijm

2
1 6= (0) for j = 3, 4. Consider the

non-trivial ideals u1 = (0) × F1, u2 = m
3
1 × F1, u3 = m

3
1 × (0), v1 = m

2
1 × (0),

v2 = I1 × (0), v3 = I2 × (0), v4 = I3 × (0), v5 = I4 × (0), v6 = m1 × (0), x1 = m
2
1×F1,

x2 = I1 × F1, x3 = I2 × F1, x4 = I3 × F1, x5 = I4 × F1, x6 = m1 × F1, x7 = R1 × (0)

of R. Let G = AG(R), G′ = G − {x2, x3, x4, x5, x6, x7} − {u1u3, u2u3, v1v2, v1v3}

and G′′ = G′ − {x1}. Then G′′ ∼= K3,6 and so γ(G′′) = 1. Since γ(G) = 1 and

γ(G′′) ≤ γ(G′) ≤ γ(G), we get γ(G′) = 1. Note that |V (G′)| = 10, |E(G′)| = 22.

Then by Euler’s formula, there are 12 faces when drawing G′ on a torus. Fix a

representation of G′ and let {F ′
1, . . . , F

′
12} be the set of faces of G′ corresponding to

the representation. Let {F ′′
1 , . . . , F

′′
n } be the set of faces of G′′ obtained by deleting

x1 and all the edges incident with x1 from the representation of G′. Notice that

G′′ ∼= K3,6. By Euler formula, K3,6 has 9 faces. So n = 9. Let sFi
be the length

of the faces Fi. Note that
9∑

i=1

sFi
= 36 and sFi

≥ 4 for every i. Thus sFi
= 4

for every i. Moreover, for every i, each boundary of F ′′
i cannot have consecutive

repetition of a single edge. Therefore in K3,6, the only way to have a closed walk

of length 4 without consecutive repetition of single edge is to have 4−cycle. Then

in K3,6, all faces boundaries are 4−cycles. Now {F ′
1, . . . , F

′
12} can be recovered by

inserting x1 and all the edges incident with x1 into the representation corresponds

to {F ′′
1 , . . . , F

′′
9 }. Also note that x1u3, x1v1, x1v2, x1v3 ∈ E(G′) and so u3, v1, v2, v3

should be the boundary vertices of F ′′
m. Since G′′ ∼= K3,6 and sFi

= 4 for every i,

there is no faces containing the vertices u3, v1, v2, v3. So there is no way to insert x1

without crossing in the embedding of G′. Hence we conclude that γ(AG(R)) > 1, a

contradiction. Hence Iim
2
1 = (0) for at most one i.

Suppose I1m
2
1 = (0) and Iim

2
1 6= (0) for every i 6= 1. Suppose that I1I2 = (0).

Consider the non-trivial ideals u1 = (0)×F1, u2 = m
3
1×F1, u3 = m

3
1× (0), v1 = m

2
1×

(0), v2 = I1×(0), v3 = I2×(0), v4 = I3×(0), v5 = I4×(0), v6 = m1×(0), x1 = m
2
1×F1,

x2 = I1 × F1, x3 = I2 × F1, x4 = I3 × F1, x5 = I4 × F1, x6 = m1 × F1, x7 = R1 × (0)

of R. Let G = AG(R), G′ = G − {x3, x4, x5, x6, x7} − {u1u3, u2u3, v1v2, v2v3} and

G′′ = G′ − {x1, x2}. Then G′′ ∼= K3,6 and so γ(G′′) = 1. Since γ(G) = 1 and

γ(G′′) ≤ γ(G′) ≤ γ(G), we get γ(G′) = 1. Note that |V (G′)| = 11, |E(G′)| = 24.

Then by Euler’s formula, there are 13 faces when drawing G′ on a torus. Fix a

representation of G′ and let {F ′
1, . . . , F

′
12} be the set of faces of G′ corresponding to

the representation. Let {F ′′
1 , . . . , F

′′
n } be the set of faces of G′′ obtained by deleting

x1, x2 and all the edges incident with x1, x2 from the representation of G′. Notice

that G′′ ∼= K3,6. By Euler formula, K3,6 has 9 faces. So n = 9. Let sFi
be the length

of the faces Fi. Note that
9∑

i=1

sFi
= 36 and sFi

≥ 4 for every i. Thus sFi
= 4 for every

i. Moreover, for every i, each boundary of F ′′
i cannot have consecutive repetition

of a single edge. Therefore in K3,6, the only way to have a closed walk of length
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4 without consecutive repetition of single edge is to have 4−cycle. Then in K3,6,

all faces boundaries are 4−cycles. Now {F ′
1, . . . , F

′
12} can be recovered by inserting

x1, x2 and all the edges incident with x1, x2 into the representation corresponds to

{F ′′
1 , . . . , F

′′
9 }.

Consider the following edges of G: e1 = x1u3, e2 = x1v1, e3 = x1v2, e4 = x2u3,

e5 = x2v1, e6 = x2v3, e7 = v2v3. After inserting x1, x2 and ei, i = 1 to 6 into the

faces F ′′
m and F ′′

n in the embedding of G, we obtain Fig 2.11. Then from Fig 2.11,

it is clear that v2 and v3 are in different faces. So there is no way to insert the edge

e7 without crossing in the embedding of G. Hence we conclude that γ(AG(R)) > 1,

a contradiction. Hence I1I2 6= (0). Similarly one can prove that I1I3 6= (0) and

I1I4 6= (0).

b b b

b b b

b b

u3v2 v3

v1

x1 x2

Fig 2.11

F ′′

m F ′′

n

Suppose I2I3 = (0) and I2I4 = (0). Consider the following edges of G: e1 = x3u3,

e2 = x3v4, e3 = x3v5, e4 = x4u3, e5 = x4v3, e6 = x5u3, e7 = x5v3, e8 = v3v5,

e9 = v3v4. If we insert the vertices x3, x4, x5 and the edges ei where 1 ≤ i ≤ 8

into the faces in the embedding of G, then from Fig 2.7, it is clear that v3 and v4
are in different faces. So there is no way to insert the edge e9 without crossing in

the embedding of G. Hence we conclude that γ(AG(R)) > 1, a contradiction. Hence

I2I3 = (0) or I2I4 = (0). By the similar argument, I3I4 6= (0).
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m1 × (0) m1 × (0)

m1 × (0) m1 × (0)

I4 × (0)

I4 × (0)

m
2
1 × (0)

m
2
1 × (0)

I1 × (0)

I1 × (0)

I3 × (0) I3 × (0)

I2 × (0) I2 × (0)

(0) × F1

m
3
1 × F1

m
3
1 × (0)

I3 × F1

I1 × F1

m
2
1 × F1

I2 × F1

Fig 2.12: Torus embedding of AG(R1 × F1) with n1 = 4, I1m
2
1 = (0),

Iim
2
1 6= (0) ∀i 6= 1 and I2I3 = (0)
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Suppose Iim
2
1 6= (0) for every i. Suppose IiIj = (0) for some j 6= i. Without loss

of generality, assume that I1I2 = (0) and I1I3 = (0). Consider the non-trivial ideals

u1 = (0)×F1, u2 = m
3
1×F1, u3 = m

3
1×(0), v1 = m

2
1×(0), v2 = m1×(0), v3 = I1×(0),

v4 = I2 × (0), v5 = I3 × (0), v6 = I4 × (0), x1 = m
2
1 ×F1, x2 = m1 ×F1, x3 = I1 ×F1,

x4 = I2 × F1, x5 = I3 × F1, x6 = I4 × F1, x7 = R1 × (0) in R. Let G = AG(R),

G′ = G − {x1, x2, x6, x7, x8} − {u1u3, u2u3, v3v4, v3v5} and G′′ = G′ − {x3, x4, x5}.

Then G′′ ∼= K3,6 and so γ(G′′) = 1. Since γ(G) = 1 and γ(G′′) ≤ γ(G′) ≤ γ(G),

we get γ(G′) = 1. Note that |V (G′)| = 12, |E(G′)| = 25. Then by Euler’s formula,

there are 13 faces when drawing G′ on a torus. Fix a representation of G′ and

let {F ′
1, . . . , F

′
13} be the set of faces of G′ corresponding to the representation. Let

{F ′′
1 , . . . , F

′′
n } be the set of faces of G′′ obtained by deleting x3, x4, x5 and all the

edges incident with x3, x4, x5 from the representation of G′. Notice that G′′ ∼= K3,6.

By Euler formula, K3,6 has 9 faces. So n = 9. Let sFi
be the length of the faces Fi.

Note that
9∑

i=1

sFi
= 36 and sFi

≥ 4 for every i. Thus sFi
= 4 for every i. Moreover,

for every i, each boundary of F ′′
i cannot have consecutive repetition of a single edge.

Therefore in K3,6, the only way to have a closed walk of length 4 without consecutive

repetition of single edge is to have 4−cycle. Then in K3,6, all faces boundaries are

4−cycles. Now {F ′
1, . . . , F

′
13} can be recovered by inserting x3, x4, x5 and all the edges

incident with x3, x4, x5 into the representation corresponds to {F ′′
1 , . . . , F

′′
9 }. Consider

the following edges of G: e1 = x3u3, e2 = x3v4, e3 = x3v5, e4 = x4u3, e5 = x4v3,

e6 = x5u3, e7 = x5v3, e8 = v3v5, e9 = v3v4. If we insert the vertices x3, x4, x5 the

edges ei where 1 ≤ i ≤ 8 into the faces F ′′
m and F ′′

n in the embedding of G, then

from Fig 2.7, it is clear that v3 and v4 are in different faces. So there is no way to

insert the edge e9 without crossing in the embedding of G. Hence we conclude that

γ(AG(R)) > 1, a contradiction. Hence I1I2 = (0) or I1I3 = (0). Hence we conclude

that IiIj = (0) for at most one j 6= i.
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Fig 2.13: Torus embedding of AG(R1 × F1) with n1 = 4, Iim1 6= (0)∀i

Iim
2
1 6= (0) ∀i, I1I2 = (0) and I3I4 = (0)

b b b b

b b b b b

Fig 2.14

Subcase 3.2. Suppose R1 has exactly 6 distinct non-trivial ideals, say m1, m
2
1, m

3
1, I1,

I2, I3. Suppose Iim1 = (0) for some i. Consider the non-trivial ideals a1 = (0)× F1,

a2 = m
3
1×F1, a3 = m

3
1× (0), a4 = Ii×F1, b1 = m

2
1× (0), b2 = m1× (0), b3 = I1× (0),

b4 = I2 × (0), b5 = I3 × (0) in R. Then aibj = (0) for every i, j and so K4,5 is a

subgraph of AG(R). By Lemma 2, γ(AG(R)) > 1, a contradiction. Hence Iim1 6= (0)

for every i.

Suppose Iim
2
1 = (0) for every i. Consider the set S = {c1, c2, c3, c4, d1, d2, d3, d4, d5}

where c1 = (0) × F1, c2 = m
3
1 × F1, c3 = m

3
1 × (0), c4 = m

2
1 × F1, d1 = m

2
1 × (0),

d2 = I1 × (0), d3 = I2 × (0), d4 = I3 × (0), d5 = m1 × (0) are the non-trivial ideals

in R. Then the subgraph induced by S in AG(R) contains a subgraph isomorphic to

the graph given in Fig 2.14. By Lemma 5, γ(AG(R)) > 1, a contradiction. Hence

Iim
2
1 = (0) for some i.

Suppose Iim
2
1 = (0) for i = 1, 2. Suppose that I1I2 = (0). Consider the non-trivial

ideals u1 = (0) × F1, u2 = m
3
1 × F1, u3 = m

3
1 × (0), v1 = m

2
1 × (0), v2 = I1 × (0),

v3 = I2 × (0), v4 = I3 × (0), v5 = m1 × (0), x1 = m
2
1 × F1, x2 = I1 × F1, x3 =

I2 × F1, x4 = I3 × F1, x5 = m1 × F1, x6 = R1 × (0) of R. Let G = AG(R),

G′ = G − {x3, x4, x5, x6} − {u1u3, u2u3, v1v2, v1v3, v2v3} and G′′ = G′ − {x1, x2}.
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Then G′′ ∼= K3,5 and so γ(G′′) = 1. Since γ(G) = 1 and γ(G′′) ≤ γ(G′) ≤ γ(G),

we get γ(G′) = 1. Note that |V (G′)| = 10, |E(G′)| = 22. Then by Euler’s formula,

there are 12 faces when drawing G′ on a torus. Fix a representation of G′ and

let {F ′
1, . . . , F

′
12} be the set of faces of G′ corresponding to the representation. Let

{F ′′
1 , . . . , F

′′
n } be the set of faces of G′′ obtained by deleting x1, x2 and all the edges

incident with x1, x2 from the representation of G′. Notice that G′′ ∼= K3,5. From

the fact that n − m + f = 2 − 2g, K3,5 has 7 faces, six with 4 boundary edges

and one with 6 boundary edges. So n = 7. Moreover, for every i, each boundary

of F ′′
i cannot have consecutive repetition of a single edge. Therefore in K3,5, the

only way to have a closed walk of length 6 without consecutive repetition of single

edge is to have 6−cycle. Then in K3,5, all faces boundaries are 4−cycles but with

one 6−cycle. We may assume that the boundary of F ′′
7 is 6. Now {F ′

1, . . . , F
′
12}

can be recovered by inserting x1, x2 and all the edges incident with x1, x2 into the

representation corresponds to {F ′′
1 , . . . , F

′′
7 }. Let e1 = x1u3, e2 = x1v1, e3 = x1v2,

e4 = x1v3 be the edges incident with x1 and e5 = x2u3, e6 = x2v1, e7 = x2v3 be the

edges incident with x2. Since the vertices x1 and x2 have three neighbors in common,

they should be inserted in different faces in the embedding of G′. Since x1 is adjacent

to u3, v1, v2, v3, it should be inserted into the faces F ′′
7 and x2 is adjacent to u3, v1, v3,

it should be inserted into the faces F ′′
m where m 6= 7. Since u1, u2, u3 are in F ′′

7 , any

faces of length 4 should contain two of the u′
is and so from Fig 2.15, it is clear that

there is no other faces F ′′
m containing the vertices u3, v1, v3. So there is no way to

insert x2 into a faces F ′′
m without crossing in the embedding of G′. Hence we conclude

that γ(AG(R)) > 1, a contradiction. Hence I1I2 6= (0).

b

b b

b

bb

b

u3 v1

v2

v3 x1

Fig 2.15

F ′′

7 :

Suppose I3Ij = (0) for every j 6= 3. Let e1 = x1u3, e2 = x1v1, e3 = x1v2, e4 = x1v3
be the edges incident with x1 and e5 = x4u3, e6 = x4v2, e7 = x4v3 be the edges

incident with x4. Since the vertices x1 and x4 have three neighbors in common, they

should be inserted in different faces in the embedding of G′. Since x1 is adjacent to

u3, v1, v2, v3, it should be inserted into the faces F ′′
7 and x4 is adjacent to u3, v2, v3,

it should be inserted into the faces F ′′
m where m 6= 7. Since u1, u2, u3 are in F ′′

7 , any

faces of length 4 should contain two of the u′
is and so from Fig 2.15, it is clear that

there is no other faces F ′′
m containing the vertices u3, v2, v3. So there is no way to

insert x4 into a faces F ′′
m without crossing in the embedding of G′. Hence we conclude

that γ(AG(R)) > 1, a contradiction. Hence I3Ij = (0) for some j 6= 3.
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Fig 2.16: Torus embedding of AG(R1 × F1) with n1 = 4,

I1m
2
1 = I2m

2
1 = (0), I3m

2
1 6= (0) , I1I3 = (0)

Suppose I1m
2
1 = (0) and Iim

2
1 6= (0) for every i 6= 1. Suppose that IjIk = (0)

for every k 6= j. Consider the non-trivial ideals u1 = (0) × F1, u2 = m
3
1 × F1,

u3 = m
3
1× (0), v1 = m

2
1× (0), v2 = I1× (0), v3 = I2× (0), v4 = I3× (0), v5 = m1× (0),

x1 = m
2
1 ×F1, x2 = I1 ×F1, x3 = I2 ×F1, x4 = I3 ×F1, x5 = m1 ×F1, x6 = R1 × (0)

of R. Let G = AG(R), G′ = G − {x5, x6} − {u1u3, u2u3, v1v2, v2v3, v2v4, v3v4} and

G′′ = G′ − {x1, x2, x3, x4}. Then G′′ ∼= K3,5 and so γ(G′′) = 1. Since γ(G) = 1 and

γ(G′′) ≤ γ(G′) ≤ γ(G), we get γ(G′) = 1. Note that |V (G′)| = 12, |E(G′)| = 28.

Then by Euler’s formula, there are 16 faces when drawing G′ on a torus. Fix a

representation of G′ and let {F ′
1, . . . , F

′
16} be the set of faces of G′ corresponding to

the representation. Let {F ′′
1 , . . . , F

′′
n } be the set of faces of G′′ obtained by deleting

x1, x2, x3, x4 and all the edges incident with x1, x2, x3, x4 from the representation of

G′. Notice that G′′ ∼= K3,5. From the fact that n−m+ f = 2− 2g, K3,5 has 7 faces,

six with 4 boundary edges and one with 6 boundary edges. So n = 7. Moreover,

for every i, each boundary of F ′′
i cannot have consecutive repetition of a single edge.

Therefore in K3,5, the only way to have a closed walk of length 6 without consecutive

repetition of single edge is to have 6−cycle. Then in K3,5, all faces boundaries are

4−cycles but with one 6−cycle. We may assume that the boundary of F ′′
7 is 6. Now

{F ′
1, . . . , F

′
16} can be recovered by inserting x1, x2, x3, x4 and all the edges incident

with x1, x2, x3, x4 into the representation corresponds to {F ′′
1 , . . . , F

′′
7 }.

b b b

b b b

b b

u3v1 v4

v2

x1 x3

Fig 2.17

F ′′

m F ′′

n



114 Classification of rings with toroidal annihilating-ideal graph

Let e1 = x1u3, e2 = x1v1, e3 = x1v2 be the edges incident with x1 and e4 = x2u3,

e5 = x2v1, e6 = x2v3, e7 = x2v4 be the edges incident with x2 and e8 = x3u3,

e9 = x3v2, e10 = x3v4 be the edges incident with x3 and e11 = x4u3, e12 = x4v2,

e13 = x4v3 be the edges incident with x4. So the vertices x1, x3, x4 and x2 should be

inserted in different faces in the embedding of G′ and u3, v2 are the common neighbors

of x1, x3 and x4. Since x2 is adjacent to u3, v1, v3, v4, it should be inserted into the

faces F ′′
7 and x1 is adjacent to u3, v1, v2 and x3 is adjacent to u3, v2, v4 and x4 is

adjacent to u3, v2, v3, they should be inserted into the faces F ′′
m where m 6= 7. After

inserting x1, x3, e1, e2, e3, e8, e9 and e10 into the faces F ′′
m and F ′′

n in the embedding

of G′′, we obtain Fig 2.17. From 2.17, it is clear that there is no other face containing

the boundary vertices u3, v2, v3. So there is no way to insert the vertex x4 and the

edges e11, e12 and e13 without crossing in the embedding of G′. Hence we conclude

that γ(AG(R)) > 1, a contradiction. Hence I1I2 6= (0) or I2I3 6= (0) or I1I3 6= (0).

b b

b b

b b

b b

b

b

b

b

b

b

b

b

b

b
b

m
2
1 × (0) m

2
1 × (0)

m
2
1 × (0)m

2
1 × (0)

I3 × (0)

I3 × (0)

I1 × (0)

I1 × (0)

m1 × (0)m1 × (0)

I2 × (0)I2 × (0)

m
2
1 × F1

m
3
1 × F1

m
3
1 × (0)

(0) × F1

I2 × F1

I3 × F1

I1 × F1

Fig 2.18: Torus embedding of AG(R1 × F1) with n1 = 4, Iim1 6= (0) ∀i,

I1m
2
1 = (0), Iim

2
1 6= (0) ∀i 6= 1 and I1I2 = I1I3 = (0)

Clearly proof of (ii)(e) follows from proof of (ii)(d).

Case 4. n1 = 5.

Suppose there is an ideal I of R1 such that I 6= m
i
1 for all 1 ≤ i ≤ 4. Then by

Proposition 1, R1 has at least three distinct non-trivial ideals different from m
i
1 for

all 1 ≤ i ≤ 4. Suppose that R1 has at least 4 non-trivial ideals I1, I2, I3, I4 such that

Ii 6= m
j
1 for i = 1 to 4 and j = 1 to 4. Consider the non-trivial ideals u1 = (0) × F1,

u2 = m
4
1×F1, u3 = m

4
1×(0), v1 = m

3
1×(0), v2 = m

2
1×(0), v3 = m1×(0), v4 = I1×(0),

v5 = I2 × (0), v6 = I3 × (0), v7 = I4 × (0) in R. Then uivj = (0) for every i, j and so

K3,7 is a subgraph of AG(R). By Lemma 2, γ(AG(R)) > 1, a contradiction. Hence

R1 has exactly 3 non-trivial ideals different from m
i
1 for all 1 ≤ i ≤ 4.

Subcase 4.1. Suppose that R1 has exactly 3 distinct non-trivial ideals I1, I2, I3
such that Ii 6= m

j
1 for i = 1 to 3 and j = 1 to 4. Suppose that Iim1 = (0) for

some i. Consider the non-trivial ideals a1 = (0) × F1, a2 = m
4
1 × F1, a3 = m

4
1 × (0),

a4 = Ii ×F1, b1 = m
3
1 × (0), b2 = m

2
1 × (0), b3 = m1 × (0), b4 = I1 × (0), b5 = I2 × (0),

b6 = I3× (0) in R. Then aibj = (0) for every i, j and so K4,6 is a subgraph of AG(R).
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Therefore by Lemma 2, γ(AG(R)) > 1, a contradiction. Hence Iim1 6= (0) for every

i.

Suppose that Iim
2
1 = (0) for some i. Without loss of generality, assume that I1m

2
1 =

(0). Consider the non-trivial ideals u1 = (0) × F1, u2 = m
4
1 × F1, u3 = m

4
1 × (0),

v1 = m
3
1 × (0), v2 = m

2
1 × (0), v3 = m1 × (0), v4 = I1 × (0), v5 = I2 × (0), v6 =

I3 × (0), x1 = m
3
1 × F1, x2 = m

2
1 × F1, x3 = m1 × F1, x4 = I1 × F1, x5 = I2 × F1,

x6 = I3 ×F1, x7 = R1 × (0) of R. Let G = AG(R), G′ = G−{x2, x3, x4, x5, x6, x7}−

{u1u3, u2u3, v1v2, v1v4, v2v4} and G′′ = G′−{x1}. Then G′′ ∼= K3,6 and so γ(G′′) = 1.

Since γ(G) = 1 and γ(G′′) ≤ γ(G′) ≤ γ(G), we get γ(G′) = 1. Note that |V (G′)| = 10,

|E(G′)| = 22. Then by Euler’s formula, there are 12 faces when drawingG′ on a torus.

Fix a representation of G′ and let {F ′
1, . . . , F

′
12} be the set of faces of G′ corresponding

to the representation. Let {F ′′
1 , . . . , F

′′
n } be the set of faces of G′′ obtained by deleting

x1 and all the edges incident with x1 from the representation of G′. Notice that

G′′ ∼= K3,6. From the fact that n − m + f = 2 − 2g, K3,6 has 9 faces. So n = 9.

Let sFi
be the length of the faces Fi. Note that

9∑

i=1

sFi
= 36 and sFi

≥ 4 for every

i. Thus sFi
= 4 for every i. Moreover, for every i, each boundary of F ′′

i cannot

have consecutive repetition of a single edge. Therefore in K3,6, the only way to have

a closed walk of length 4 without consecutive repetition of single edge is to have

4−cycle. Then in K3,6, all faces boundaries are 4−cycles. Now {F ′
1, . . . , F

′
12} can be

recovered by inserting x1 and all the edges incident with x1 into the representation

corresponds to {F ′′
1 , . . . , F

′′
9 }. Also note that x1u3, x1v1, x2v2, x2v4 ∈ E(G′) and so

u3, v1, v2, v4 should be the boundary vertices of F ′′
m. Since G′′ ∼= K3,6 and sFi

= 4

for every i, there is no faces containing the vertices u3, v1, v2, v4. So there is no

way to insert x1 without crossing in the embedding of G′. Hence we conclude that

γ(AG(R)) > 1, a contradiction. Hence Iim
2
1 6= (0) for every i

Suppose that Iim
3
1 = (0) for some i. Without loss of generality, assume that I1m

3
1 =

(0). Consider the non-trivial ideals a1 = (0) × F1, a2 = m
4
1 × F1, a3 = m

4
1 × (0),

b1 = m
3
1× (0), b2 = m

2
1× (0), b3 = I1 × (0), b4 = m1× (0), b5 = I2 × (0), b6 = I3× (0),

c1 = m
3
1×F1, c2 = m

2
1×F1, c3 = m1×F1, c4 = I1×F1, c5 = I2×F1, c6 = I3×F1, c7 =

R1×(0) of R. Let G = AG(R), G′ = G−{c2, c3, c4, c5, c6, c7}−{a1a3, a2a3, b1b2, b1b3}

and G′′ = G′ − {c1}. Then G′′ ∼= K3,6 and so γ(G′′) = 1. Since γ(G) = 1 and

γ(G′′) ≤ γ(G′) ≤ γ(G), we get γ(G′) = 1. Note that |V (G′)| = 10, |E(G′)| = 22.

Then by Euler’s formula, there are 12 faces when drawing G′ on a torus. Fix a

representation of G′ and let {F ′
1, . . . , F

′
12} be the set of faces of G′ corresponding to

the representation. Let {F ′′
1 , . . . , F

′′
n } be the set of faces of G′′ obtained by deleting

c1 and all the edges incident with c1 from the representation of G′. Notice that

G′′ ∼= K3,6. From the fact that n − m + f = 2 − 2g, K3,6 has 9 faces. So n = 9.

Let sFi
be the length of the faces Fi. Note that

9∑

i=1

sFi
= 36 and sFi

≥ 4 for every

i. Thus sFi
= 4 for every i. Moreover, for every i, each boundary of F ′′

i cannot have

consecutive repetition of a single edge. Therefore inK3,6, the only way to have a closed

walk of length 4 without consecutive repetition of single edge is to have 4−cycle. Then

in K3,6, all faces boundaries are 4−cycles. Now {F ′
1, . . . , F

′
12} can be recovered by
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inserting c1 and all the edges incident with c1 into the representation corresponds

to {F ′′
1 , . . . , F

′′
9 }. Also note that c1a3, c1b1, c2b2, c2b3 ∈ E(G′) and so a3, b1, b2, b3

should be the boundary vertices of F ′′
m. Since G′′ ∼= K3,6 and sFi

= 4 for every i,

there is no faces containing the vertices a3, b1, b2, b3. So there is no way to insert c1
without crossing in the embedding of G′. Hence we conclude that γ(AG(R)) > 1, a

contradiction. Hence Iim
3
1 6= (0) for every i. Therefore Ii is adjacent only to m

4
1 for

every i.

Suppose IjIk = (0) for some j 6= k. Without loss of generality, assume that I1I2 = (0)

and I1I3 = (0). Consider the non-trivial ideals u1 = (0) × F1, u2 = m
4
1 × F1,

u3 = m
4
1 × (0), v1 = m

3
1 × (0), v2 = m

2
1 × (0), v3 = I1 × (0), v4 = m1 × (0),

v5 = I2 × (0), v6 = I3 × (0), x1 = m
3
1×F1, x2 = m

2
1×F1, x3 = m1×F1, x4 = I1 ×F1,

x5 = I2 × F1, x6 = I3 × F1, x7 = R1 × (0) of R. Then uivj = (0) for every i, j and

so K3,6 is a subgraph of AG(R). Let G = AG(R), G′ = G− {x1, x2, x3, x5, x6, x7} −

{u1u3, u2u3, v1v2, v3v5, v3v6} and G′′ = G′−{x4}. Then G′′ ∼= K3,6 and so γ(G′′) = 1.

Since γ(G) = 1 and γ(G′′) ≤ γ(G′) ≤ γ(G), we get γ(G′) = 1. Note that |V (G′)| = 10,

|E(G′)| = 21. Then by Euler’s formula, there are 11 faces when drawingG′ on a torus.

Fix a representation of G′ and let {F ′
1, . . . , F

′
11} be the set of faces of G′ corresponding

to the representation. Let {F ′′
1 , . . . , F

′′
n } be the set of faces of G′′ obtained by deleting

x4 and all the edges incident with x4 from the representation of G′. Notice that

G′′ ∼= K3,6. From the fact that n − m + f = 2 − 2g, K3,6 has 9 faces. So n = 9.

Let sFi
be the length of the faces Fi. Note that

9∑

i=1

sFi
= 36 and sFi

≥ 4 for every

i. Thus sFi
= 4 for every i. Moreover, for every i, each boundary of F ′′

i cannot

have consecutive repetition of a single edge. Therefore in K3,6, the only way to have

a closed walk of length 4 without consecutive repetition of single edge is to have

4−cycle. Then in K3,6, all faces boundaries are 4−cycles. Now {F ′
1, . . . , F

′
11} can be

recovered by inserting x4 and all the edges incident with x4 into the representation

corresponds to {F ′′
1 , . . . , F

′′
9 }.

b b b

b b b

u3 v3v5

v6

b b b

b b b

v3

v5v6

bx4

(a) (b)
Fig 2.19

F ′′

m F ′′

n F ′′

m
F ′′

n

Also note that x4u3, x4v5, x4v6 ∈ E(G′) and so x4 should be inserted into the faces

F ′′
m with boundary vertices u3, v5, v6. Consider the edges in G: e1 = v3v5, e2 = v3v6.

If we insert the edges e1, e2 in the embedding of G, then from Fig 2.19(b) it is clear

that there is no way to insert the vertices x4 without crossing in the embedding of

G. If we insert the vertex x4 and the edge e2 in the embedding of G′, then from Fig

2.19(a) it is clear that the vertex v3 and v5 are in different faces. So there is no way to
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insert the edges e1 without crossing in the embedding of G. Hence we conclude that

γ(AG(R)) > 1, a contradiction. Hence I1I2 = (0) or I1I3 = (0). That is IjIk = (0)

for at most j 6= k.

b b

bb

b bb

b bb

b

b

b

b

b

b

b

b

b

b

b

m
3
1 × (0) m

3
1 × (0)

m
3
1 × (0) m

3
1 × (0)

m
2
1 × (0)

m
2
1 × (0)

I3 × (0)

I3 × (0)

I1 × (0)

I1 × (0)

I2 × (0) I2 × (0)

m1 × (0) m1 × (0)

(0) × F1

m
4
1 × (0)

m
4
1 × F1

m
2
1 × F1

m
3
1 × F1

I2 × F1

I1 × F1

Fig 2.20: Torus embedding of AG(R1 × F1) with n1 = 5

and Iim
j
1 6= (0)∀i , j = 1, 2, 3 and I1I2 = (0)

Proof of iii(b) follows from proof of iii(a).
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b
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b

b b

b b
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b

b

b

b

b

b

m
4
1 × (0)m

4
1 × (0)

m
4
1 × (0) m

4
1 × (0)m1 × (0)

m1 × (0) m
2
1 × (0)

m
2
1 × (0)

m
3
1 × (0)m

3
1 × (0)

m
2
1 × F1

m
3
1 × F1

(0) × F1

m
5
1 × (0)

m
5
1 × F1

m
4
1 × F1

Fig 2.21: Torus embedding of AG(R1 × F1) with n1 = 6

Case 5. n1 = 6.

Suppose there is an ideal I of R1 such that I 6= m
i
1 for 1 ≤ i ≤ 5. Then by Proposition

1, R1 has at least three distinct non-trivial ideals I1, I2 and I3 such that I1, I2,

I3 6= m1. Consider the set S = {a1, a2, a3, b1, b2, b3, b4, b5, b6, b7} where a1 = (0)× F1,

a2 = m
5
1×F1, a3 = m

5
1×(0), b1 = m

4
1×(0), b2 = m

3
1×(0), b3 = m

2
1×(0), b4 = m1×(0),

b5 = I1×(0), b6 = I2×(0), b7 = I3×(0) are the non-trivial ideals in R. Then aibj = (0)
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for every i, j and so K3,7 is a subgraph of AG(R). By Lemma 2, γ(AG(R)) > 1, a

contradiction. Hence m1,m
2
1,m

3
1,m

4
1,m

5
1 are the only non-trivial ideals in R1.

Converse follows from embedding given in Figs 2.8, 2.9, 2.10, 2.12, 2.13, 2.16, 2.18,

2.20, and Fig. 2.21.
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