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Abstract: The harmonic index of a graph G, denoted by H(G), is defined as the
sum of weights 2/[d(u) + d(v)] over all edges uv of G, where d(u) denotes the degree
of a vertex u. Hu and Zhou [Y. Hu and X. Zhou, WSEAS Trans. Math. 12 (2013)

716–726] proved that for any bicyclic graph G of order n ≥ 4, H(G) ≤ n

2
− 1

15
and

characterized all extremal bicyclic graphs. In this paper, we prove that for any bicyclic
graph G of order n ≥ 4 and maximum degree ∆,

H(G) ≤


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

3n−1
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if ∆ = 4

2( 2∆−n−3
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2
+ n−∆−1

3
) if ∆ ≥ 5 and n ≤ 2∆− 4

2( ∆
∆+2

+ ∆−4
3

+ n−2∆+4
4

) if ∆ ≥ 5 and n ≥ 2∆− 3,

and characterize all extremal bicyclic graphs.
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1. Introduction

Let G be a simple connected graph with vertex set V = V (G) and edge set E =

E(G). The order |V | of G is denoted by n = n(G) and the size |E| of G is denoted

by m = m(G). For every vertex v ∈ V , the open neighborhood N(v) is the set

{u ∈ V (G) | uv ∈ E(G)}. The degree of a vertex v ∈ V is d(v) = |N(v)|. The

minimum degree and the maximum degree of a graph G are denoted by δ = δ(G) and

∆ = ∆(G), respectively. A leaf of a graph G is a vertex of degree 1, a support vertex
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is a vertex adjacent to a leaf, whereas a strong support vertex is a support vertex

adjacent to at least two leaves. An end support vertex is a support vertex whose all

neighbors with exception at most one are leaves. The distance between u and v in

a graph G, denoted by d(u, v), is the length of the shortest (u, v)-path in G. We

use G − uv to denote the graph obtained from G by deleting the edge uv ∈ E(G).

Similarly, G+uv is the graph that arises from G by adding an edge uv 6∈ E(G), where

u, v ∈ V (G). A path P = u0u1 . . . uk(k ≥ 1) in G is called a pendent path if du0
≥ 3,

duk = 1 and the degree of any other vertex of the path is 2. We denote by Cn and Kn

the cycle and the complete graph on n vertices, respectively. Let K−
4 be the graph

obtained from K4 by deleting one edge. For an edge e = uv, the weight of e in G is

w(e) = wG(e) =
1

du+dv .
A large variety of degree based topological indices has been defined in the mathe-

matical and mathematico-chemical literature; for details we refer the reader to [7, 8].

Here, we focus on the harmonic index. For a simple graph G, the harmonic index of

G, denoted H(G), is defined in [5] as the sum of weights 2/[d(u) + d(v)] of all edges

uv of G. That is,

H(G) =
∑

uv∈E(G)

2

d(u) + d(v)
.

In [10, 22–26], the minimum and maximum harmonic indices of simple connected

graphs, trees, unicyclic, and bicyclic graphs were determined and the corresponding

extremal graphs were characterized. For some related works see [13, 28–30]. Wu et al.

[19] established a lower bound on H of a graph with minimum degree two. Favaron

et al. [6] investigated the relation between graph eigenvalues of graphs and harmonic

index. Deng et al. [3] considered the relation between H(G) and the chromatic num-

ber χ(G), and proved that χ(G) ≤ 2H(G). Liu [15] proposed a conjecture concerning

the relation between the harmonic index and the diameter of a connected graph, and

showed that the conjecture is true for trees. Liu’s conjecture is proved by Amalor-

pava Jerline and L. Benedict Michaelraj for unicyclic graphs [1, 2]. Relationships

between the harmonic index and several other topological indices were established in

[9, 11, 21, 27]. For additional results on this index, see [12–14, 16–18, 20].

A bicyclic graph of order n is a connected graph with n vertices and n+ 1 edges. Let

Bn be the set of connected bicyclic graphs of order n(n ≥ 5), and let B̃n be the set

of connected bicyclic graphs on n(n ≥ 4) vertices without pendant vertices. Let B̃
(1)
n

be the set of bicyclic graphs obtained by joining two vertex-disjoint cycles Ca and Cb

with a + b = n(n ≥ 6) by an edge. Let B̃
(2)
n be the set of bicyclic graphs obtained

by joining two vertex-disjoint cycles Ca and Cb with a + b < n(n ≥ 7) by a path of

length n − a − b + 1. Let B̃
(3)
n be the set of bicyclic graphs obtained by identifying

a vertex of Ca and a vertex of Cb with a + b = n + 1(n ≥ 5), and let S++
5 denote

the special case n = 5 and a = b = 3. Let B̃
(4)
n be the set of bicyclic graphs obtained

from Cn(n ≥ 4) by adding an edge. Let B̃
(5)
n be the set of bicyclic graphs obtained by

joining two non-adjacent vertices of Ca(4 ≤ a ≤ n − 1, n ≥ 5) with a path of length

n− a+ 1. Clearly B̃n = B̃
(1)
n ∪ B̃

(2)
n ∪ B̃

(3)
n ∪ B̃

(4)
n ∪ B̃

(5)
n . For 1 ≤ i ≤ 5, let B

(i)
n be the

set of bicyclic graphs G containing a member of B̃
(i)
m as a subgraph, for some m ≤ n.
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Zhong and Xu [26], Hu and Zhou [10] and Zhu et al. [30], independently proved the

B̃
(1)
15 B̃

(2)
18 B̃

(3)
15 B̃

(4)
10 B̃

(5)
16

Figure 1. Special families of bicyclic graphs.

following upper bound on the harmonic index of bicyclic graphs and characterized all

extremal bicyclic graphs.

Theorem A. If G is a bicyclic graph of order n ≥ 4, then

H(G) ≤
n

2
−

1

15

with equality if and only if G ∈ B̃(1)
n ∪ B̃(4)

n .

Deng et al. [4] proved the following upper bound on the harmonic index of bicyclic

graphs of order n ≥ 5 and maximum degree 4 and characterized all extremal bicyclic

graphs..

Theorem B. If G is a bicyclic graph of order n ≥ 5 with maximum degree ∆(G) = 4,
then

H(G) ≤
n

2
−

1

6
.

In this paper, we establish an upper bound for the harmonic index of bicyclic graphs

in terms of their order and maximum degree and characterize all extremal bicyclic

graphs.

We make use of the following results in this paper.

Theorem C. [25] Let H be a nontrivial connected graph with u ∈ V (H). Let G be the
graph obtained from H by attaching two paths P := uu1 . . . us and Q := uv1 . . . vt(s ≥ t ≥ 1)
at u, and let G′ = G− uv1 + usv1. Then H(G) < H(G′).

Theorem D. [25] Let H be a nontrivial connected graph, and let u, v be two distinct
vertices in H with dH(u), dH(v) ≥ 2. Moreover, suppose that the two neighbors of v have
degree sum at most 9 in H if dH(v) = 2. Let G be the graph obtained from H by attaching
two paths P := uu1 . . . us and Q := vv1 . . . vt(s ≥ t ≥ 1) at u and v, respectively, and let
G′ = G− vv1 + usv1. Then H(G) < H(G′).

Next result is an immediate consequence of Theorem A.
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Corollary 1. If G is a bicyclic graph of order n with maximum degree 3, then

H(G) ≤
n

2
−

1

15

with equality if and only if n = 5 and G ∼= B̃(4)
n or n ≥ 6 and G ∼= B̃(1)

n ∪ B̃(4)
n .

Hence, we may assume from now on that G is a bicyclic graph of order n with

maximum degree ∆(G) ≥ 4. Suppose B∆
n denotes the set of all bicyclic graphs of

order n with maximum degree ∆(G).

2. An upper bound on the harmonic index of bicyclic graph

In this section, we establish a sharp upper bound on the harmonic index of bicyclic

graphs in terms of their order and maximum degree, and classify all extremal bicyclic

graphs. Throughout this section, G denotes a bicyclic graph of order n ≥ 5, C1 =

(x1x2 . . . xr) and C2 = (y1y2 . . . ys) denote the cycles of G and ω ∈ V (G) denotes a

vertex of maximum degree. Let Vcycle = V (C1)∪V (C2) and Vc = V (C1)∪V (C2)∪{ω}.

If V (C1) ∩ V (C2) = ∅, then we assume x1y1 ∈ E(G) when d(V (C1), V (C2)) = 1

and we assume P := (x1 =)w0w1 . . . wky1 is the shortest (x1, y1)-path in G when

d(V (C1), V (C2)) ≥ 2. Similarly, if V (C1) ∩ V (C2) 6= ∅, then we assume that Q :=

x1x2 . . . xk be a longest path belonging to V (C1)∩V (C2) where xi = yi for 1 ≤ i ≤ k.

Finally, if ω 6∈ V (C1) ∪ V (C2) ∪ V (P ), then let (ω =)v0v1 . . . vt be a shortest path

between ω and V (C1) ∩ V (C2) ∪ V (P ) (see Figure 2). In addition hω : E(G) → R is

a function defined by hω(uv) = 1/[d(u) + d(v)]. Hence H(G) = 2
∑

e∈E(G) hω(e).

x1

ω

y1vt

(1)

x1 = vt

ω

y1

(2)

x1

ω

y1

(3)

vt

x1

ω

xk

vt

(4)

x1 ω

xk

vt

(5)

x1

ω

xk

vt

(6)

x1 = y1 = vt

ω

(7)

x1 = y1

ω

(8)

vt

Figure 2. Possible cases of bicyclic graphs with respect to vertices ω, x1, y1, xk and vt.
Our first result is an immediate consequence of Theorem C.

Corollary 2. Let G ∈ B∆
n .
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1. If G has an end-support vertex of degree at least three, different from ω, then there is
a graph G′ ∈ B∆

n such that H(G) < H(G′).

2. If G has a vertex v 6= ω of degree at least three with two pendant paths P := vu1 . . . us

and Q := vv1 . . . vt(s, t ≥ 1), then there is a bicyclic graph G′ ∈ B∆
n such that H(G) <

H(G′).

Lemma 1. Let H be a nontrivial connected graph, and let u, v be two distinct vertices
in H with dH(u) ≥ 2, dH(v) ≥ 3. Let G be the graph obtained from H by attaching
two paths P := uu1 . . . us and Q := vv1 . . . vt(s, t ≥ 1) at u and v, respectively, and let
G′ = G− vv1 + usv1. Then H(G) < H(G′).

Proof. The result is immediate by Theorem D if s ≥ t. Let s < t. If s = 1, then

we have 1
2 (H(G′) − H(G)) ≥ (14 + 1

d(u)+2) − ( 1
d(u)+1 + 1

d(v)+2 ) > 0. Let s ≥ 2 and

w ∈ N(v)− {v1}. Then

1

2
(H(G′)−H(G)) ≥ (

1

d(v) + d(w) − 1
+

1

4
+

1

4
)− (

1

d(v) + d(w)
+

1

3
+

1

d(v) + 2
)

≥ (
1

d(v) + d(w) − 1
−

1

d(v) + d(w)
) > 0,

and the proof is complete.

Lemma 2. Let G ∈ B∆
n be a graph with the maximum value of the harmonic index.

Then d(v) ≤ 2 for any vertex v 6∈ {x1, ω, y1, vt, xk}.

Proof. Suppose, to the contrary, that d(v) ≥ 3 for some v 6∈ {x1, ω, y1, vt, xk}. We

claim that there is a pendant path beginning at v. Let N(v) = {z1, z2, . . . , zr}. First

let vzi be a non-cut edge for some i, say i = 1. Then we may assume that the edges

vz1 and vz2 are contained in the same cycle, say C1. If vzi is a non-cut edge for some

i ≥ 3, then clearly v ∈ {x1, xk} which is a contradiction. Let vzi be a cut edge for

i = 3, . . . , r and let Gi be the component of G− vzi containing zi for i = 1, . . . , r. If

Gi has a cycle for some i ≥ 3, then clearly v = x1, a contradiction. Let Gi be tree

for each i ≥ 3. If ω 6∈ V (Gi) for some i ≥ 3, then we deduce from Corollary 2 and

the choice of G that Gi + vzi is a pendant path, as desired. Hence we assume that

i = 3 and ω ∈ V (G3). Then clearly v = x1 which is a contradiction. Now let vzi is

a cut edge for i = 1, . . . , r. Since G is bicyclic, we may assume that Gr is a tree. If

ω 6∈ V (Gr), then it follows from Corollary 2 and the choice of G that Gr + vzr is a

pendant path, as desired. Let ω ∈ V (Gr). If Gi is a tree for some 1 ≤ i ≤ r−1, then as

above Gi+ vzi is a pendant path because of ω 6∈ V (Gi), as desired. Hence we assume

that r = 3 and G1, G2 have cycle. Then clearly v = vt which is a contradiction.

Thus, there is a pendant path P := vu1 . . . us (s ≥ 1) beginning at v. If d(v) ≥ 4,

then G− {u1, . . . , us} is a bicyclic graph and as above there is another pendant path

beginning at v that leads to a contradiction by Corollary 2. Thus d(v) = 3. We

consider two cases.
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Case 1. v 6∈ Vcycle ∪ V (P ).

Then there is a unique (v, Vcycle ∪ V (P ))-path such as (v =)z0z1 . . . zm since G is

bicyclic. Let T be component of G−vz1 containing v. Clearly T is a tree. If ω 6∈ V (T ),

then there must be two pendant paths beginning at v which is a contradiction by

Corollary 2. Assume that ω ∈ V (T ) and (v =)q0q1 . . . qpω is the unique (v, ω)-path

in G. Then ωqp . . . q1vz1 . . . zm is the unique (ω, Vcycle ∪ V (P ))-path in G and so

zm = vt. By Lemma 1 and the choice of G, there is no pendant path beginning

at vt and so d(vt) ≤ 5. If s = 1 or d(z1) ≤ 3, then let G′ be the graph obtained

from G by removing the edge vz1 and adding the edge usz1. Clearly G′ is bicyclic.

Let S = {vz1, vq1, vu1, usus−1} and S′ = {vq1, vu1, usus−1, usz1}. If s = 1, then

we have 1
2 (H(G′) − H(G)) = ( 1

2+d(z1)
− 1

3+d(z1)
) + ( 1

2+d(q1)
− 1

3+d(q1)
) > 0 which

is a contradiction. If s ≥ 2 and d(z1) ≤ 3, then since d(z1) = 2 or 3 we obtain
1
2 (H(G′) − H(G)) = ( 1

2+d(z1)
− 1

3+d(z1)
) + ( 1

2+d(y1)
− 1

3+d(y1)
) + (12 − 8

15 ) > 0 which

is a contradiction. Assume that s ≥ 2 and d(z1) ≥ 4. Similarly, we may assume that

d(q1) ≥ 4. If m ≥ 2 (resp. p ≥ 2), then there must be two pendant paths beginning

at z1 (resp. q1) which is a contradiction by Corollary 2. Thus z1 = vt and q1 = ω.

First let ω be a support vertex and p be a leaf adjacent to ω. Assume G′ is the graph

obtained from G− vu1 by adding the edge u1p. It is easy to verify that
1
2 (H(G′) − H(G)) = ( 1

2+∆ + 1
2+d(vt) + 1

∆+2 + 1
4 ) − ( 1

3+∆ + 1
3+d(vt) + 1

∆+1 + 1
5 ) > 0

which is a contradiction.

Assume ω is not a support vertex and (ω =)b0b1 . . . bℓ′ be a pendant path beginning at

ω where ℓ′ ≥ 2. First let 4 ≤ ∆ ≤ 5. Assume G′ is the graph obtained from G−vvt by

adding the edge usvt. Since 4 ≤ d(vt) ≤ ∆ ≤ 5, we deduce that 1
2 (H(G′)−H(G)) =

(24+
1

∆+2+
1

d(vt)+2 )−( 8
15+

1
∆+3+

1
3+d(vt) ) > 0 which is a contradiction. Now let ∆ ≥ 6.

Assume G′ is the graph obtained from G−{vvt, vω} by adding the edges vtω and vbℓ′ .

It is easy to verify that 1
2 (H(G′)−H(G)) = (34 +

1
∆+d(vt) )− ( 8

15 +
1

3+d(vt) + 1
∆+3 ) > 0,

a contradiction.

Case 2. v ∈ (Vc ∪ V (P )) \ {x1, ω, y1, vt, xk}.

Then clearly v has exactly two neighbors in Vc∪V (P ), say α, β. Assume without loss

of generality that α 6= {ω, vt}. Since G is a graph with the maximum value of the

harmonic index, we conclude from Lemma 1 that there is no pendant path beginning

at α when d(α) ≥ 4. This implies that d(α) ≤ 4. As Case 1, we may assume that

s ≥ 1 and deg(α) = 4. Since there is no pendant path beginning at α, we deduce

that V (C1)∩V (C2) = {α}. Using the argument described in Case 1, we may assume

that β ≥ 4. This implies that there is a pendant path beginning at β and we deduce

from Lemma 1 and the choice of G that β = ω. Now, an argument similar to that

described in Case 1, leads to a contradiction and the proof is complete.

Corollary 3. If G ∈ B∆
n be a graph with the maximum value of the harmonic index

where ∆ ≥ 4, then any pendant path is beginning at ω.

Proof. Suppose, to the contrary, that there is a pendant path vu1 . . . uℓ beginning

at v 6= ω. Lemma 2 yields v ∈ {x1, y1, vt, xk} \ {ω} and this implies that deg(v) ≥ 4.
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If ∆ ≥ 5, then clearly there is a pendant path beginning at ω and this leads to a

contradiction by Lemma 1 and the choice of G. If ∆ = 4, then we consider v as ω. By

repeating above argument, we deduce that all pendant paths are beginning at ω.

Lemma 3. If G ∈ B∆
n is a graph with the maximum value of the harmonic index, then

V (C1) ∩ V (C2) 6= ∅.

Proof. Suppose, to the contrary, that V (C1) ∩ V (C2) = ∅. Let P := (x1 =

w0)w1 . . . wky1 be the shortest (V (C1), V (C2))-path in G. We consider four cases.

Case 1. ω ∈ {x1, y1}.

Suppose without loss of generality that ω = x1. By Lemma 2, we have d(v) ≤ 2 for

each v ∈ V (G)−{y1, ω}. Since d(ω) ≥ 4, there is a pendant path (ω =)u0u1 . . . uℓ (ℓ ≥

1). It follows from Corollary 3 that there is no pendant path beginning at y1 and

hence d(y1) = 3. If k = 0, then let G′ be the graph obtained from G by removing the

edge yys and adding the edge uℓys (see Figure 3). Then we have 1
2 (H(G′)−H(G)) =

(34 + 1
∆+2 ) − (25 + 1

3 + 1
∆+3 ) > 0 when ℓ ≥ 2, and 1

2 (H(G′) −H(G)) = (24 + 1
2+∆ +

1
2+∆ )− (25 + 1

3+∆ + 1
3+∆ ) > 0 if ℓ = 1, as desired.

If k ≥ 1, then let G′ be the graph obtained from G by removing the edge yys and

adding the edge wkys. Then we have 1
2 (H(G′)−H(G)) = (14+

1
5+

1
5 )−(15+

1
5+

1
5 ) > 0,

as desired.

x3

x2 w1 wk

uℓ−1

y1 y2

y3uℓ x3

x2 w1 wk y1 y2

y3

uℓ

uℓ−1

x1 = ω x1 = ω

Figure 3. The transformation used in proof of Lemma 3, case ω ∈ {x1, y1}.

Case 2. ω ∈ V (P )− {x1, y1}.

By Lemma 2, d(v) ≤ 2 for each v ∈ V (G) − {x1, y1, ω}. Since ∆(G) ≥ 4, there are

two pendant paths (ω =)u0u1 . . . uℓ and (ω =)u′
0u

′
1 . . . u

′
ℓ′ (ℓ, ℓ′ ≥ 1) beginning at

ω. By Corollary 3, there is no pendant path beginning at x1 or y1 and this implies

that d(x1) = d(y1) = 3. Let G′ be the graph obtained from G by removing the

edges x1xr, y1ys and adding new edges uℓxr and u′
ℓ′ys (see Figure 4). We show that

H(G) < H(G′). We distinguish the following subcases.

Subcase 2.1. ℓ = ℓ′ = k = 1.

Then we have 1
2 (H(G′)−H(G)) = ( 4

∆+2 + 4
4 )− ( 2

∆+3 + 4
5 + 2

∆+1) > 0, as desired.

Subcase 2.2. ℓ = ℓ′ = 1 and k ≥ 2.

We may assume that ω 6= w1. If ω 6= wk, then
1
2 (H(G′)−H(G)) = (64 +

2
∆+2 )− (65 +

2
∆+1 ) > 0, and if ω = wk, then we have 1

2 (H(G′)−H(G)) = (54 +
3

∆+2 )− (55 +
2

∆+1 +
1

∆+3 ) > 0, as desired.
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Subcase 2.3. ℓ, ℓ′ ≥ 2 and k = 1.

Then we have 1
2 (H(G′)−H(G)) = (64

2
∆+2 )− (45 + 2

3 + 2
∆+3) > 0.

Subcase 2.4. ℓ, ℓ′ ≥ 2 and k ≥ 2.

We may assume that ω 6= w1. If ω 6= wk, then clearly 1
2 (H(G′)−H(G)) = (84 )− (65 +

2
3 ) > 0, and if ω = wk, then we have 1

2 (H(G′)−H(G)) = (74+
1

∆+2)−(55+
2
3+

1
∆+3 ) > 0,

as desired

Subcase 2.5. ℓ = 1, ℓ′ ≥ 2 and k = 1 (the case ℓ ≥ 2, ℓ′ = 1 and k = 1 is similar).

Then we have 1
2 (H(G′)−H(G)) = (54 + 3

∆+2)− (45 + 1
3 + 1

∆+1 + 2
∆+3 ) > 0.

Subcase 2.6. ℓ = 1, ℓ′ ≥ 2 and k ≥ 2 (the case ℓ ≥ 2, ℓ′ = 1 and k ≥ 2 is similar).

We may assume that ω 6= w1. If ω 6= wk, then clearly 1
2 (H(G′) − H(G)) = (74 +

1
∆+2 ) − (65 + 1

3 + 1
∆+1 ) > 0, and if ω = wk then we have 1

2 (H(G′) − H(G)) =

(64 + 2
∆+2 )− (55 + 1

3 + 1
∆+1 + 1

∆+3) > 0, as desired.

G

xr

x2 w1 wkx1 y1 y2

ysuℓ

uℓ−1

G′

vℓ′

vℓ′−1

ω

xr

x2 wkx1 y1 y2

ysuℓ

uℓ−1

vℓ

vℓ−1

ωw1

Figure 4. The transformation used in proof of Lemma 3, case ω ∈ V (P ) − {x1, y1}.

Case 3. ω ∈ Vcycle − {x1, y1}.

Suppose without loss of generality that ω ∈ V (C1) and that ω 6= xr. As Case 2, we can

see that there are two pendant paths (ω =)u0u1 . . . uℓ and (ω =)u′
0u

′
1 . . . u

′
ℓ′ (ℓ, ℓ

′ ≥ 1)

beginning at ω and that d(x1) = d(y1) = 3. Let G′ be the graph obtained from G by

removing the edges x1xr, y1ys and adding new edges uℓxr and u′
ℓ′ys (see Figure 5).

We show that H(G) < H(G′). We consider the following subcases.

1. ω 6= x2, ℓ = ℓ′ = 1 and k = 0.

It is easy to verify that 1
2 (H(G′)−H(G)) = (54 + 2

∆+2 )− (45 + 1
6 + 2

∆+1) > 0.

2. ω = x2, ℓ = ℓ′ = 1 and k = 0.

Then we have 1
2 (H(G′) − H(G)) = (44 + 3

∆+2) − (35 + 1
6 + 1

∆+3 + 2
∆+1 > 0 as

desired.

3. ω 6= x2, ℓ = ℓ′ = 1 and k ≥ 1.

It is easy to see that 1
2 (H(G′)−H(G)) = (64 +

2
∆+2)− (65 +

2
∆+1 ) > 0 as desired.

4. ω = x2, ℓ = ℓ′ = 1 and k ≥ 1.

Then we have 1
2 (H(G′)−H(G)) = (54 + 3

∆+2 )− (55 + 1
∆+3 + 2

∆+1 ) > 0.

5. ω 6= x2, ℓ, ℓ
′ ≥ 2 and k = 0.

Then we have 1
2 (H(G′)−H(G)) = (74 )− (45 + 1

6 + 2
3 ) > 0.
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6. ω = x2, ℓ, ℓ
′ ≥ 2 and k = 0.

Clearly, we have 1
2 (H(G′)−H(G)) = (64 + 1

∆+2 )− (35 + 1
6 + 2

3 + 1
∆+3 ) > 0.

7. ω 6= x2, ℓ, ℓ
′ ≥ 2 and k ≥ 1.

It is easy to see that 1
2 (H(G′)−H(G)) = (84 )− (65 + 2

3 ) > 0 as desired.

8. ω = x2, ℓ, ℓ
′ ≥ 2 and k ≥ 1.

Then we have 1
2 (H(G′)−H(G)) = (74 +

1
∆+2 )− (55 +

2
3 + 1

∆+3 ) > 0, as desired.

9. ω 6= x2, ℓ = 1, ℓ′ ≥ 2 and k = 0 (the case ω 6= x2, ℓ ≥ 2, ℓ′ = 1 and k = 0 is

similar).

It is easy to verify that 1
2 (H(G′)−H(G)) = (64 +

1
∆+2)− (45 +

1
6 +

1
3 +

1
∆+1 ) > 0,

as desired.

10. ω = x2, ℓ = 1, ℓ′ ≥ 2 and k = 0 (the case ω = x2, ℓ ≥ 2, ℓ′ = 1 and k = 0 is

similar).

Then 1
2 (H(G′)−H(G)) = (54 + 2

∆+2)− (35 + 1
6 + 1

∆+1 + 1
∆+3 + 1

3 ) > 0.

11. ω 6= x2, ℓ = 1, ℓ′ ≥ 2 and k ≥ 1 (the case ω 6= x2, ℓ ≥ 2, ℓ′ = 1 and k = 0 is

similar).

Clearly, we have 1
2 (H(G′)−H(G)) = (74 +

1
∆+2 )−(65 +

1
3 +

1
∆+1 ) > 0, as desired.

12. ω = x2, ℓ = 1, ℓ′ ≥ 2 and k ≥ 1 (the case ω = x2, ℓ ≥ 2, ℓ′ = 1 and k = 0 is

similar).

Obviously, we have 1
2
(H(G′) − H(G)) = ( 3

2
+ 1

∆+2
+ 1

∆+2
) − ( 4

3
+ 1

∆+1
+ 1

∆+3
) > 0 as

desired.

G

xr

x2 w1 wkx1

y1 y2

ys

vℓ′

vℓ′−1

uℓ

uℓ−1

ω

G′

xr

x2 w1 wkx1 y1 y2

ys

vℓ′

vℓ′−1

uℓ

uℓ−1

ω

Figure 5. The transformation used in proof of Lemma 3, case ω ∈ Vcycle − {x1, y1}.

Case 4. ω 6∈ Vcycle ∪ V (P ).

Let (ω =)u0u1 . . . uℓ (ℓ ≥ 1) be a pendant path beginning at ω such that ℓ is as large as

possible. Assume ωv1 . . . vt is the shortest path between ω and V (C1)∪V (C2)∪V (P ).

We may assume without loss of generality that vt ∈ V (C1) ∪ V (P ) − {y1}. As Case

2, we can see that d(y1) = 3. Let G′ be the graph obtained from G by removing the

edge y1ys and adding new edges uℓys (see Figure 6). We show that H(G) < H(G′).

Consider the following subcases.
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• ℓ = 1 and k = 0.

Then we have 1
2 (H(G′)−H(G)) = (24 + 1

5 + 1
∆+2)− (25 + 1

6 + 1
∆+1 ) > 0.

• ℓ = 1 and k ≥ 1.

Then clearly 1
2 (H(G′)−H(G)) = (34 + 1

∆+2 )− (35 + 1
∆+1 ) > 0.

• ℓ ≥ 2 and k = 0.

Then 1
2 (H(G′)−H(G)) = (34 + 1

5 )− (25 + 1
6 + 1

3 ) > 0.

• ℓ ≥ 2 and k ≥ 1.

Then 1
2 (H(G′)−H(G)) = (44 )− (35 + 1

3 ) > 0,

and the proof is complete.

xr

x2 x1 wk

ω

y1 y2

ys
uℓuℓ−1

xr

x2 w1 wk y1 y2

ysuℓuℓ−1

w1

ω

x1

xr

x2 w1 wkx1 y1 y2

ysuℓ

ω

vt

uℓ−1
xr

x2 w1 wkx1 y1 y2

ysuℓ

ω

vt

uℓ−1

xr

x2 w1 wkx1 y1 y2

ys
uℓuℓ−1

ω

vt

xr

x2 w1 wkx1 y1 y2

ysuℓuℓ−1

ω

vt

Figure 6. The transformations used in proof of Lemma 3, case ω 6∈ Vcycle ∪ V (P ).

Lemma 4. If G ∈ B∆
n is a graph with the maximum value of the harmonic index where

∆ ≥ 4, then |V (C1) ∩ V (C2)| = 1.

Proof. By Lemma 3, we have |V (C1) ∩ V (C2)| ≥ 1. Assume, to the contrary,

|V (C1)∩V (C2)| ≥ 2. Since G is bicyclic, C1 and C2 intersect each other in a path. Let

Q := x1x2 . . . xk be the longest path belonging to V (C1)∩V (C2). We may assume that

xi = yi for i = 1, 2 . . . , k. Since δ ≥ 4, there is a pendant path (ω =)u0u1 . . . uℓ (ℓ ≥ 1)

beginning at ω. We consider four cases.
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Case 1. ω ∈ {x1, xk}.

Assume without loss of generality that ω = x1. Since G is a simple graph,

we may assume that s > k. Let G′ be the graph obtained from G by remov-

ing the edge ykyk+1 and adding the edge uℓyk+1 (see Figure 7). We show that

H(G) < H(G′). Assume that S = {xkxk−1, xkxk+1, xkyk+1, uℓuℓ−1} and S′ =

{xkxk−1, xkxk+1, uℓyk+1, uℓuℓ−1}. We consider the following cases.

• r ≥ k + 1, k ≥ 3 and ℓ ≥ 2.

Then we have 1
2 (H(G′)−H(G)) = (44 )− (35 + 1

3 ) > 0.

• r ≥ k + 1, k ≥ 3 and ℓ = 1.

Then 1
2 (H(G′)−H(G)) = (34 + 1

∆+2)− (35 + 1
∆+1) > 0 as desired.

• r ≥ k + 1, k = 2 and ℓ ≥ 2.

It is easy to see that 1
2 (H(G′) −H(G)) = (34 + 1

∆+2 ) − (25 + 1
3 + 1

∆+3 ) > 0 as

desired.

• r ≥ k + 1, k = 2 and ℓ = 1.

Then clearly 1
2 (H(G′)−H(G)) = (24 + 2

∆+2 )− (25 + 1
∆+3 + 1

∆+1 ) > 0.

• r = k and ℓ ≥ 2.

Then we have 1
2 (H(G′)−H(G)) = (34 + 1

∆+2 )− (25 + 1
3 + 1

∆+3) > 0.

• r = k and ℓ = 1.

Then we have 1
2 (H(G′)−H(G)) = (24 +

2
∆+2 )− (25 +

1
∆+3 +

1
∆+1) > 0 as desired.

G

w1

wk

yxr ys

uℓuℓ−1

x = ω

G′

w1

wk

yxr ys

uℓuℓ−1

x = ω

Figure 7. The transformation used in proof of Lemma 4, case ω ∈ {x1, xk}.
Case 2. ω ∈ V (Q)− {x1, xk}.

Suppose ω = xt where 2 ≤ t ≤ k − 1. As Case 1, we may assume that

s ≥ k + 1. Since ∆(G) ≥ 4, there are two pendant paths (ω =)u0u1 . . . uℓ and

(ω =)u′
0u

′
1 . . . u

′
ℓ′ (ℓ, ℓ′ ≥ 1) beginning at ω. We conclude from Corollary 3 that

d(x1) = d(xk) = 3. Let G′ be the graph obtained from G − {x1xr, xkyk+1}

by adding two edges uℓxr and u′
ℓ′ys (see Figure 8). We show that H(G) <

H(G′). Let S = {x1x2, x1xr, x1ys, xkxk−1, xkxk+1, x1yk+1, uℓuℓ−1, u
′
ℓu

′
ℓ′−1}, S′ =

{x1x2, uℓxr, x1ys, xkxk−1, xkxk+1, u
′
ℓ′yk+1, uℓuℓ−1, u

′
ℓu

′
ℓ′−1} and A =

∑
e∈E−S hω(e).

We distinguish the following subcases.
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1. k = 3, r = k and ℓ = ℓ′ = 1.

Then we have 1
2H(G) = A+ 2

5 + 1
6 + 2

∆+1 + 2
∆+3 < A+ 3

4 + 4
∆+2 = 1

2H(G′) as

desired.

2. k = 3, r = k and ℓ, ℓ′ ≥ 2.

It is easy to see that 1
2H(G) = A+ 2

5 +
1
6 +

2
3 +

2
∆+3 < A+ 5

4 +
2

∆+2 = 1
2H(G′).

3. k = 3, r = k, ℓ = 1 and ℓ′ ≥ 2 (the case k = 3, r = 3, ℓ ≥ 2 and ℓ′ = 1 is

similar).

It is easy to see that 1
2 (H(G′)−H(G)) = (44+

3
∆+2)−(25+

1
6+

1
3+

1
∆+1+

2
∆+3 ) > 0.

4. k = 3, r ≥ k + 1 and ℓ = ℓ′ = 1.

It is not hard to see that 1
2 (H(G′)−H(G)) = (44 +

4
∆+2)−(45 +

2
∆+1 +

2
∆+3 ) > 0.

5. k = 3, r ≥ k + 1 and ℓ, ℓ′ ≥ 2.

Then we have 1
2 (H(G′)−H(G)) = (64 + 2

∆+2)− (45 + 2
3 + 2

∆+3 ) > 0 as desired.

6. k = 3, r ≥ k + 1, ℓ = 1 and ℓ′ ≥ 2 (the case k = 3, r ≥ 4, ℓ ≥ 2 and ℓ′ = 1 is

similar).

It is not hard to see that 1
2 (H(G′)−H(G)) = (54+

3
∆+2 )−(45+

1
3+

1
∆+1+

2
∆+3 ) > 0.

7. k ≥ 4, r = k and ℓ = ℓ′ = 1.

We may assume without loss of generality that ω 6= x2. If ω 6= xk−1, then we

have 1
2 (H(G′) − H(G)) = (54 + 2

∆+2) − (45 + 1
6 + 2

∆+1 ) > 0, and if ω = xk−1,

then we obtain 1
2 (H(G′)−H(G)) = (44 + 3

∆+2 )− (35 + 1
6 + 2

∆+1 + 1
∆+3 ) > 0

8. k ≥ 4, r = k and ℓ, ℓ′ ≥ 2.

Assume without loss of generality that ω 6= x2. If ω 6= xk−1, then we have
1
2 (H(G′) −H(G)) = (74 )− (45 + 1

6 + 2
3 ) > 0, and if ω = xk−1, then

1
2 (H(G′) −

H(G)) = (64 + 1
∆+2 )− (35 + 1

6 + 2
3 + 1

∆+3 ) > 0 as desired.

9. k ≥ 4, r = k, ℓ = 1 and ℓ′ ≥ 2 (the case k = 3, r = 3, ℓ ≥ 2 and ℓ′ = 1 is

similar).

Suppose without loss of generality that ω 6= x2. If ω 6= xk−1, then
1
2 (H(G′) −

H(G)) = (64 + 1
∆+20 − (45 + 1

6 + 1
3 + 1

∆+1) > 0, and if ω = xk−1, then we have
1
2 (H(G′)−H(G)) = (54 + 2

∆+2)− (35 + 1
6 + 1

3 + 1
∆+1 + 1

∆+3) > 0.

10. k ≥ 4, r ≥ k + 1 and ℓ = ℓ′ = 1.

Suppose without loss of generality that ω 6= x2. If ω 6= xk−1, then
1
2 (H(G′) −

H(G)) = (64 +
2

∆+2 )− (65 +
2

∆+1) > 0, and if ω = xk−1 then 1
2 (H(G′)−H(G)) =

(54 + 3
∆+2)− (55 + 1

∆+3 + 2
∆+1) > 0 as desired.

11. k ≥ 4, r ≥ k + 1 and ℓ, ℓ′ ≥ 2.

Assume that ω 6= x2. If ω 6= xk−1, then
1
2H(G) = A+ 6

5 +
2
3 < A+ 8

4 = 1
2H(G′).

If ω = xk−1, then we have 1
2H(G) = A+ 5

5 +
2
3 +

1
∆+3 < A+ 7

4 +
1

∆+2 = 1
2H(G′).

12. k ≥ 4, r ≥ k + 1, ℓ = 1 and ℓ′ ≥ 2 (the case k = 3, r ≥ 4, ℓ ≥ 2 and ℓ′ = 1 is

similar).
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Let as above ω 6= x2. If ω 6= xk−1, then
1
2 (H(G′)−H(G)) = (64 + 1

∆+2 )− (65 +
1
3 +

1
∆+1 ) > 0, and if ω = xk−1, then

1
2 (H(G′)−H(G)) = (64 +

2
∆+2 )− (55 +

1
3 +

1
∆+1 + 1

∆+3) > 0 as desired.

G

xr ys
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Figure 8. The transformation used in proof of Lemma 4, case ω ∈ V (P ) − {x1, xk}.
Case 3. ω ∈ Vcycle − V (Q) (see Figure 9).

Assume without loss of generality that ω ∈ V (C1) − V (C2). As Case 2, there

are two pendant paths (ω =)u0u1 . . . uℓ and (ω =)u′
0u

′
1 . . . u

′
ℓ′ (ℓ, ℓ′ ≥ 1) be-

ginning at ω and that d(x1) = d(xk) = 3. Since G is a simple graph,

we may assume that s > k. Let G′ be the graph obtained from G −

{x1ys, xkyk+1} by adding two edges uℓys and u′
ℓ′yk+1. We prove that H(G) <

H(G′). Let S = {x1x2, x1xr , x1ys, xkxk−1, xkxk+1, xkyk+1, uℓuℓ−1, u
′
ℓ′u

′
ℓ′−1}, S

′ =

{x1x2, x1xr, uℓys, xkxk−1, xkxk+1, u
′
ℓ′yk+1, uℓuℓ−1, u

′
ℓ′u

′
ℓ′−1} and A =

∑
e∈E−S hω(e).

Consider the following subcases.

1. r = k + 1, k = 2 and ℓ = ℓ′ = 1.

Then we have 1
2H(G) = A+ 2

5 + 1
6 + 2

∆+1 + 2
∆+3 < A+ 3

4 + 4
∆+2 = 1

2H(G′) as

desired.

2. r = k + 1, k = 2 and ℓ, ℓ′ ≥ 2.

Then 1
2 (H(G′)−H(G)) = (54 +

2
∆+2 )− (25 +

1
6 +

2
3 +

2
∆+3 ) > 0 and we are done.

3. r = k + 1, k = 2, ℓ = 1 and ℓ′ ≥ 2 (the case r = k + 1, k = 2, ℓ ≥ 2 and ℓ′ = 1

is similar).

Clearly, we have 1
2 (H(G′)−H(G)) = (44 +

3
∆+2 )− (25 +

1
6 +

1
3 +

1
∆+1 +

2
∆+3 ) > 0.

4. r ≥ k + 2, k = 2 and ℓ = ℓ′ = 1.

We may assume that ω 6= xr. If ω 6= xk+1, then
1
2 (H(G′) − H(G)) = (54 +

2
∆+2)− (45 + 1

6 + 2
∆+1) > 0, and if ω = xk+1 then we have 1

2 (H(G′)−H(G)) =

(44 + 3
∆+2)− (35 + 1

6 + 2
∆+1 + 1

∆+3 ) > 0.

5. r ≥ k + 2, k = 2 and ℓ, ℓ′ ≥ 2.

Assume that ω 6= xr. If ω 6= xk+1, then
1
2 (H(G′)−H(G)) = (74 )−(45+

1
6+

2
3 ) > 0,
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and if ω = xk+1, then
1
2 (H(G′)−H(G)) = (64 +

1
∆+2)− (35 +

1
6 +

2
3 +

1
∆+3 ) > 0

as desired.

6. r ≥ k + 2, k = 2, ℓ = 1 and ℓ′ ≥ 2 (the case r = k + 1, k = 2, ℓ ≥ 2 and ℓ′ = 1 is similar).

Suppose that ω 6= xr. If ω 6= xk+1, then
1
2 (H(G′)−H(G)) = (64 +

1
∆+20− (45 +

1
6 +

1
3 +

1
∆+1 ) > 0 and if ω = xk+1, then

1
2 (H(G′)−H(G)) = (54 +

2
∆+2 )− (35 +

1
6 + 1

3 + 1
∆+1 + 1

∆+3) > 0 as desired.

7. r = k + 1, k ≥ 3 and ℓ = ℓ′ = 1.

It is easy to see that 1
2H(G) = A+ 4

5 + 2
∆+1 +

2
∆+3 < A+ 4

4 + 4
∆+2 = 1

2H(G′).

8. r = k + 1, k ≥ 3 and ℓ, ℓ′ ≥ 2.

Then 1
2H(G) = A+ 4

5 + 2
3 + 2

∆+3 < A+ 6
4 + 2

∆+2 = 1
2H(G′) and we are done.

9. r = k + 1, k ≥ 3, ℓ = 1 and ℓ′ ≥ 2 (the case r = k + 1, k ≥ 3, ℓ ≥ 2 and ℓ′ = 1 is similar).

Then we have 1
2H(G) = A+ 4

5 + 1
3 + 1

∆+1 + 2
∆+3 < A+ 5

4 + 3
∆+2 = 1

2H(G′).

10. r ≥ k + 2, k ≥ 3 and ℓ = ℓ′ = 1.

Then we can assume that ω 6= xr. If ω 6= xk+1, then
1
2H(G) = A+ 6

5 + 2
∆+1 <

A+ 6
4 +

2
∆+2 = 1

2H(G′) and if ω = xk+1, then
1
2H(G) = A+ 5

5 +
2

∆+1 +
1

∆+3 <

A+ 5
4 + 3

∆+2 = 1
2H(G′).

11. r ≥ k + 2, k ≥ 3 and ℓ, ℓ′ ≥ 2.

Assume that ω 6= xr. If ω 6= xk+1, then
1
2 (H(G′)−H(G)) = (84 )− (65 +

2
3 ) > 0,

and if ω = xk+1 then 1
2 (H(G′) −H(G)) = (74 + 1

∆+2) − (55 + 2
3 + 1

∆+3) > 0 as

desired.

12. r ≥ k + 2, k ≥ 3, ℓ = 1 and ℓ′ ≥ 2 (the case r = k + 1, k ≥ 3, ℓ ≥ 2 and ℓ′ = 1 is similar).

Suppose that ω 6= xr. If ω 6= xk+1, then
1
2 (H(G′)−H(G)) = (74 +

1
∆+2 )− (65 +

1
3 + 1

∆+1) > 0. And if ω = xk+1, then
1
2 (H(G′) −H(G)) = (64 + 2

∆+2) − (55 +
1
3 + 1

∆+1 + 1
∆+3 ) > 0 as desired.
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Figure 9. The transformation used in proof of Lemma 4, Case ω ∈ Vcycle − V (P ).

Case 4. ω 6∈ Vcycle ∪ V (Q).

Let ωv1 . . . vt be a shortest path between ω and V (C1)∩V (C2) and let (ω =)u0u1 . . . uℓ
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and (ω =)u′
0u

′
1 . . . u

′
ℓ′ (ℓ, ℓ

′ ≥ 1) be two pendant paths beginning at ω. We consider

three subcases.

Subcase 4.1. vt ∈ {x1, xk}.

We may assume that vt = x1. We deduce from Corollary 3 that there is no pendant

path beginning at x1 or xk and so d(x1) = 4 and d(xk) = 3. Since G is a simple

graph, we can assume that s > k. Let G′ be the graph obtained from G− xkyk+1 by

adding the edge uℓyk+1 (see Figure 10 (a)). We show that H(G′) > H(G). Suppose

S = {uℓuℓ−1, xkxk−1, xkxk+1, xkyk+1}, S′ = {uℓuℓ−1, xkxk−1, xkxk+1, uℓyk+1} and

A =
∑

e∈E−S hω(e). We distinguish the following.

1. k = 2 and ℓ = 1.

Then we have 1
2H(G) = A + 2

5 + 1
7 + 1

∆+1 < A + 2
4 + 1

6 + 1
∆+2 = 1

2H(G′) as

desired.

2. k = 2 and ℓ ≥ 2.

It is easy to see that 1
2H(G) = A+ 2

5 + 1
7 + 1

3 < A+ 3
4 + 1

6 = 1
2H(G′).

3. k ≥ 3, r = k and ℓ = 1.

Then we have 1
2 (H(G′)−H(G)) = (24 +

1
6 +

1
∆+2 )−(25 +

1
7 +

1
∆+1) > 0 as desired.

4. k ≥ 3, r ≥ k + 1 and ℓ = 1.

Clearly, we have 1
2 (H(G′)−H(G)) = (34 + 1

∆+2 )− (35 + 1
∆+1 ) > 0 as desired.

5. k ≥ 3, r = k and ℓ ≥ 2.

It is easy to verify that 1
2 (H(G′)−H(G)) = (34 + 1

6 )− (25 + 1
7 + 1

3 ) > 0.

6. k ≥ 3, r ≥ k + 1 and ℓ ≥ 2.

Then we have 1
2 (H(G′)−H(G)) = (44 )− (35 + 1

3 ) > 0 as desired.

Subcase 4.2. vt ∈ V (Q)− {x1, xk}.

As Subcase 4.1, we can see that d(x1) = d(xk) = 3 and we may assume that s > k.

Let G′ be the graph obtained from G−xkyk+1 by adding the edge uℓyk+1 (see Figure

10 (b)). As Subcase 4.1, we can show that H(G′) > H(G).

Subcase 4.3. vt ∈ Vcycle − V (Q).

Suppose without loss of generality that vt ∈ V (C1). As Subcase 4.1, we can see that

d(x1) = d(xk) = d(vt) = 3. Since G is a simple graph, we must have k ≥ 3 or s > k.

Assume without loss of generality that s > k. Let G′ be the graph obtained from

G − {xkyk+1, x1ys} by adding two edges uℓys, u
′
ℓ′yk+1 (see Figure 10 (c)). We show

that H(G′) > H(G). Suppose

S = {x1x2, x1xr, x1ys, xkxk−1, xkxk+1, xkyk+1, uℓuℓ−1, u
′
ℓ′u

′
ℓ′−1},

S′ = {x1x2, x1xr, xkxk−1, xkxk+1, uℓys, u
′
ℓ′yk+1, uℓuℓ−1, u

′
ℓ′u

′
ℓ′−1}

and A =
∑

e∈E−S hω(e). We distinguish the following.



136 On the harmonic index of bicyclic graphs

1. k = 2, r = k + 1 and ℓ = ℓ′ = 1.

Then we have 1
2H(G) = A + 2

5 + 3
6 + 2

∆+1 < A + 3
4 + 2

5 + 2
∆+2 = 1

2H(G′) as

desired.

2. k = 2, r = k + 1 and ℓ, ℓ′ ≥ 2.

It is easy to see that 1
2H(G) = A+ 2

5 +
3
6 +

2
3 < A+ 5

4 +
2
5 = 1

2H(G′) as desired.

3. k = 2, r = k + 1 and ℓ = 1, ℓ′ ≥ 2 (the case k = 2, r = k + 1 and ℓ ≥ 1, ℓ′ = 1 is similar).

Then we have 1
2 (H(G′)−H(G)) = (44 + 2

5 + 1
∆+2)− (25 + 3

6 + 1
3 + 2

∆+1) > 0.

4. k = 2, r ≥ k + 2 and ℓ = ℓ′ = 1.

We may assume without loss of generality that vt 6= xr. If vt 6= xk+1, then we

have 1
2 (H(G′) − H(G)) = (54 + 2

∆+2 ) − (45 + 1
6 + 2

∆+1 ) > 0, and if vt = xk+1,

then 1
2 (H(G′)−H(G)) = (44 + 1

5 + 2
∆+2 )− (35 + 2

6 + 2
∆+1 ) > 0 as desired.

5. k = 2, r ≥ k + 2 and ℓ, ℓ′ ≥ 2.

As above, we may assume that vt 6= xr. If vt 6= xk+1, then we have 1
2 (H(G′)−

H(G)) = (74 ) − (45 + 1
6 + 2

3 ) > 0, and if vt = xk+1, then we have 1
2 (H(G′) −

H(G)) = (64 + 1
5 )− (35 + 2

6 + 2
3 ) > 0 as desired.

6. k = 2, r ≥ k + 2 and ℓ = 1, ℓ′ ≥ 2 (the case k = 2, r ≥ k + 2 and ℓ ≥ 1, ℓ′ = 1 is similar).

We may assume that vt 6= xr. If vt 6= xk+1, then we have 1
2 (H(G′) −H(G)) =

(54 +
1
5 +

1
∆+2 )−(45 +

1
6+

1
3+

1
∆+1) > 0, and if vt = xk+1 then 1

2 (H(G′)−H(G) =

(44 + 2
5 + 1

∆+2 )− (35 + 2
6 + 1

3 + 1
∆+1 ) > 0 as desired.

7. k ≥ 3, r = k + 1 and ℓ = ℓ′ = 1.

Then we have 1
2H(G) = A + 4

5 + 2
6 + 2

∆+1 < A + 4
4 + 2

5 + 2
∆+2 = 1

2H(G′) as

desired.

8. k ≥ 3, r = k + 1 and ℓ, ℓ′ ≥ 2.

It is easy to verify that 1
2H(G) = A + 4

5 + 2
6 + 2

3 < A + 6
4 + 2

5 = 1
2H(G′) as

desired.

9. k ≥ 3, r = k + 1 and ℓ = 1, ℓ′ ≥ 2 (the case k = 2, r = k + 1 and ℓ ≥ 1, ℓ′ = 1 is similar).

Then we have 1
2 (H(G′)−H(G)) = (54 + 2

5 + 1
∆+2)− (45 + 2

6 + 1
3 + 2

∆+1) > 0.

10. k ≥ 3, r ≥ k + 2 and ℓ = ℓ′ = 1.

We can assume that vt 6= xr. If vt 6= xk+1, then we have 1
2 (H(G′) −H(G)) =

(64 + 2
∆+2) − (65 + 2

∆+1) > 0, and if vt = xk+1 then 1
2 (H(G′) − H(G)) =

(54 + 1
5 + 2

∆+2 )− (55 + 1
6 + 2

∆+1) > 0 as desired.

11. k ≥ 3, r ≥ k + 2 and ℓ, ℓ′ ≥ 2.

As above, we may assume that vt 6= xr . If vt 6= xk+1, then we have 1
2H(G) =

A+ 6
5+

2
3 < A+ 8

4 = 1
2H(G′). If vt = xk+1, then we have 1

2H(G) = A+ 5
5+

1
6+

2
3 <

A+ 7
4 + 1

5 = 1
2H(G′).

12. k ≥ 3, r ≥ k + 2 and ℓ = 1, ℓ′ ≥ 2 (the case k = 2, r ≥ k + 2 and ℓ ≥ 1, ℓ′ = 1 is similar).

We may assume that vt 6= xr. If vt 6= xk+1, then
1
2 (H(G′) − H(G)) = (74 +
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1
∆+2)− (65 +

1
3 +

1
∆+1 ) > 0, and if vt = xk+1 then 1

2 (H(G′)−H(G)) = (64 +
1
5 +

1
∆+2)− (55 + 1

6 + 1
3 + 1

∆+1) > 0 as desired.

This completes the proof.
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Figure 10. The transformations used in proof of Lemma 4, Case ω 6∈ Vcycle.
Lemma 5. If G ∈ B∆

n is a graph with the maximum value of the harmonic index and
∆ ≥ 4, then V (C1) ∩ V (C2) = {ω}.

Proof. By Lemmas 3 and 4, we have |V (C1) ∩ V (C2)| = 1. Let V (C1) ∩ V (C2) =

{x1}. Suppose, to the contrary, that ω 6= x1. Since ∆(G) ≥ 4, there are two pendant

paths (ω =)u0u1 . . . uℓ and (ω =)u′
0u

′
1 . . . u

′
ℓ′ (ℓ, ℓ′ ≥ 1) beginning at ω. It follows

from Corollary 3 that there is no pendant path beginning at x1 and so d(x1) = 4

unless x1 = vt, and in this case d(x1) = 5. We consider two cases.

Case 1. ω ∈ Vcycle.

Suppose without loss of generality that ω ∈ V (C1). Since r ≥ 3, we may assume
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that ω 6= x2 (see Figure 11). Let G′ be the graph obtained from G− {x1y2, x1yr} by

adding the edges uℓy2 and u′
ℓ′ys. We show that H(G′) > H(G). We distinguish the

following.

1. ℓ = ℓ′ = 1.

If ω 6= xr , then
1
2 (H(G′)−H(G)) = (44 + 2

∆+2 )− (46 + 2
∆+1) > 0, and if ω = xr

then we have 1
2 (H(G′)−H(G)) = (34 +

3
∆+2)− (36 +

1
∆+4 +

2
∆+1 ) > 0 as desired.

2. ℓ, ℓ′ ≥ 2.

If ω 6= xr, then
1
2 (H(G′)−H(G)) = (64 )− (46 + 2

3 ) > 0, and if ω = xr, then we

have 1
2 (H(G′)−H(G)) = (54 + 1

∆+2 )− (36 + 1
∆+4 + 2

3 ) > 0.

3. ℓ = 1 and ℓ′ ≥ 2 (the case ℓ ≥ 2 and ℓ′ = 1 is similar).

If ω 6= xr , then we have 1
2 (H(G′) −H(G)) = (54 + 1

∆+2) − (46 + 1
3 + 1

∆+1 ) > 0,

and if ω = xr, then
1
2 (H(G′)−H(G)) = (44 +

2
∆+2 )− (36 +

1
3 +

1
∆+4 +

1
∆+1 ) > 0

as desired.

G
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xr

x2

x1

ys

uℓ uℓ−1

u′

ℓ′
u′

ℓ′−1

ω

G′

y2

xr

x2

x1

ys

uℓ uℓ−1

u′

ℓ′
u′

ℓ′−1

ω

Figure 11. The transformation used in proof of Lemma 5, Case ω ∈ Vcycle.
Case 2. ω 6∈ Vcycle.

Let ωv1 . . . vt be a shortest path between ω and V (C1) ∩ V (C2). We conclude from

Theorem D that there is no pendant path beginning at vt and this implies d(vt) = 5

when vt = x1 and d(vt) = 3 when vt 6= x1. Similarly, we have d(x1) = 4 when vt 6= x1.

We consider two subcases.

Subcase 2.1. vt 6= x1.

Suppose without loss of generality that vt ∈ V (C1). Since r ≥ 3, we may assume

that vt 6= x2 (see Figure 12). Let G′ be the graph obtained from G−{x1y2, x1yr} by

adding the edges uℓy2 and u′
ℓ′ys. We show that H(G′) > H(G). We distinguish the

following.

1. ℓ = ℓ′ = 1.

If vt 6= xr, then
1
2 (H(G′)−H(G)) = (44 +

2
∆+2 )− (46 +

2
∆+1 ) > 0 and if vt = xr,

then 1
2 (H(G′)−H(G)) = (34 + 1

5 + 3
∆+2 )− (36 + 1

7 + 2
∆+1 ) > 0 as desired.

2. ℓ, ℓ′ ≥ 2.

If vt 6= xr, then
1
2 (H(G′)−H(G)) = (64 )− (46 + 2

3 ) > 0, and if vt = xr , then we

have 1
2 (H(G′)−H(G)) = (54 + 1

5 )− (36 + 1
7 + 2

3 ) > 0 as desired.
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3. ℓ = 1 and ℓ′ ≥ 2 (the case ℓ ≥ 2 and ℓ′ = 1 is similar).

If vt 6= xr , then we have 1
2 (H(G′)−H(G)) = (54 + 1

∆+2)− (46 + 1
3 + 1

∆+1 ) > 0,

and if vt = xr , then
1
2 (H(G′)−H(G)) = (44 +

1
5 +

1
∆+2 )− (36 +

1
3 +

1
7 +

1
∆+1 ) > 0

as desired.

Subcase 2.2. vt = x1 (see Figure 12 (b)).

Let G′ be the graph obtained from G − {x1yr} by adding the edge uℓys. We show

that H(G′) > H(G). We distinguish the following.

1. ℓ = 1.

If ω 6= vt−1, then 1
2 (H(G′) − H(G)) = (56 + 1

∆+2) − (57 + 1
∆+1 ) > 0 and if

ω = vt−1, then
1
2 (H(G′)−H(G)) = (46 + 1

∆+4 + 1
∆+2 )− (47 + 1

∆+5 + 1
∆+1 ) > 0

as desired.

2. ℓ ≥ 2.

If ω 6= vt−1, then
1
2 (H(G′) −H(G)) = (56 + 1

4 ) − (57 + 1
3 ) > 0 and if ω = vt−1,

then 1
2 (H(G′)−H(G)) = (46 + 1

∆+4 + 1
4 )− (47 + 1

∆+5 + 1
3 ) > 0 as desired.

This completes the proof.
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Figure 12. The transformations used in proof of Lemma 5, Case ω 6∈ Vcycle.
Next result is an immediate consequence of Lemmas 2,3, 4 and 5.

Corollary 4. If G ∈ B4
n is a graph with the maximum value of the harmonic index, then

H(G) ≤
3n− 1

6
,

with equality if and only if G ∈ B̃(3)
n .

Corollary 5. If G ∈ B∆
n (∆ ≥ 4) is a graph with the maximum value of the harmonic

index, then V (C1) ∩ V (C2) = {ω} and d(v) ≤ 2 for each v ∈ V (G)− {ω}.
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Lemma 6. Let ∆ ≥ 5 and G ∈ B∆
n be a graph with the maximum value of the harmonic

index. If there is an edge e = uv belonging to either a cycle of length at least 4 or a pendant
path such that d(u) = d(v) = 2, then ω is not a support vertex.

Proof. Assume there is an edge e = uv belonging to either a cycle of length at

least 4 or a pendant path such that d(u) = d(v) = 2. Suppose, to the contrary,

that ω is adjacent to a leaf p. By Corollary 5, we have V (C1) ∩ V (C2) = {ω}. If

e belongs to a pendant path, then let d(v, ω) > d(u, ω), and if e belongs to a cycle

of length at four, then let z be the neighbor of v different from u with degree 2

(this is possible because the length of C1 is at least four). Assume G′ is the graph

obtained from G − {vu, vz} by adding the edges uz and pv (see Figure 13). We

show that H(G′) > H(G) which is a contradiction by the choice of G. We have
1
2 (H(G′)−H(G)) = (14 + 1

3 + 1
∆+2)− (24 + 1

∆+1) > 0 and the proof is complete.

ω

pz

au

v

G

ω

p
z

a

u

v
G′

Figure 13. The transformation used in proof of Lemma 6.

Theorem 1. If G ∈ B∆
n (∆ ≥ 5) is a graph with the maximum value of the harmonic

index, then

1

2
H(G) =






2∆−n−3
∆+1

+ n−∆+3
∆+2

+ 1
2
+ n−∆−1

3
if n ≤ 2∆ − 4

∆
∆+2

+ ∆−4
3

+ n−2∆+4
4

if n ≥ 2∆ − 3.

Proof. Let G ∈ B∆
n (∆ ≥ 5) be a graph with the maximum value of the harmonic

index. By Corollary 5, V (C1) ∩ V (C2) = {ω} and d(v) ≤ 2 for each vertex v ∈

V (G) − {ω}. First let ω be a support vertex. Then we conclude from Lemma 6 that

C1 and C2 are triangle and that each pendant path has length at mots two. Suppose

p is the number of pendant paths of length 2 beginning at ω. Then clearly p ≤ ∆− 5

and n = 5 +∆− 4 + p yielding n ≤ 2∆− 4. Now we have

1

2
H(G) =

1

2
+

p

3
+

∆− 4− p

∆+ 1
+

4 + p

∆+ 2
=

2∆− n− 3

∆+ 1
+

n−∆+ 3

∆+ 2
+

1

2
+

n−∆− 1

3
.

Now assume ω is not a support vertex. Obviously, n ≥ 2∆ − 3. On the other have,

we have hw(e) = 1
3 if e is a pendant edge, hw(e) = 1

∆+2 if e is incident to ω, and
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hw(e) =
1
4 otherwise. Thus

1

2
H(G) =

∆

∆+ 2
+

∆− 4

3
+

n− 2∆+ 4

4

and the proof is complete.

Considering the proof of Theorem 1, we introduce two family of bicyclic graphs.

Suppose ∆ ≥ 5. Let F∆
n be the set of bicyclic graphs of order n ≥ 6 obtained from

S++
5 by adding ∆ − 4 pendant paths of length at most two to the vertex x1 of S++

5

with degree four, such that x1 is a support vertex. Let E∆
n be the set of bicyclic

graphs of order n obtained from a graph G in B̃
(3)
n′ (n′ ≤ n− 2∆+8) by adding ∆− 4

pendant paths of length at least two to the vertex x1 of G with degree four.

Next result is an immediate consequence of Theorem 1 and its proof.

Corollary 6. If G ∈ B∆
n (∆ ≥ 5), then

1

2
H(G) ≤






2∆−n−3
∆+1

+ n−∆+3
∆+2

+ 1
2
+ n−∆−1

3
if n ≤ 2∆− 4

∆
∆+2

+ ∆−4
3

+ n−2∆+4
4

if n ≥ 2∆− 3,

with equality if and only if G ∈ F∆
n if n ≤ 2∆− 4 and G ∈ E∆

n if n ≥ 2∆− 3.
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