تعداد نشریات | 7 |
تعداد شمارهها | 63 |
تعداد مقالات | 480 |
تعداد مشاهده مقاله | 560,953 |
تعداد دریافت فایل اصل مقاله | 392,145 |
Complexity and approximation ratio of semitotal domination in graphs | ||
Communications in Combinatorics and Optimization | ||
مقاله 3، دوره 3، شماره 2، زمستان 2018، صفحه 143-150 اصل مقاله (334.87 K) | ||
نوع مقاله: Original paper | ||
شناسه دیجیتال (DOI): 10.22049/cco.2018.25987.1065 | ||
نویسندگان | ||
Zehui Shao ![]() | ||
Guangzhou University | ||
چکیده | ||
A set $S subseteq V(G)$ is a semitotal dominating set of a graph $G$ if it is a dominating set of $G$ and every vertex in $S$ is within distance 2 of another vertex of $S$. The semitotal domination number $gamma_{t2}(G)$ is the minimum cardinality of a semitotal dominating set of $G$. We show that the semitotal domination problem is APX-complete for bounded-degree graphs, and the semitotal domination problem in any graph of maximum degree $Delta$ can be approximated with an approximation ratio of $2+ln(Delta-1)$. | ||
کلیدواژهها | ||
semitotal domination؛ APX-complete؛ NP-completeness | ||
آمار تعداد مشاهده مقاله: 651 تعداد دریافت فایل اصل مقاله: 397 |