Some results on a supergraph of the comaximal ideal graph of a commutative ring

S. Visweswaran and J. Parejiya
Department of Mathematics, Saurashtra University, Rajkot, India 360005
s_visweswaran2006@yahoo.co.in
Received: 22 January 2018; Accepted: 6 August 2018
Published Online: 8 August 2018
Communicated by Stephan Wagner

Abstract

The rings considered in this article are commutative with identity which admit at least two maximal ideals. We denote the set of all maximal ideals of a ring R by $\operatorname{Max}(R)$ and we denote the Jacobson radical of R by $J(R)$. Let R be a ring such that $|\operatorname{Max}(R)| \geq 2$. Let $\mathbb{I}(R)$ denote the set of all proper ideals of R. In this article, we associate an undirected graph denoted by $\mathbb{N} \mathbb{C}(R)$ with a subcollection of ideals of R whose vertex set is $\{I \in \mathbb{I}(R) \mid I \nsubseteq J(R)\}$ and two distinct vertices I_{1}, I_{2} are adjacent in $\mathbb{I N C}(R)$ if and only if $I_{1} \nsubseteq I_{2}$ and $I_{2} \nsubseteq I_{1}$ (that is, I_{1} and I_{2} are not comparable under the inclusion relation). The aim of this article is to investigate the interplay between the graph-theoretic properties of $\mathbb{I N C}(R)$ and the ring-theoretic properties of R.

Keywords: Chained ring, diameter of a graph, bipartite graph, split graph, complemented graph

AMS Subject classification: 13A15, 05C25

1. Introduction

The rings considered in this article are commutative with identity which admit at least two maximal ideals. Let R be a ring. We denote the set of all maximal ideals of R by $\operatorname{Max}(R)$ and we denote the Jacobson radical of R by $J(R)$. As in [8], we denote the collection of all proper ideals of R by $\mathbb{I}(R)$. For a set A, we denote the cardinality of A by the notation $|A|$. This article is motivated by the interesting theorems proved by M. Ye and T. Wu in [17]. Let R be a ring with $|\operatorname{Max}(R)| \geq 2$. Inspired by the research work done on the comaximal graph of a ring in $[10,12-16]$ and the research work done on the annihilating-ideal graph of a ring in $[8,9]$. M. Ye and T. Wu in [17], introduced and investigated an undirected graph associated with R whose vertex set
equals $\{I \in \mathbb{I}(R) \mid I \nsubseteq J(R)\}$ and distinct vertices I_{1} and I_{2} are joined by an edge if and only if $I_{1}+I_{2}=R$. M. Ye and T. Wu called the graph introduced and studied by them in [17] as the comaximal ideal graph of R and denoted it by the notation $\mathscr{C}(R)$. For a ring R, we denote the set of all units of R by $U(R)$ and the set of all nonunits of R by $N U(R)$.
This article is also motivated by the inspiring theorems proved on cozero-divisor graph of a commutative ring by M. Afkhami and K. Khashyarmanesh in [1-3]. Let R be a ring. Recall from [1] that the cozero-divisor graph of R denoted by $\Gamma^{\prime}(R)$ is an undirected graph whose vertex set is $N U(R) \backslash\{0\}$ and distinct vertices a, b are joined by an edge if and only if $a \notin R b$ and $b \notin R a$. That is, a, b are joined by an edge if and only if $R a$ and $R b$ are not comparable under the inclusion relation.
Let R be a ring with $|\operatorname{Max}(R)| \geq 2$. Motivated by the research work on the comaximal ideal graph of a commutative ring in [17] and by the research work on the cozerodivisor graph of a ring in $[1-3]$, in this article, we introduce an undirected graph structure associated with R, denoted by $\mathbb{N} \mathbb{C}(R)$ whose vertex set equals $\{I \in \mathbb{I}(R) \mid I \nsubseteq$ $J(R)\}$ and distinct vertices I_{1}, I_{2} are joined by an edge if and only if $I_{1} \nsubseteq I_{2}$ and $I_{2} \nsubseteq I_{1}$. That is, I_{1} and I_{2} are joined by an edge if and only if I_{1} and I_{2} are not comparable under the inclusion relation. The aim of this article is to study the interplay between the graph-theoretic properties of $\mathbb{I N C}(R)$ and the ring-theoretic properties of R.
The graphs considered in this article are undirected and simple. Let $G=(V, E)$ be a graph. We denote the vertex set of G by $V(G)$ and the edge set of G by $E(G)$. If H is a subgraph of G, then we say that G is a supergraph of H. A subgraph H of G is said to be a spanning subgraph of G if $V(H)=V(G)$. Let R be a ring with $|\operatorname{Max}(R)| \geq 2$. Observe that $V(\mathscr{C}(R))=V(\mathbb{N} \mathbb{C}(R))=\{I \in \mathbb{I}(R) \mid I \nsubseteq J(R)\}$. Let $I_{1}, I_{2} \in V(\mathscr{C}(R))$ be such that $I_{1} \neq I_{2}$. If there is an edge of $\mathscr{C}(R)$ joining I_{1} and I_{2}, then $I_{1}+I_{2}=R$. Since $I_{1}, I_{2} \in \mathbb{I}(R)$, it follows that $I_{1} \nsubseteq I_{2}$ and $I_{2} \nsubseteq I_{1}$. Hence, there is an edge of $\mathbb{N} \mathbb{C}(R)$ joining I_{1} and I_{2}. Therefore, $\mathscr{C}(R)$ is a spanning subgraph of $\mathbb{N} \mathbb{C}(R)$. In this article, we study the influence of some graph parameters of $\mathbb{N} \mathbb{C}(R)$ on the structure of the ring R.
It is useful to recall the following definitions from graph theory before we describe the results that are proved in this article on $\mathbb{N} \mathbb{C}(R)$, where R is a ring with $|\operatorname{Max}(R)| \geq 2$. Let $G=(V, E)$ be a graph. Let $a, b \in V$ with $a \neq b$. Recall that the distance between a and b, denoted by $d(a, b)$ is defined as the length of a shortest path in in G if there exists such a path in G; otherwise, we define $d(a, b)=\infty$. We define $d(a, a)=0$. The diameter of G, denoted by $\operatorname{diam}(G)$ is defined as $\operatorname{diam}(G)=\sup \{d(a, b) \mid a, b \in V\}[6]$. A graph $G=(V, E)$ is said to be connected if for any distinct $a, b \in V$, there exists a path in G between a and b. Let $G=(V, E)$ be a connected graph. Let $a \in V$. Then the eccentricity of a, denoted by $e(a)$ is defined as $e(a)=\sup \{d(a, b) \mid b \in V\}$. The radius of G, denoted by $r(G)$ is defined as $r(G)=\min \{e(a) \mid a \in V\}$ [6]. Let $G=(V, E)$ be a graph. Recall from [[6], page 159] that the girth of G, denoted by $\operatorname{girth}(G)$ is defined as the length of a shortest cycle in G if G admits at least one cycle. If G does not admit any cycle, then we set $\operatorname{girth}(G)=\infty$. A simple graph $G=(V, E)$ is said to be complete if every pair of distinct vertices of G are adjacent
in G [[6], Definition 1.1.11]. Recall from [[6], Definition 1.2.2] that a clique of G is a complete subgraph of G. A subset S of G is said to be an independent set if no two members of S are adjacent in G.
A graph $G=(V, E)$ is said to be bipartite if V can be partitioned into nonempty subsets V_{1} and V_{2} such that each edge of G has one end in V_{1} and the other in V_{2}. A bipartite graph with vertex partition V_{1} and V_{2} is said to be complete if each element of V_{1} is adjacent to every element of V_{2}. A complete bipartite graph with vertex partition V_{1} and V_{2} is called a star if either $\left|V_{1}\right|=1$ or $\left|V_{2}\right|=1$ [[6], Definition 1.1.12]. Let I be an ideal of a ring R. As in [15], we denote $\{\mathfrak{m} \in \operatorname{Max}(R) \mid \mathfrak{m} \supseteq I\}$ by $M(I)$. The Krull dimension of a ring R is simply referred to as the dimension of R and is denoted by the notation $\operatorname{dim} R$. A ring which has only one maximal ideal is referred to as a quasilocal ring. A ring which has only a finite number of maximal ideals is referred to as a semiquasilocal ring. A Noetherian quasilocal (respectively, semiquasilocal) ring is referred to as a local (respectively, semilocal) ring. Recall from [[11], page 184] that a ring R is said to be a chained ring if the set of ideals of R is linearly ordered by inclusion. Whenever a set A is a subset of a set B and $A \neq B$, then we denote it symbolically by the notation $A \subset B$. For $n \in \mathbb{N}$ with $n \geq 2$, we denote the ring of integers modulo n by \mathbb{Z}_{n}.
Let R be a ring such that $|\operatorname{Max}(R)| \geq 2$. In Section 2 of this article, some basic properties of $\mathbb{I N C}(R)$ are proved. It is proved in Lemma 1 that $\mathbb{I N C}(R)$ is connected and $\operatorname{diam}(\mathbb{N} \mathbb{C}(R)) \leq 2$. If $|\operatorname{Max}(R)| \geq 3$, then it is shown that $\operatorname{diam}(\mathbb{N} \mathbb{C}(R))=$ $r(\mathbb{N} \mathbb{C}(R))=2$ (see, Lemmas 1 and 2). Let R be a ring with $\operatorname{Max}(R)=\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}\right\}$. We denote $\left\{I \in V(\mathbb{N} \mathbb{C}(R)) \mid M(I)=\left\{\mathfrak{m}_{i}\right\}\right\}$ by V_{i} for each $i \in\{1,2\}$. It is proved in Lemma 3 that $\operatorname{diam}(\mathbb{I N C}(R))=r(\mathbb{N} \mathbb{C}(R))=2$ if $\left|V_{i}\right| \geq 2$ for each $i \in\{1,2\}$. It is shown in Proposition 1 that $\mathbb{N} \mathbb{C}(R)$ is complete if and only if $R \cong F_{1} \times F_{2}$ as rings, where F_{i} is a field for each $i \in\{1,2\}$. It is observed in Lemma 4 that if $|\operatorname{Max}(R)| \geq 3$, then $\mathscr{C}(R) \neq \mathbb{N} \mathbb{C}(R)$. The rest of Section 2 is devoted to characterizing rings R with $|\operatorname{Max}(R)|=2$ such that $\mathscr{C}(R)=\mathbb{I N C}(R)$. If $|\operatorname{Max}(R)|=2$, then we know from $(3) \Rightarrow(1)$ of [[17], Theorem 4.5] that $\mathscr{C}(R)$ is a complete bipartite graph. Hence, we focus on characterizing rings R such that $\mathbb{N N} \mathbb{C}(R)$ is a bipartite graph. If $\mathbb{N} \mathbb{C}(R)$ is bipartite, then it is verified in Proposition 2 that $\mathbb{N} \mathbb{C}(R)=\mathscr{C}(R)$ is a complete bipartite graph. Let $R=R_{1} \times R_{2}$, where $\left(R_{i}, \mathfrak{m}_{i}\right)$ is a quasilocal ring for each $i \in\{1,2\}$. It is shown in Proposition 3 that $\mathbb{N} \mathbb{C}(R)$ is a bipartite graph if and only if R_{i} is a chained ring for each $i \in\{1,2\}$. For a ring R with $|\operatorname{Max}(R)| \geq 2$, it is proved in Proposition 4 that $\mathbb{I N C}(R)$ is a star graph if and only if $R \cong R_{1} \times R_{2}$ as rings, where R_{i} is a chained ring for each $i \in\{1,2\}$ with R_{i} is a field for at least one $i \in\{1,2\}$. If $\operatorname{dim} R=0$, then it is shown in Proposition 5 that $\mathbb{N} \mathbb{C}(R)$ is a bipartite graph if and only if $R \cong R_{1} \times R_{2}$ as rings, where R_{i} is a zero-dimensional chained ring for each $i \in\{1,2\}$. In Example 1 (respectively, in Example 2), an example is provided to illustrate that $(i) \Rightarrow(i i)$ of Proposition 5 can fail to hold if the hypothesis $\operatorname{dim} R=0$ is omitted in Proposition 5. For a ring R with $|\operatorname{Max}(R)| \geq 2$, it is verified in Proposition 6 that $\operatorname{girth}(\mathbb{N} \mathbb{C}(R)) \in\{3,4, \infty\}$. Moreover, it is proved in Proposition 6 that $\operatorname{girth}(\mathbb{I N C}(R))=\infty$ if and only if $R \cong R_{1} \times R_{2}$ as rings, where R_{1} is a field and R_{2} is a chained ring.

Let $G=(V, E)$ be a graph. Recall that G is a split graph if V is the disjoint union of two nonempty subsets K and S such that the subgraph of G induced on K is complete and S is an independent set of G. In [12], M. I. Jinnah and S.C. Mathew classified rings R such that the comaximal graph of R is a split graph. In Section 3 of this article, we try to characterize rings R with $|\operatorname{Max}(R)| \geq 2$ such that $\mathbb{N} \mathbb{N} \mathbb{C}(R)$ is a split graph. It is proved in Proposition 7 that if $\mathbb{N} \mathbb{C}(R)$ is a split graph, then $|\operatorname{Max}(R)|=2$. Let R be a ring such that $|\operatorname{Max}(R)|=2$. It is shown in Theorem 2 that $\mathbb{I N C}(R)$ is a split graph if and only if $R \cong R_{1} \times R_{2}$ as rings, where R_{i} is a quasilocal ring for each $i \in\{1,2\}$ with R_{i} is a field for at least one $i \in\{1,2\}$ and if R_{i} is not a field for some $i \in\{1,2\}$, then either R_{i} is a chained ring or $\mathbb{I}\left(R_{i}\right)=W_{1} \cup W_{2}$ satisfying the property that $\left|W_{k}\right| \geq 2$ for each $k \in\{1,2\}$ such that W_{1} is a chain under the inclusion relation and no two distinct members of W_{2} are comparable under the inclusion relation. Some examples are given in Example 4 to illustrate Theorem 2.
Let $G=(V, E)$ be a graph. Recall from [4] that two distinct vertices u, v of G are said to be orthogonal, written $u \perp v$ if u and v are adjacent in G and there is no vertex of G which is adjacent to both u and v in G; that is, the edge $u-v$ is not the edge of any triangle in G. Let $u \in V$. A vertex v of G is said to be a complement of u if $u \perp v$ [4]. Moreover, recall from [4] that G is complemented if each vertex of G admits a complement in G. Furthermore, G is said to be uniquely complemented if G is complemented and whenever the vertices u, v, w of G are such that $u \perp v$ and $u \perp w$, then a vertex x of G is adjacent to v in G if and only if x is adjacent to w in G. Let R be a ring which is not an integral domain. The authors of [4] determined in Section 3 of [4] rings R such that $\Gamma(R)$ is complemented or uniquely complemented, where $\Gamma(R)$ is the zero-divisor graph of R. Let R be a ring with $|\operatorname{Max}(R)| \geq 2$. In [[15], Proposition 3.11], it was shown that the subgraph of the comaximal graph of R induced on $N U(R) \backslash J(R)$ is complemented if and only if $\operatorname{dim}\left(\frac{R}{J(R)}\right)=0$. In Section 4 of this article, we try to characterize rings R with $|\operatorname{Max}(R)| \geq 2$ such that $\mathbb{I N C}(R)$ is complemented. It is proved in Lemma 10 that if $\mathbb{N} \mathbb{C}(R)$ is complemented, then $|\operatorname{Max}(R)| \leq 3$. Let R be a ring with $|\operatorname{Max}(R)|=2$. Let $\operatorname{Max}(R)=\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}\right\}$. Let $V_{1}=\left\{I \in \mathbb{I}(R) \mid M(I)=\left\{\mathfrak{m}_{1}\right\}\right\}$ and let $V_{2}=\left\{J \in \mathbb{I}(R) \mid M(J)=\left\{\mathfrak{m}_{2}\right\}\right\}$. If $\left|V_{i}\right|=1$ for each $i \in\{1,2\}$, (it is noted in Remark 3 that this can happen if and only if $R \cong F_{1} \times F_{2}$ as rings, where F_{i} is a field for each $i \in\{1,2\}$) then it is clear that $\mathbb{N} \mathbb{C}(R)$ is a complete graph on two vertices and hence, $\mathbb{I N C}(R)$ is complemented. Suppose that $\left|V_{1}\right|=1$ and $\left|V_{2}\right| \geq 2$. Then it is shown in Proposition 9 that $\mathbb{N} \mathbb{C}(R)$ is complemented if and only if $R \cong R_{1} \times R_{2}$ as rings, where R_{1} is a chained ring which is not a field and R_{2} is a field. Suppose that $\left|V_{i}\right| \geq 2$ for each $i \in\{1,2\}$. It is proved in Proposition 10 that $\mathbb{N} \mathbb{C}(R)$ is complemented if and only if $\mathbb{N} \mathbb{C}(R)$ is a complete bipartite graph. We are not able to characterize rings R with $|\operatorname{Max}(R)|=2$ such that $\left|V_{i}\right| \geq 2$ for each $i \in\{1,2\}$ and $\mathbb{I N} \mathbb{C}(R)$ is complemented. However, if $\operatorname{dim} R=0$, it is shown in Proposition 11 that R has the above mentioned properties if and only if $R \cong R_{1} \times R_{2}$ as rings, where R_{i} is a chained ring which is not a field for each $i \in\{1,2\}$. In Remark 4, an example is mentioned to illustrate that the hypothesis $\operatorname{dim} R=0$ cannot be omitted in Proposition 11. Let R be a ring such that $|\operatorname{Max}(R)|=3$. It is proved in Theorem 3 that $\mathbb{N} \mathbb{C}(R)$ is complemented if and only if $R \cong F_{1} \times F_{2} \times F_{3}$
as rings, where F_{i} is a field for each $i \in\{1,2,3\}$.

2. Basic properties of $\mathbb{N} \mathbb{C}(R)$

In this section we investigate some basic properties of $\mathbb{N} \mathbb{C}(R)$.

Lemma 1. Let R be a ring such that $|\operatorname{Max}(R)| \geq 2$. Then $\mathbb{N} \mathbb{C}(R)$ is connected and $\operatorname{diam}(\mathbb{N} \mathbb{C}(R)) \leq 2$. If $|\operatorname{Max}(R)| \geq 3$, then $\operatorname{diam}(\mathbb{N N C}(R))=2$.

Proof. Let $I_{1}, I_{2} \in V(\mathbb{N C}(R))$ be such that $I_{1} \neq I_{2}$. Suppose that I_{1} and I_{2} are not adjacent in $\mathbb{N} \mathbb{C}(R)$. Then either $I_{1} \subset I_{2}$ or $I_{2} \subset I_{1}$. Without loss of generality, we can assume that $I_{1} \subset I_{2}$. Since $I_{1} \in V(\mathbb{N} \mathbb{C}(R))$, there exists $\mathfrak{m} \in \operatorname{Max}(R)$ such that $I_{1} \nsubseteq \mathfrak{m}$. As $I_{1} \subset I_{2}$, it follows that $I_{2} \nsubseteq \mathfrak{m}$. Thus $I_{i}+\mathfrak{m}=R$ for each $i \in\{1,2\}$ and so, $I_{1}-\mathfrak{m}-I_{2}$ is a path in $\mathscr{C}(R)$ and hence, it is a path in $\mathbb{N} \mathbb{C}(R)$. This proves that $\mathbb{N} \mathbb{C}(R)$ is connected and $\operatorname{diam}(\mathbb{I N C}(R)) \leq 2$.
Suppose that $|\operatorname{Max}(R)| \geq 3$. Let $\left\{\mathfrak{m}_{i} \mid i \in\{1,2,3\}\right\} \subseteq \operatorname{Max}(R)$. Note that $\mathfrak{m}_{1}, \mathfrak{m}_{1} \cap$ $\mathfrak{m}_{2} \in V(\mathbb{I N C}(R))$ and as $\mathfrak{m}_{1} \cap \mathfrak{m}_{2} \subset \mathfrak{m}_{1}$, it follows that \mathfrak{m}_{1} and $\mathfrak{m}_{1} \cap \mathfrak{m}_{2}$ are not adjacent in $\mathbb{N} \mathbb{C}(R)$. Hence, we obtain that $\operatorname{diam}(\mathbb{N} \mathbb{C}(R)) \geq 2$ and so, $\operatorname{diam}(\mathbb{N} \mathbb{C}(R))=2$.

Lemma 2. Let R be a ring such that $|\operatorname{Max}(R)| \geq 3$. Then $r(\mathbb{N} \mathbb{C}(R))=2$.

Proof. We know from Lemma 1 that $\mathbb{N} \mathbb{C}(R)$ is connected and $\operatorname{diam}(\mathbb{N} \mathbb{C}(R))=2$. Let $I \in V(\mathbb{N} \mathbb{C}(R))$. Then $I \subseteq \mathfrak{m}$ for some $\mathfrak{m} \in \operatorname{Max}(R)$. We consider the following cases.
Case 1. $I=\mathfrak{m}$.
Let $\mathfrak{m}^{\prime} \in \operatorname{Max}(R)$ be such that $\mathfrak{m}^{\prime} \neq \mathfrak{m}$. As $|\operatorname{Max}(R)| \geq 3, \mathfrak{m} \cap \mathfrak{m}^{\prime} \in V(\mathbb{N} \mathbb{N}(R))$. From $\mathfrak{m} \cap \mathfrak{m}^{\prime} \subset \mathfrak{m}$, we obtain that \mathfrak{m} and $\mathfrak{m} \cap \mathfrak{m}^{\prime}$ are not adjacent in $\mathbb{N} \mathbb{C}(R)$. Hence, $d\left(\mathfrak{m}, \mathfrak{m} \cap \mathfrak{m}^{\prime}\right) \geq 2$ in $\mathbb{N} \mathbb{C}(R)$. This shows that $e(\mathfrak{m}) \geq 2$ in $\mathbb{N} \mathbb{C}(R)$.
Case 2. $I \subset \mathfrak{m}$.
Now, I and \mathfrak{m} are not adjacent in $\mathbb{N} \mathbb{C}(R)$ and so, $d(I, \mathfrak{m}) \geq 2$ in $\mathbb{N} \mathbb{C}(R)$. Hence, $e(I) \geq 2$ in $\mathbb{I N} \mathbb{C}(R)$.
This proves that $e(I) \geq 2$ in $\mathbb{N} \mathbb{C}(R)$ for any $I \in V(\mathbb{N} \mathbb{C}(R))$ and from $\operatorname{diam}(\mathbb{N} \mathbb{C}(R))=2$, it follows that $e(I)=2$ for each $I \in \mathbb{N} \mathbb{C}(R)$. Therefore, $r(\mathbb{N} \mathbb{C}(R))=2$.

Lemma 3. Let R be a ring such that $|\operatorname{Max}(R)|=2$. Let $\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}\right\}$ denote the set of all maximal ideals of R. Let $V_{1}=\left\{I \in V(\mathbb{N} \mathbb{C}(R)) \mid M(I)=\left\{\mathfrak{m}_{1}\right\}\right\}$ and let $V_{2}=$ $\left\{J \in V(\mathbb{N} \mathbb{N}(R)) \mid M(J)=\left\{\mathfrak{m}_{2}\right\}\right\}$. If $\left|V_{i}\right| \geq 2$ for each $i \in\{1,2\}$, then $\operatorname{diam}(\mathbb{N N C}(R))=$ $r(\mathbb{N C}(R))=2$.

Proof. We know from Lemma 1 that $\mathbb{N} \mathbb{C}(R)$ is connected and $\operatorname{diam}(\mathbb{N} \mathbb{C}(R)) \leq 2$. Suppose that $\left|V_{i}\right| \geq 2$ for each $i \in\{1,2\}$. Note that $\mathfrak{m}_{i} \in V_{i}$ for each $i \in\{1,2\}$.

Observe that there exist $I_{1} \in V_{1}$ such that $I_{1} \neq \mathfrak{m}_{1}$ and $I_{2} \in V_{2}$ such that $I_{2} \neq \mathfrak{m}_{2}$. It is clear that \mathfrak{m}_{1} and any $I \in V_{1} \backslash\left\{\mathfrak{m}_{1}\right\}$ are not adjacent in $\mathbb{N} \mathbb{C}(R)$. Therefore, $e(A) \geq 2$ in $\mathbb{N} \mathbb{C}(R)$ for any $A \in V_{1}$. If J is any element of V_{2} with $J \neq \mathfrak{m}_{2}$, then J and \mathfrak{m}_{2} are not adjacent in $\mathbb{N N C}(R)$. Hence, $e(B) \geq 2$ in $\mathbb{N} \mathbb{C}(R)$ for any $B \in V_{2}$. As $V(\mathbb{N N C}(R))=V_{1} \cup V_{2}$ and $\operatorname{diam}(\mathbb{I N C}(R)) \leq 2$, we obtain that $e(A)=2$ for any $A \in V(\mathbb{N} \mathbb{C}(R))$. Therefore, we obtain that $\operatorname{diam}(\mathbb{N} \mathbb{C}(R))=r(\mathbb{N} \mathbb{C}(R))=2$.

Let R be a ring such that $|\operatorname{Max}(R)| \geq 2$. In Proposition 1, we characterize such rings R whose $\mathbb{I N C}$ graph is complete.

Proposition 1. Let R be a ring such that $|\operatorname{Max}(R)| \geq 2$. The following statements are equivalent:
(i) $\mathbb{N} \mathbb{N}(R)$ is complete.
(ii) $R \cong F_{1} \times F_{2}$ as rings, where F_{i} is a field for each $i \in\{1,2\}$.

Proof. $\quad(i) \Rightarrow(i i)$ We are assuming that $\mathbb{I N C}(R)$ is complete. Hence, we obtain from Lemma 1 that $|\operatorname{Max}(R)|=2$. Let $\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}\right\}$ denote the set of all maximal ideals of R. Let V_{1}, V_{2} be as in the statement of Lemma 3. Note that $\mathfrak{m}_{i} \in V_{i}$ for each $i \in\{1,2\}$. Let $i \in\{1,2\}$. Let $I \in V_{i}$. We claim that $I=\mathfrak{m}_{i}$. Suppose that $I \neq \mathfrak{m}_{i}$. Then $I \subset \mathfrak{m}_{i}$ and so, I and \mathfrak{m}_{i} are not adjacent in $\mathbb{N} \mathbb{C}(R)$. This is in contradiction to the assumption that $\mathbb{I N C}(R)$ is complete. Therefore, $I=\mathfrak{m}_{i}$ and this shows that $\left|V_{i}\right|=1$ for each $i \in\{1,2\}$. Note that $V_{i}=\left\{\mathfrak{m}_{i}\right\}$ for each $i \in\{1,2\}$. Let $a \in \mathfrak{m}_{1} \backslash \mathfrak{m}_{2}$. Then $R a \in V_{1}$ and so, $R a=\mathfrak{m}_{1}$. Let $b \in \mathfrak{m}_{2} \backslash \mathfrak{m}_{1}$. Then $R b \in V_{2}$ and so, $\mathfrak{m}_{2}=R b$. Now, for each $i \in\{1,2\}, \mathfrak{m}_{i}^{2} \in V_{i}$ and hence, $\mathfrak{m}_{i}=\mathfrak{m}_{i}^{2}$. Therefore, $\mathfrak{m}_{1}=R a=R a^{2}$ and $\mathfrak{m}_{2}=R b=R b^{2}$. Thus we get that $R a b=R a^{2} b^{2}$. This implies that $a b=r a^{2} b^{2}$ for some $r \in R$ and hence, $a b(1-r a b)=0$. Since $a b \in \mathfrak{m}_{1} \cap \mathfrak{m}_{2}=J(R)$, we obtain that $1-r a b \in U(R)$ and so, $a b=0$. Hence, $\mathfrak{m}_{1} \mathfrak{m}_{2}=R a b=(0)$. As $\mathfrak{m}_{1}+\mathfrak{m}_{2}=R$, it follows from [5, Proposition $1.10(i)]$ that $\mathfrak{m}_{1} \cap \mathfrak{m}_{2}=\mathfrak{m}_{1} \mathfrak{m}_{2}$. Therefore, $\mathfrak{m}_{1} \cap \mathfrak{m}_{2}=(0)$. Now, it follows from the Chinese remainder theorem [[5], Proposition 1.10(ii) and (iii)] that $R \cong \frac{R}{\mathfrak{m}_{1}} \times \frac{R}{\mathfrak{m}_{2}}$, as desired.
(ii) $\Rightarrow(i)$ We are assuming that $R \cong F_{1} \times F_{2}$ as rings, where F_{1} and F_{2} are fields. Let us denote the ring $F_{1} \times F_{2}$ by T. Note that $V(\mathbb{N} \mathbb{C}(T))=\left\{(0) \times F_{2}, F_{1} \times(0)\right\}$ and $(0) \times F_{2}$ and $F_{1} \times(0)$ are adjacent in $\mathscr{C}(T)$ and so, they are adjacent in $\mathbb{N} \mathbb{C}(T)$. This proves that $\mathbb{N} \mathbb{C}(T)$ is complete and therefore, we obtain that $\mathbb{N N C}(R)$ is complete.

Let R be a ring such that $|\operatorname{Max}(R)| \geq 2$. We want to determine such rings R which satisfies $\mathscr{C}(R)=\mathbb{I N} \mathbb{C}(R)$.

Lemma 4. Let R be a ring such that $|\operatorname{Max}(R)| \geq 3$. Then $\mathscr{C}(R) \neq \mathbb{N} \mathbb{C}(R)$.

Proof. Let $\left\{\mathfrak{m}_{i} \mid i \in\{1,2,3\}\right\} \subseteq \operatorname{Max}(R)$. Let $I_{1}=\mathfrak{m}_{1} \cap \mathfrak{m}_{2}$ and let $I_{2}=\mathfrak{m}_{1} \cap \mathfrak{m}_{3}$. Note that $I_{1}, I_{2} \in V(\mathscr{C}(R))=V(\mathbb{N} \mathbb{C}(R)), I_{1} \neq I_{2}$, and as $I_{1}+I_{2} \subseteq \mathfrak{m}_{1}$, it follows that I_{1} and I_{2} are not adjacent in $\mathscr{C}(R)$. It is clear that $I_{1} \nsubseteq I_{2}$ and $I_{2} \nsubseteq I_{1}$. Hence, I_{1} and I_{2} are adjacent in $\mathbb{I N C}(R)$. This proves that $\mathscr{C}(R) \neq \mathbb{N} \mathbb{C}(R)$.

Remark 1. Let R be a ring such that $|\operatorname{Max}(R)| \geq 2$. If $\mathscr{C}(R)=\mathbb{N} \mathbb{C}(R)$, then we know from Lemma 4 that $|\operatorname{Max}(R)|=2$. If $|\operatorname{Max}(R)|=2$, then it follows from (3) $\Rightarrow(2)$ of [[17], Theorem 4.5] that $\mathscr{C}(R)$ is a bipartite graph. Thus if $\mathscr{C}(R)=\mathbb{N} \mathbb{C}(R)$, then $\mathbb{N N C}(R)$ is necessarily a bipartite graph.

Motivated by the results proved on $\mathscr{C}(R)$ in Section 4 of [17], we next try to characterize rings R with $|\operatorname{Max}(R)| \geq 2$ such that $\mathbb{N} \mathbb{C}(R)$ is bipartite.

Lemma 5. Let R be a ring such that $|\operatorname{Max}(R)| \geq 2$. If $\mathbb{N N C}(R)$ is bipartite, then $|\operatorname{Max}(R)|=2$.

Proof. It is already noted in the introduction that $\mathscr{C}(R)$ is a spanning subgraph of $\mathbb{I N C}(R)$. Thus if $\mathbb{N} \mathbb{C}(R)$ is bipartite, then $\mathscr{C}(R)$ is also a bipartite graph. Hence, we obtain from $(2) \Rightarrow(3)$ of $[[17]$, Theorem 4.5] that $|\operatorname{Max}(R)|=2$.

We use Observation 1 in the proof of Proposition 2. As this observation is easy to prove, we omit its proof.

Observation 1. Let H be a spanning subgraph of a graph $G=(V, E)$. Suppose that H is a complete bipartite graph. If G is a bipartite graph, then $H=G$.

Proposition 2. Let R be a ring with $|\operatorname{Max}(R)| \geq 2$. The following statements are equivalent:
(i) $\mathbb{N} \mathbb{N}(R)$ is a bipartite graph.
(ii) $\mathbb{N N C}(R)=\mathscr{C}(R)$ is a complete bipartite graph.
(iii) $\mathbb{N} \mathbb{N}(R)$ is a complete bipartite graph.

Proof. $\quad(i) \Rightarrow(i i)$ Assume that $\mathbb{I N} \mathbb{C}(R)$ is a bipartite graph. Then we know from Lemma 5 that $|\operatorname{Max}(R)|=2$. Hence, we obtain from $(3) \Rightarrow(1)$ of [[17], Theorem 4.5] that $\mathscr{C}(R)$ is a complete bipartite graph. As $\mathscr{C}(R)$ is a spanning subgraph of $\mathbb{N} \mathbb{C}(R)$, we obtain from Observation 1 that $\mathbb{N} \mathbb{C}(R)=\mathscr{C}(R)$. Therefore, $\mathbb{N} \mathbb{C}(R)=\mathscr{C}(R)$ is a complete bipartite graph.
$(i i) \Rightarrow(i i i)$ This is clear.
$(i i i) \Rightarrow(i)$ This is clear.

Proposition 3. Let $\left(R_{i}, \mathfrak{m}_{i}\right)$ be a quasilocal ring for each $i \in\{1,2\}$ and let $R=R_{1} \times R_{2}$. The following statements are equivalent:
(i) $\mathbb{N N C}(R)$ is a bipartite graph.
(ii) $\mathbb{N} \mathbb{C}(R)=\mathscr{C}(R)$ is a complete bipartite graph.
(iii) R_{i} is a chained ring for each $i \in\{1,2\}$.

Proof. Note that $|\operatorname{Max}(R)|=2$ and $\operatorname{Max}(R)=\left\{\mathfrak{M}_{1}=\mathfrak{m}_{1} \times R_{2}, \mathfrak{M}_{2}=R_{1} \times\right.$ $\left.\mathfrak{m}_{2}\right\}$. Observe that $\mathscr{C}(R)$ is a complete bipartite graph with vertex partition V_{1}
and V_{2}, where $V_{1}=\left\{I \times R_{2} \mid I\right.$ is a proper ideal of $\left.R_{1}\right\}$ and $V_{2}=\left\{R_{1} \times J \mid\right.$ J is a proper ideal of $\left.R_{2}\right\}$.
(i) \Rightarrow (ii) This follows from $(i) \Rightarrow(i i)$ of Proposition 2.
(ii) \Rightarrow (iii) Let I_{1}, I_{2} be distinct proper ideals of R_{1}. Now, $A_{i}=I_{i} \times R_{2} \in V_{1}$ for each $i \in\{1,2\}$ and $A_{1} \neq A_{2}$. Hence, A_{1} and A_{2} are not adjacent in $\mathbb{N} \mathbb{C}(R)$. Therefore, either $A_{1}=I_{1} \times R_{2} \subset A_{2}=I_{2} \times R_{2}$ or $A_{2} \subset A_{1}$. This implies that either $I_{1} \subset I_{2}$ or $I_{2} \subset I_{1}$. This shows that R_{1} is a chained ring. Similarly, using the fact that no two distinct elements of V_{2} are adjacent in $\mathbb{N} \mathbb{C}(R)$, it can be shown that R_{2} is a chained ring.
$($ iii $) \Rightarrow(i)$ Assume that R_{i} is a chained ring for each $i \in\{1,2\}$. Note that if A_{1}, A_{2} are any two distinct members of V_{1}, then $A_{i}=I_{i} \times R_{2}$ for some proper ideal I_{i} of R_{1} for each $i \in\{1,2\}$. It is clear that $I_{1} \neq I_{2}$. Since R_{1} is a chained ring, it follows that either $I_{1} \subset I_{2}$ or $I_{2} \subset I_{1}$ and so, either $A_{1} \subset A_{2}$ or $A_{2} \subset A_{1}$. Hence, A_{1} and A_{2} are not adjacent in $\mathbb{N} \mathbb{C}(R)$. Similarly, using the hypothesis that R_{2} is a chained ring, it can be shown that no distinct members of V_{2} are adjacent in $\mathbb{N} \mathbb{C}(R)$. Let $A \in V_{1}$ and $B \in V_{2}$. Then A and B are adjacent in $\mathscr{C}(R)$ and so, they are adjacent in $\mathbb{N} \mathbb{C}(R)$. Hence, it follows that $\mathbb{N} \mathbb{C}(R)$ is a complete bipartite graph with vertex partition V_{1} and V_{2}.

Corollary 1. Let $\left(R_{i}, \mathfrak{m}_{i}\right)$ be a quasilocal ring for each $i \in\{1,2\}$. Let $R=R_{1} \times R_{2}$. Then the following statements are equivalent:
(i) $\mathbb{I N C}(R)$ is a star graph.
(ii) $\mathscr{C}(R)=\mathbb{N} \mathbb{N}(R)$ is a star graph.
(iii) R_{i} is a chained ring for each $i \in\{1,2\}$ with R_{i} is a field for at least one $i \in\{1,2\}$.

Proof. Note that $\mathscr{C}(R)$ is a complete bipartite graph with vertex partition V_{1} and V_{2}, where $V_{1}=\left\{I \times R_{2} \mid I\right.$ is a proper ideal of $\left.R_{1}\right\}$ and $V_{2}=\left\{R_{1} \times J \mid\right.$ J is a proper ideal of $\left.R_{2}\right\}$.
$(i) \Rightarrow$ (ii) Since any star graph is a bipartite graph, it follows from $(i) \Rightarrow$ (ii) of Proposition 3 that $\mathscr{C}(R)=\mathbb{N} \mathbb{C}(R)$ is a star graph.
$(i i) \Rightarrow(i i i)$ We know from $(i i) \Rightarrow(i i i)$ of Proposition 3 that R_{i} is a chained ring for each $i \in\{1,2\}$. Since $\mathscr{C}(R)$ is a star graph, it follows that $\left|V_{i}\right|=1$ for at least one $i \in\{1,2\}$. Without loss of generality, we can assume that $\left|V_{1}\right|=1$. Then we obtain that (0) is the only proper ideal of R_{1} and so, R_{1} is a field.
$($ iii $) \Rightarrow(i)$ It is shown in $(i i i) \Rightarrow(i)$ of Proposition 3 that $\mathbb{I N C}(R)$ is a complete bipartite graph with vertex partition V_{1} and V_{2}. Without loss of generality, we can assume that R_{1} is a field. Hence, $\left|V_{1}\right|=1$ and so, $\mathbb{I N C}(R)$ is a star graph.

Let R be a ring such that $|\operatorname{Max}(R)| \geq 2$. In Proposition 4, we characterize such rings R whose $\mathbb{I N C}$ graph is a star graph.

Proposition 4. Let R be a ring such that $|\operatorname{Max}(R)| \geq 2$. Then the following statements are equivalent:
(i) $\mathbb{N N C}(R)$ is a star graph.
(ii) $R \cong R_{1} \times R_{2}$ as rings, where R_{i} is a chained ring for each $i \in\{1,2\}$ with R_{i} is a field for at least one $i \in\{1,2\}$.

Proof. $\quad(i) \Rightarrow$ (ii) We know from the proof of $(i) \Rightarrow(i i)$ of Proposition 2 that $|\operatorname{Max}(R)|=2$ and $\mathscr{C}(R)=\mathbb{I N C}(R)$. Let $\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}\right\}$ denote the set of all maximal ideals of R and let V_{1}, V_{2} be as in the statement of Lemma 3. As $\mathscr{C}(R)$ is a star graph with vertex partition V_{1} and V_{2}, we can assume without loss of generality that $\left|V_{1}\right|=1$. Therefore, $V_{1}=\left\{\mathfrak{m}_{1}\right\}$. Let $a \in \mathfrak{m}_{1} \backslash \mathfrak{m}_{2}$. Then $R a, R a^{2} \in V_{1}$ and so, $\mathfrak{m}_{1}=R a=R a^{2}$. Let $r \in R$ be such that $a=r a^{2}$. Then $e=r a$ is a nontrivial idempotent element of R. Hence, the mapping $f: R \rightarrow R e \times R(1-e)$ defined by $f(x)=(x e, x(1-e))$ is an isomorphism of rings. Let us denote the ring $R e$ by R_{1} and $R(1-e)$ by R_{2}. Since $|\operatorname{Max}(R)|=2$, it follows that R_{1} and R_{2} are quasilocal rings. Let us denote the ring $R_{1} \times R_{2}$ by T. As $\mathbb{N} \mathbb{C}(T)$ is a star graph, it follows from $(i) \Rightarrow(i i i)$ of Corollary 1 that R_{i} is a chained ring for each $i \in\{1,2\}$ with R_{i} is a field for at least one $i \in\{1,2\}$.
$(i i) \Rightarrow(i)$ Let us denote the ring $R_{1} \times R_{2}$ by T. We know from $(i i i) \Rightarrow(i)$ of Corollary 1 that $\mathbb{N} \mathbb{C}(T)$ is a star graph. It follows from $R \cong T$ as rings that $\mathbb{N} \mathbb{C}(R)$ is a star graph.

Let R be a ring and let $\mathfrak{m} \in \operatorname{Max}(R)$. Let $f: R \rightarrow R_{\mathfrak{m}}$ denote the ring homomorphism given by $f(r)=\frac{r}{1}$. For any ideal I of $R, f^{-1}\left(I_{\mathfrak{m}}\right)$ is called the saturation of I with respect to the multiplicatively closed set $R \backslash \mathfrak{m}$ and is denoted by the notation $S_{\mathfrak{m}}(I)$. It is well-known that for any ideal I of $R, I=\cap_{\mathfrak{m} \in \operatorname{Max}(R)} S_{\mathfrak{m}}(I)$. Let R be a ring with $|\operatorname{Max}(R)| \geq 2$. Suppose that $\operatorname{dim} R=0$. In Proposition 5, we characterize such rings R whose $\mathbb{I N C}$ graph is a bipartite graph.

Remark 2. Let R be a semiquasilocal ring with $|\operatorname{Max}(R)|=n \geq 2$. Suppose that $\operatorname{dim} R=0$. Then $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$ as rings, where (R_{i}, \mathfrak{n}_{i}) is a quasilocal ring for each $i \in\{1,2, \ldots, n\}$.

Proof. Let $\left\{\mathfrak{m}_{i} \mid i \in\{1,2, \ldots, n\}\right\}$ denote the set of all maximal ideals of R. Let $i \in$ $\{1,2, \ldots, n\}$. Since $\operatorname{dim} R=0$, it follows that $\sqrt{(0)_{\mathfrak{m}_{i}}}=\left(\mathfrak{m}_{i}\right)_{\mathfrak{m}_{i}}$ and so, $\sqrt{S_{\mathfrak{m}_{i}}((0))}=$ \mathfrak{m}_{i}. Hence, we obtain from [[5], Proposition 4.2] that $S_{\mathfrak{m}_{i}}((0))$ is a \mathfrak{m}_{i}-primary ideal of R. Let us denote the ideal $S_{\mathfrak{m}_{i}}((0))$ by \mathfrak{q}_{i} for each $i \in\{1,2, \ldots, n\}$. Observe that (0) $=\mathfrak{q}_{1} \cap \mathfrak{q}_{2} \cap \cdots \cap \mathfrak{q}_{n}$. From $\mathfrak{m}_{i}+\mathfrak{m}_{j}=R$ for all distinct $i, j \in\{1,2, \ldots, n\}$, we obtain from [[5], Proposition 1.16] that $\mathfrak{q}_{i}+\mathfrak{q}_{j}=R$. It now follows from the Chinese remainder theorem [[5], Proposition 1.10(ii) and (iii)] that $R \cong \frac{R}{q_{1}} \times \frac{R}{q_{2}} \times \cdots \times \frac{R}{q_{n}}$. For each i with $1 \leq i \leq n$, let us denote the ring $\frac{R}{q_{i}}$ by R_{i}. Note that R_{i} is quasilocal with $\mathfrak{n}_{i}=\frac{\mathfrak{m}_{i}}{\mathfrak{q}_{i}}$ as its unique maximal ideal and $R \cong R_{1} \times R_{2} \times \cdots \times R_{n}$ as rings.

Proposition 5. Let R be a ring such that $|\operatorname{Max}(R)| \geq 2$ and let $\operatorname{dim} R=0$. Then the following statements are equivalent:
(i) $\mathbb{N N C}(R)$ is a bipartite graph.
(ii) $R \cong R_{1} \times R_{2}$ as rings, where $\left(R_{i}, \mathfrak{n}_{i}\right)$ is a chained ring with $\operatorname{dim} R_{i}=0$ for each $i \in\{1,2\}$.

Proof. $\quad(i) \Rightarrow($ ii $)$ Assume that $\mathbb{N} \mathbb{C}(R)$ is a bipartite graph. Then we know from Lemma 5 that $|\operatorname{Max}(R)|=2$. Since $\operatorname{dim} R=0$, we know from Remark 2 that $R \cong R_{1} \times R_{2}$ as rings, where $\left(R_{i}, \mathfrak{n}_{i}\right)$ is a quasilocal ring for each $i \in\{1,2\}$. Let us denote the ring $R_{1} \times R_{2}$ by T. Since $R \cong T$ as rings, we get that $\mathbb{I N C}(T)$ is a bipartite graph. Hence, we obtain from $(i) \Rightarrow(i i i)$ of Proposition 3 that R_{i} is a chained ring for each $i \in\{1,2\}$. Since $\operatorname{dim} R=0$, it is clear that $\operatorname{dim} R_{i}=0$ for each $i \in\{1,2\}$.
$(i i) \Rightarrow(i)$ This follows from $(i i i) \Rightarrow(i)$ of Proposition 3.
We provide an example in Example 1 to illustrate that $(i) \Rightarrow(i i)$ of Proposition 5 can fail to hold if the hypothesis $\operatorname{dim} R=0$ is omitted.

Lemma 6. Let R be a principal ideal domain with $|\operatorname{Max}(R)| \geq 2$. The following statements are equivalent:
(i) $\mathscr{C}(R)=\mathbb{I N} \mathbb{C}(R)$.
(ii) $|\operatorname{Max}(R)|=2$.

Proof. $\quad(i) \Rightarrow($ ii $)$ Assume that $\mathscr{C}(R)=\mathbb{I N C}(R)$. Then we obtain from Lemma 4 that $|\operatorname{Max}(R)|=2$. (For this part of the proof, we do not need the assumption that R is a principal ideal domain.)
(ii) $\Rightarrow(i)$ Assume that R is a principal ideal domain with $|\operatorname{Max}(R)|=2$. Let $\left\{\mathfrak{m}_{1}=R p, \mathfrak{m}_{2}=R q\right\}$ denote the set of all maximal ideals of R. It is already noted in the introduction that for any ring T with $|\operatorname{Max}(T)| \geq 2, \mathscr{C}(T)$ is a spanning subgraph of $\mathbb{N} \mathbb{C}(T)$. Observe that $V(\mathbb{N} \mathbb{C}(R))=V_{1} \cup V_{2}$, where $V_{1}=\{I \in \mathbb{I}(R) \mid I \subseteq$ $R p$ but $I \nsubseteq R q\}$ and $V_{2}=\{J \in \mathbb{I}(R) \mid J \subseteq R q$ but $J \nsubseteq R p\}$. Let $I_{1}, I_{2} \in V(\mathbb{N} \mathbb{C}(R))$ be such that I_{1} and I_{2} are adjacent in $\mathbb{N} \mathbb{C}(R)$. We assert that $I_{1}+I_{2}=R$. Suppose that $I_{1}+I_{2} \neq R$. Then either $I_{1}+I_{2} \subseteq R p$ or $I_{1}+I_{2} \subseteq R q$. Without loss of generality, we can assume that $I_{1}+I_{2} \subseteq R p$. Note that $I_{i} \in V_{1}$ for each $i \in\{1,2\}$. Hence, $I_{1}=R p^{n}$ and $I_{2}=R p^{m}$ for some $n, m \in \mathbb{N}$. Therefore, I_{1} and I_{2} are comparable under the inclusion relation and so, I_{1} and I_{2} are not adjacent in $\mathbb{N} \mathbb{C}(R)$. This is in contradiction to the assumption that I_{1} and I_{2} are adjacent in $\mathbb{N} \mathbb{C}(R)$. Therefore, $I_{1}+I_{2}=R$ and so, I_{1} and I_{2} are adjacent in $\mathscr{C}(R)$. This proves that $\mathscr{C}(R)=\mathbb{I N} \mathbb{C}(R)$.

Example 1 mentioned below was mentioned in [[17], Example 4.10] to illustrate that [[17], Proposition 4.7] can fail to hold if the hypothesis R satisfies d.c.c on principal ideals is omitted.

Example 1. Let p, q be distinct prime numbers. Let $R=S^{-1} \mathbb{Z}$, where $S=\mathbb{Z} \backslash(p \mathbb{Z} \cup q \mathbb{Z})$. Then $\mathbb{I N C}(R)$ is a complete bipartite graph but the statement (ii) of Proposition 5 does not hold.

Proof. Note that R is a principal ideal domain with $|\operatorname{Max}(R)|=2$ and $\{R p, R q\}$ is the set of all maximal ideals of R. Hence, we obtain from $(i i) \Rightarrow(i)$ of Lemma 6 that $\mathscr{C}(R)=\mathbb{N} \mathbb{C}(R)$. We know from $(3) \Rightarrow(1)$ of [[17], Theorem 4.5] that $\mathscr{C}(R)$ is a complete bipartite graph. Therefore, $\mathbb{I N C}(R)$ is a complete bipartite graph. As R is an integral domain, R has no nontrivial idempotent element. Hence, the statement (ii) of Proposition 5 does not hold.

In Example 2, we provide another example to illustrate that $(i) \Rightarrow(i i)$ of Proposition 5 can fail to hold if the hypothesis $\operatorname{dim} R=0$ is omitted.

Example 2. Let $V=\mathbb{Q}[[X]]$ be the power series ring in one variable X over \mathbb{Q}. Let us denote $V X$ by \mathfrak{m}. Let $T=R+\mathfrak{m}$, where R is as in Example 1. Then $\mathbb{N} \mathbb{C}(T)$ is a complete bipartite graph but the statement (ii) of Proposition 5 does not hold.

Proof. Observe that $V=\mathbb{Q}+\mathfrak{m}$ is a discrete valuation ring. We know from [[7], Theorem 2.1(c)] that each ideal of T compares with \mathfrak{m} under inclusion. As $\operatorname{Max}(R)=$ $\{R p, R q\}$, it follows from [[7], Theorem 2.1(d)] that $\operatorname{Max}(T)=\left\{\mathfrak{m}_{1}=R p+\mathfrak{m}, \mathfrak{m}_{2}=\right.$ $R q+\mathfrak{m}\}$. Let $V_{1}=\left\{I \in \mathbb{I}(T) \mid M(I)=\left\{\mathfrak{m}_{1}\right\}\right\}$ and let $V_{2}=\{J \in \mathbb{I}(T) \mid M(J)=$ $\left.\left\{\mathfrak{m}_{2}\right\}\right\}$. Observe that $V(\mathbb{N N} \mathbb{C}(T))=V_{1} \cup V_{2}$. Let $I_{1}, I_{2} \in V_{1}$ be such that $I_{1} \neq I_{2}$. Let $i \in\{1,2\}$. It is not hard to verify that $I_{i}=A_{i}+\mathfrak{m}$ for some $A_{i} \in \mathbb{I}(R) \backslash\{(0)\}$ such that $M\left(A_{i}\right)=\{R p\}$. It is clear that $A_{1} \neq A_{2}$. Observe that there exist distinct $n, m \in \mathbb{N}$ such that $I_{1}=R p^{n}+\mathfrak{m}$ and $I_{2}=R p^{m}+\mathfrak{m}$. Hence, I_{1} and I_{2} are comparable under the inclusion relation and so, they are not adjacent in $\mathbb{N} \mathbb{C}(T)$. Similarly, if J_{1}, J_{2} are any two distinct members of V_{2}, then $J_{i}=B_{i}+\mathfrak{m}$ for some distinct $B_{1}, B_{2} \in \mathbb{I}(R) \backslash\{(0)\}$ such that $M\left(B_{i}\right)=\{R q\}$ for each $i \in\{1,2\}$. Hence, there exist distinct $k, t \in \mathbb{N}$ such that $J_{1}=R q^{k}+\mathfrak{m}$ and $J_{2}=R q^{t}+\mathfrak{m}$. Therefore, it follows that J_{1} and J_{2} are comparable under the inclusion relation and so, they are not adjacent in $\mathbb{I N C}(T)$. If $I \in V_{1}$ and $J \in V_{2}$, then $I+J=T$ and so, they are adjacent in $\mathbb{N} \mathbb{C}(T)$. This shows that $\mathbb{N} \mathbb{C}(T)$ is a complete bipartite graph. We know from [[7], Theorem $2.1(f)]$ that $\operatorname{dim} T=\operatorname{dim} V+\operatorname{dim} R=1+1=2$. Indeed, it follows from [[7], Theorem $2.1(c),(d),(e)]$ and the fact that (0) and \mathfrak{m} are the only prime ideals of V that $\{(0), \mathfrak{m}, R p+\mathfrak{m}, R q+\mathfrak{m}\}$ is the set of all prime ideals of T. Hence, $(0) \subset \mathfrak{m}$, $(0) \subset \mathfrak{m} \subset R p+\mathfrak{m}$, and $(0) \subset \mathfrak{m} \subset R q+\mathfrak{m}$ are the only chains of prime ideals of T of positive length and so, $\operatorname{dim} T=2$. Since T is an integral domain, we obtain that T has no nontrivial idempotent. Hence, the statement (ii) of Proposition 5 does not hold.

In Proposition 6, we determine $\operatorname{girth}(\mathbb{N} \mathbb{C}(R))$, where R is a ring with $|\operatorname{Max}(R)| \geq 2$ and moreover, we characterize such rings R which satisfies $\operatorname{girth}(\mathbb{N} \mathbb{C}(R))=\infty$.

Proposition 6. Let R be a ring with $|M a x(R)| \geq 2$. Then $\operatorname{girth}(\mathbb{N} \mathbb{C}(R)) \in\{3,4, \infty\}$. Moreover, $\operatorname{girth}(\mathbb{N} \mathbb{C}(R))=\infty$ if and only if $R \cong R_{1} \times R_{2}$ as rings, where R_{1} is a field and R_{2} is a chained ring.

Proof. Suppose that $|\operatorname{Max}(R)| \geq 3$. Let $\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}, \mathfrak{m}_{3}\right\} \subseteq \operatorname{Max}(R)$. Note that $\mathfrak{m}_{1}-\mathfrak{m}_{2}-\mathfrak{m}_{3}-\mathfrak{m}_{1}$ is a cycle of length three in $\mathscr{C}(R)$ and hence, a cycle of length three in $\mathbb{N} \mathbb{C}(R)$. Therefore, $\operatorname{girth}(\mathbb{N} \mathbb{C}(R))=3$.
Suppose that $|\operatorname{Max}(R)|=2$. Let $\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}\right\}$ denote the set of all maximal ideals of R. Let V_{1}, V_{2} be as in the statement of Lemma 3. We consider the following cases.
Case 1. $\left|V_{i}\right| \geq 2$ for each $i \in\{1,2\}$.
Let $I \in V_{1} \backslash\left\{\mathfrak{m}_{1}\right\}$ and let $J \in V_{2} \backslash\left\{\mathfrak{m}_{2}\right\}$. Observe that $I+\mathfrak{m}_{2}=I+J=R$ and so, $\mathfrak{m}_{1}-\mathfrak{m}_{2}-I-J-\mathfrak{m}_{1}$ is a cycle of length four in $\mathscr{C}(R)$ and hence, a cycle of length four in $\mathbb{I N C}(R)$. Therefore, $\operatorname{girth}(\mathbb{N} \mathbb{C}(R)) \leq 4$.
Case 2. $\left|V_{i}\right|=1$ for at least one $i \in\{1,2\}$.
In such a case, it follows as in the proof of $(i) \Rightarrow(i i)$ of Proposition 4 that there exist quasilocal rings R_{1} and R_{2} such that at least one between R_{1} and R_{2} is a field and $R \cong R_{1} \times R_{2}$ as rings. Without loss of generality, we can assume that R_{1} is a field. Let us denote the ring $R_{1} \times R_{2}$ by T. Note that $\mathbb{N} \mathbb{C}(T)$ contains a cycle if and only if there are at least two distinct nonzero proper ideals J_{1} and J_{2} of R_{2} such that J_{1} and J_{2} are not comparable under the inclusion relation. Hence, $(0) \times R_{2}-R_{1} \times J_{1}-R_{1} \times J_{2}-(0) \times R_{2}$ is a cycle of length three in $\mathbb{N} \mathbb{C}(T)$. From $R \cong T$ as rings, it follows that $\operatorname{girth}(\mathbb{N N} \mathbb{C}(R))=\operatorname{girth}(\mathbb{N} \mathbb{C}(T))=3$. Observe that $\mathbb{N} \mathbb{C}(T)$ (equivalently, $\mathbb{N} \mathbb{C}(R)$) does not contain any cycle if and only if the set of ideals of R_{2} is linearly ordered by inclusion, that is, R_{2} is a chained ring.
It is clear from the above discussion that $\operatorname{girth}(\mathbb{N} \mathbb{C}(R)) \in\{3,4, \infty\}$ and $\operatorname{girth}(\mathbb{N N C}(R))=\infty$ if and only if $R \cong R_{1} \times R_{2}$ as rings, where R_{1} is a field and R_{2} is a chained ring. Now, it is clear that girth of any star graph equals ∞. It follows from $(i i) \Rightarrow(i)$ of Proposition 4 that if $\operatorname{girth}(\mathbb{N} \mathbb{C}(R))=\infty$, then $\mathbb{N} \mathbb{C}(R)$ is a star graph.

In Example 3, we provide some examples to illustrate Proposition 6.

Example 3. (i) Let $T=\mathbb{Z}_{2}[X, Y]$ be the polynomial ring in two variables X, Y over \mathbb{Z}_{2}. Let $\mathfrak{m}=T X+T Y$. Let $R=F \times \frac{T}{\mathfrak{m}^{2}}$, where F is a field. Then $\operatorname{girth}(\mathbb{N} \mathbb{C}(R))=3$.
(ii) Let p, q be distinct prime numbers and let $R=S^{-1} \mathbb{Z}$, where $S=\mathbb{Z} \backslash(p \mathbb{Z} \cup q \mathbb{Z})$. Then $\operatorname{girth}(\mathbb{N} \mathbb{C}(R))=4$.
(iii) Let p be a prime number and let $R=F \times \mathbb{Z}_{p \mathbb{Z}}$, where F is a field. Then $\operatorname{girth}(\mathbb{I N} \mathbb{C}(R))=$ ∞.

Proof. (i) Note that $\frac{T}{\mathfrak{m}^{2}}$ is a local ring with $\frac{\mathfrak{m}}{\mathfrak{m}^{2}}$ as its unique maximal ideal. It is clear that $|\operatorname{Max}(R)|=2$ and $\operatorname{Max}(R)=\left\{(0) \times \frac{T}{\mathfrak{m}^{2}}, F \times \frac{\mathfrak{m}}{\mathfrak{m}^{2}}\right\}$. It is convenient to denote $\frac{T}{\mathfrak{m}^{2}}$ by $T_{1}, X+\mathfrak{m}^{2}$ by x, and $Y+\mathfrak{m}^{2}$ by y. Note that $(0) \times T_{1}-F \times T_{1} x-F \times T_{1} y-(0) \times T_{1}$ is a cycle of length three in $\mathbb{N} \mathbb{C}(R)$ and so, $\operatorname{girth}(\mathbb{N} \mathbb{C}(R))=3$.
(ii) We know from Example 1 that $\mathbb{N} \mathbb{C}(R)$ is a complete bipartite graph with vertex partition V_{1} and V_{2}, where $V_{1}=\left\{R p^{n} \mid n \in \mathbb{N}\right\}$ and $V_{2}=\left\{R q^{n} \mid n \in \mathbb{N}\right\}$. As $\left|V_{i}\right| \geq 2$ for each $i \in\{1,2\}$, we obtain that $\operatorname{girth}(\mathbb{N} \mathbb{N}(R))=4$.
(iii) We know from [[5], Example (1), page 94] that $\mathbb{Z}_{p \mathbb{Z}}$ is a discrete valuation ring and so, it is a chained ring. It follows from the moreover part of Proposition 6 that $\operatorname{girth}(\mathbb{N} \mathbb{C}(R))=\infty$.

3. When is $\mathbb{N} \mathbb{C}(R)$ a split graph?

The aim of this section is to characterize rings R with $|\operatorname{Max}(R)| \geq 2$ such that $\mathbb{N} \mathbb{C}(R)$ is a split graph. Let R be a ring such that $|\operatorname{Max}(R)| \geq 2$. Note that $\mathbb{N} \mathbb{C}(R)$ is a split graph if and only if there exist nonempty subsets K, S of $V(\mathbb{N} \mathbb{C}(R))$ such that $V(\mathbb{N} \mathbb{C}(R))=K \cup S, K \cap S=\emptyset$, satisfying the property that the subgraph of $\mathbb{N} \mathbb{C}(R)$ induced on K is a clique and S is an independent set of $\mathbb{N} \mathbb{C}(R)$. Throughout this section, whenever we consider rings R with $\mathbb{N} \mathbb{C}(R)$ is a split graph, we use K and S with the above mentioned properties.
Let R be a ring with $|\operatorname{Max}(R)| \geq 2$. In Proposition 7, we determine a necessary condition on $|\operatorname{Max}(R)|$ in order that $\mathbb{N} \mathbb{C}(R)$ is a split graph. In Theorem 2, we characterize such rings R whose $\mathbb{I N C}$ graph is a split graph.

Lemma 7. Let R be a ring with $|\operatorname{Max}(R)| \geq 3$. If $\mathbb{N} \mathbb{C}(R)$ is a split graph with $V(\mathbb{N} \mathbb{C}(R))=K \cup S$, then $\operatorname{Max}(R)=K$.

Proof. As distinct maximal ideals of R are not comparable under the inclusion relation, it follows that distinct maximal ideals of R are adjacent in $\mathbb{N} \mathbb{C}(R)$. Since S is an independent set of $\mathbb{N} \mathbb{C}(R)$, we obtain that $|S \cap \operatorname{Max}(R)| \leq 1$. By hypothesis, $|\operatorname{Max}(R)| \geq 3$. Hence, there exist distinct $\mathfrak{m}_{1}, \mathfrak{m}_{2} \in \operatorname{Max}(R)$ such that $\mathfrak{m}_{i} \in K$ for each $i \in\{1,2\}$. It follows from $|\operatorname{Max}(R)| \geq 3$ that $\mathfrak{m}_{1} \cap \mathfrak{m}_{2} \in V(\mathbb{N} \mathbb{C}(R))=K \cup S$. Since $\mathfrak{m}_{1} \cap \mathfrak{m}_{2} \subset \mathfrak{m}_{1}$, we get that \mathfrak{m}_{1} and $\mathfrak{m}_{1} \cap \mathfrak{m}_{2}$ are not adjacent in $\mathbb{N} \mathbb{C}(R)$. As $\mathfrak{m}_{1} \in K$, it follows that $\mathfrak{m}_{1} \cap \mathfrak{m}_{2} \in S$. Let $\mathfrak{m} \in \operatorname{Max}(R) \backslash\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}\right\}$. It is clear that $\mathfrak{m} \nsubseteq \mathfrak{m}_{1} \cap \mathfrak{m}_{2}$ and from [[5], Proposition 1.11(ii)], it follows that $\mathfrak{m}_{1} \cap \mathfrak{m}_{2} \nsubseteq \mathfrak{m}$. This shows that \mathfrak{m} and $\mathfrak{m}_{1} \cap \mathfrak{m}_{2}$ are adjacent in $\mathbb{N} \mathbb{C}(R)$. Since $\mathfrak{m}_{1} \cap \mathfrak{m}_{2} \in S$, we obtain that $\mathfrak{m} \in K$. This proves that $\operatorname{Max}(R) \subseteq K$. Let $I \in K$. Note that there exists $\mathfrak{m} \in \operatorname{Max}(R)$ such that $I \subseteq \mathfrak{m}$. If $I \neq \mathfrak{m}$, then I and \mathfrak{m} are not adjacent in $\mathbb{N} \mathbb{C}(R)$. This is in contradiction to the fact that the subgraph of $\mathbb{I N C}(R)$ induced on K is complete. Therefore, $I=\mathfrak{m} \in \operatorname{Max}(R)$ and so, we obtain that $\operatorname{Max}(R)=K$.

Proposition 7. Let R be a ring such that $|\operatorname{Max}(R)| \geq 2$. If $\mathbb{N} \mathbb{C}(R)$ is a split graph, then $|\operatorname{Max}(R)|=2$.

Proof. Let $V(\mathbb{N} \mathbb{N}(R))=K \cup S$. Suppose that $|\operatorname{Max}(R)| \geq 3$. Then we know from Lemma 7 that $\operatorname{Max}(R)=K$. Let $\left\{\mathfrak{m}_{i} \mid i \in\{1,2,3\}\right\} \subseteq \operatorname{Max}(R)$. Now, $\mathfrak{m}_{i} \in K$ for each $i \in\{1,2,3\}$. Let us denote $\mathfrak{m}_{1} \cap \mathfrak{m}_{2}$ by A and $\mathfrak{m}_{2} \cap \mathfrak{m}_{3}$ by B. From the assumption that $|\operatorname{Max}(R)| \geq 3$, it is clear that $A, B \in V(\mathbb{N} \mathbb{C}(R))$. As $A \subset \mathfrak{m}_{1}$, it follows that A and \mathfrak{m}_{1} are not adjacent in $\mathbb{I N C}(R)$ and so, from $\mathfrak{m}_{1} \in K$, we get that $A \in S$. Similarly, as $B \subset \mathfrak{m}_{2}$ and $\mathfrak{m}_{2} \in K$, it follows that $B \in S$. Now, it follows
from [[5], Proposition $1.11(i i)]$ that $A \nsubseteq \mathfrak{m}_{3}$ and $B \nsubseteq \mathfrak{m}_{1}$. Therefore, we obtain that $A \nsubseteq B$ and $B \nsubseteq A$. Hence, A and B are adjacent in $\mathbb{N} \mathbb{C}(R)$. This is impossible since $A, B \in S$. Therefore, $|\operatorname{Max}(R)| \leq 2$ and so, $|\operatorname{Max}(R)|=2$.

Lemma 8. Let R be a ring with $|\operatorname{Max}(R)|=2$. Let $\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}\right\}$ denote the set of all maximal ideals of R. Let V_{1}, V_{2} be as in the statement of Lemma 3. If $\mathbb{N C}(R)$ is a split graph, then $\left|V_{i}\right|=1$ for at least one $i \in\{1,2\}$.

Proof. Let $V(\mathbb{N} \mathbb{C}(R))=K \cup S$. Since \mathfrak{m}_{1} and \mathfrak{m}_{2} are adjacent in $\mathbb{N} \mathbb{C}(R)$, it follows that $|S \cap \operatorname{Max}(R)| \leq 1$. We consider the following cases.
Case 1. $\operatorname{Max}(R) \subseteq K$.
Suppose that $\left|V_{i}\right| \geq 2$ for each $i \in\{1,2\}$. Let $I \in V_{1} \backslash\left\{\mathfrak{m}_{1}\right\}$ and let $J \in V_{2} \backslash\left\{\mathfrak{m}_{2}\right\}$. Since $I \subset \mathfrak{m}_{1}$, it follows that I and \mathfrak{m}_{1} are not adjacent in $\mathbb{N} \mathbb{C}(R)$ and so, $I \in S$. Similarly, since $J \subset \mathfrak{m}_{2}$, it follows that $J \in S$. As $I+J=R$, we obtain that I and J are adjacent in $\mathscr{C}(R)$ and so, they are adjacent in $\mathbb{N} \mathbb{C}(R)$. This is impossible, since $I, J \in S$. Therefore, $\left|V_{i}\right|=1$ for at least one $i \in\{1,2\}$.
Case 2. $|S \cap \operatorname{Max}(R)|=1$.
Without loss of generality, we can assume that $\mathfrak{m}_{1} \in S$. Then $\mathfrak{m}_{2} \in K$. We claim that $\left|V_{2}\right|=1$. Suppose that $\left|V_{2}\right| \geq 2$. Let $J \in V_{2} \backslash\left\{\mathfrak{m}_{2}\right\}$. Since $J \subset \mathfrak{m}_{2}$ and $\mathfrak{m}_{2} \in K$, we obtain that $J \notin K$ and so, $J \in S$. As $J+\mathfrak{m}_{1}=R$, it follows that J and \mathfrak{m}_{1} are adjacent in $\mathbb{N} \mathbb{C}(R)$. This is impossible, since $J, \mathfrak{m}_{1} \in S$. Therefore, $\left|V_{2}\right|=1$.
This proves that $\left|V_{i}\right|=1$ for at least one $i \in\{1,2\}$.
Proposition 8. Let (R_{i}, \mathfrak{m}_{i}) be a quasilocal ring for each $i \in\{1,2\}$ and let $R=R_{1} \times R_{2}$. The following statements are equivalent:
(i) $\mathbb{N} \mathbb{C}(R)$ is a split graph.
(ii) R_{i} is a field for at least one $i \in\{1,2\}$ and if R_{i} is not a field for some $i \in\{1,2\}$, then either R_{i} is a chained ring or $\mathbb{I}\left(R_{i}\right)=W_{1} \cup W_{2}$, where $\left|W_{k}\right| \geq 2$ for each $k \in\{1,2\}$ with the property that $W_{1} \cap W_{2}=\emptyset, W_{1}$ is a chain under the inclusion relation, and no two distinct members of W_{2} are comparable under the inclusion relation.

Proof. $\quad(i) \Rightarrow(i i)$ We are assuming that $\mathbb{I N C}(R)$ is a split graph. Let $V(\mathbb{N} \mathbb{C}(R))=$ $K \cup S$. Note that $V(\mathbb{N} \mathbb{C}(R))=V_{1} \cup V_{2}$, where $V_{1}=\left\{I \times R_{2} \mid I\right.$ is a proper ideal of $\left.R_{1}\right\}$ and $V_{2}=\left\{R_{1} \times J \mid J\right.$ is a proper ideal of $\left.R_{2}\right\}$. It follows from Lemma 8 that $\left|V_{i}\right|=1$ for at least one $i \in\{1,2\}$. Without loss of generality, we can assume that $\left|V_{1}\right|=1$. Hence, we obtain that R_{1} is a field. We can assume that R_{2} is not a field. Now, $V(\mathbb{N} \mathbb{C}(R))=V_{1} \cup V_{2}=K \cup S$. We consider the following cases.
Case 1. $\operatorname{Max}(R) \subseteq K$.
Note that $(0) \times R_{2}$ and $R_{1} \times \mathfrak{m}_{2} \in K$. Let J_{1}, J_{2} be any two distinct proper ideals of R_{2}. We claim that J_{1} and J_{2} are comparable under the inclusion relation. This is clear if either $J_{1}=\mathfrak{m}_{2}$ or $J_{2}=\mathfrak{m}_{2}$. Hence, we can assume that $J_{i} \neq \mathfrak{m}_{2}$ for each $i \in\{1,2\}$. As $R_{1} \times \mathfrak{m}_{2} \in K$, we obtain that $R_{1} \times J_{i} \in S$ for each $i \in\{1,2\}$. Since S is an independent set of $\mathbb{N} \mathbb{C}(R)$, we obtain that $R_{1} \times J_{1}$ and $R_{1} \times J_{2}$ are not adjacent in
$\mathbb{N} \mathbb{C}(R)$. Hence, J_{1} and J_{2} are comparable under the inclusion relation. This proves that R_{2} is a chained ring.
Case 2. $|\operatorname{Max}(R) \cap S|=1$.
If $(0) \times R_{2} \in S$, then $R_{1} \times \mathfrak{m}_{2}, R_{1} \times(0) \in K$. This is impossible since $R_{1} \times \mathfrak{m}_{2}$ and $R_{1} \times(0)$ are not adjacent in $\mathbb{N} \mathbb{C}(R)$. Therefore, $(0) \times R_{2} \notin S$ and so, $R_{1} \times \mathfrak{m}_{2} \in S$. We can assume that R_{2} is not a chained ring. Let $W_{1}=\left\{J \in \mathbb{I}\left(R_{2}\right) \mid R_{1} \times J \in S\right\}$ and let $W_{2}=\left\{J \in \mathbb{I}\left(R_{2}\right) \mid R_{1} \times J \in K\right\}$. Note that $R_{1} \times \mathfrak{m}_{2} \in S$ and so, $W_{1} \neq \emptyset$. Since R_{2} is not a chained ring by assumption, there exist proper ideals J_{1}, J_{2} of R_{2} such that they are not comparable under the inclusion relation. Let $a \in J_{1} \backslash J_{2}$ and let $b \in J_{2} \backslash J_{1}$. Let $A=R_{2} a, B=R_{2} b$, and $C=R_{2}(a+b)$. It is clear that $A \nsubseteq B$ and $B \nsubseteq A$. As $C \nsubseteq J_{1}$ and $C \nsubseteq J_{2}$, we obtain that $C \nsubseteq A$ and $C \nsubseteq B$. We claim that $A \nsubseteq C$ and $B \nsubseteq C$. For if $A \subseteq C$, then $a=y(a+b)$ for some $y \in R_{2}$. Suppose that $y \in \mathfrak{m}_{2}$. Then $1-y \in U\left(R_{2}\right)$ and from $a(1-y)=y b \in J_{2}$, we get that $a=(1-y)^{-1} y b \in J_{2}$. This is impossible. If $y \in U\left(R_{2}\right)$, then from $a=y(a+b)$, it follows that $a+b=y^{-1} a \in J_{1}$. This is impossible. Therefore, $A \nsubseteq C$. Similarly, it can be shown that $B \nsubseteq C$. Hence, $R_{1} \times A-R_{1} \times B-R_{1} \times C-R_{1} \times A$ is a cycle of length 3 in $\mathbb{N} \mathbb{C}(R)$. As S is an independent set of $\mathbb{N} \mathbb{C}(R)$, it follows that at least two among $R_{1} \times A, R_{1} \times B, R_{1} \times C$ must be in K. Hence, at least two among A, B, C must be in W_{2} and so, $\left|W_{2}\right| \geq 2$. Observe that $R_{1} \times(0)$ must be in S. Thus $R_{1} \times \mathfrak{m}_{2}, R_{1} \times(0) \in S$ and so, $\left|W_{1}\right| \geq 2$. It is clear that $W_{1} \cup W_{2} \subseteq \mathbb{I}\left(R_{2}\right)$. Let $J \in \mathbb{I}\left(R_{2}\right)$. Then $R_{1} \times J \in V_{2} \subseteq K \cup S$. If $R_{1} \times J \in S$, then $J \in W_{1}$ and if $R_{1} \times J \in K$, then $J \in W_{2}$. This proves that $\mathbb{I}\left(R_{2}\right)=W_{1} \cup W_{2}$. It follows from $K \cap S=\emptyset$ that $W_{1} \cap W_{2}=\emptyset$.
(ii) $\Rightarrow(i)$ If both R_{1} and R_{2} are fields, then $\mathbb{I N C}(R)$ is a complete graph on two vertices and so, $\mathbb{N} \mathbb{C}(R)$ is a split graph. We can assume that R_{1} is a field and R_{2} is not a field. If R_{2} is a chained ring, then we know from $(i i) \Rightarrow(i)$ of Proposition 4 that $\mathbb{N N C}(R)$ is a star graph and so, $\mathbb{N} \mathbb{C}(R)$ is a split graph. Suppose that $\mathbb{I}\left(R_{2}\right)=$ $W_{1} \cup W_{2}$, where $\left|W_{i}\right| \geq 2$ for each $i \in\{1,2\}$ satisfying the property that $W_{1} \cap W_{2}=\emptyset$, W_{1} is a chain under the inclusion relation, and no two distinct members of W_{2} are comparable under the inclusion relation. Let $K=\left\{(0) \times R_{2}, R_{1} \times I \mid I \in W_{2}\right\}$ and let $S=\left\{R_{1} \times I \mid I \in W_{1}\right\}$. It is clear that $V(\mathbb{N} \mathbb{C}(R))=K \cup S, K \neq \emptyset, S \neq \emptyset, K \cap S=\emptyset$, the subgraph of $\mathbb{I N C}(R)$ induced on K is a clique, and S is an independent set of $\mathbb{N} \mathbb{C}(R)$. Therefore, $\mathbb{I N C}(R)$ is a split graph.

Theorem 2. Let R be a ring with $|\operatorname{Max}(R)| \geq 2$. The following statements are equivalent:
(i) $\mathbb{N} \mathbb{C}(R)$ is a split graph.
(ii) $R \cong R_{1} \times R_{2}$ as rings, where R_{1} and R_{2} are quasilocal rings which satisfy the conditions mentioned in the statement (ii) of Proposition 8.

Proof. $\quad(i) \Rightarrow(i i)$ We are assuming that $\mathbb{I N} \mathbb{C}(R)$ is a split graph. Let $V(\mathbb{N} \mathbb{C}(R))=$ $K \cup S$. We know from Proposition 7 that $|M a x(R)|=2$. Let $\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}\right\}$ denote the set of all maximal ideals of R. Let V_{1}, V_{2} be as in the statement of Lemma 3. It follows from Lemma 8 that $\left|V_{i}\right|=1$ for at least one $i \in\{1,2\}$. Without loss of generality,
we can assume that $\left|V_{1}\right|=1$. Now, it can be shown as in the proof of $(i) \Rightarrow(i i)$ of Proposition 4 that there exist nonzero rings R_{1} and R_{2} such that $R \cong R_{1} \times R_{2}$ as rings. As $|\operatorname{Max}(R)|=2$, it is clear that R_{1} and R_{2} are quasilocal rings. Let us denote the ring $R_{1} \times R_{2}$ by T. Since $\mathbb{N} \mathbb{C}(T)$ is a split graph, we obtain from $(i) \Rightarrow(i i)$ of Proposition 8 that the rings R_{1}, R_{2} satisfy the conditions mentioned in the statement (ii) of Proposition 8.
(ii) $\Rightarrow(i)$ Assume that $R \cong R_{1} \times R_{2}$ as rings, where R_{1} and R_{2} are quasilocal rings and they satisfy the conditions mentioned in the statement (ii) of Proposition 8. Let us denote the ring $R_{1} \times R_{2}$ by T. We know from $(i i) \Rightarrow(i)$ of Proposition 8 that $\mathbb{N} \mathbb{C}(T)$ is a split graph. Since $R \cong T$ as rings, we obtain that $\mathbb{N} \mathbb{C}(R)$ is a split graph.

We provide some examples in Example 4 to illustrate Theorem 2.

Example 4. (i) Let F be a field and let $T=\mathbb{Z}_{p \mathbb{Z}}$, where p is a prime number. Let $R=F \times T$. Then $\mathbb{N} \mathbb{N}(R)$ is a split graph.
(ii) Let $T=\mathbb{Z}_{2}[X, Y]$ be the polynomial ring in two variables X, Y over \mathbb{Z}_{2} and let $\mathfrak{m}=$ $T X+T Y$. Let $R=F \times \frac{T}{\mathrm{~m}^{2}}$, where F is a field. Then $\mathbb{N} \mathbb{C}(R)$ is a split graph.
(iii) Let $A=\mathbb{Z}_{2}[X, Y, Z]$ be the polynomial ring in three variables X, Y, Z over \mathbb{Z}_{2} and let $\mathfrak{m}=A X+A Y+A Z$. Let $R=F \times \frac{A}{\mathfrak{m}^{2}}$, where F is a field. Then $\mathbb{N} \mathbb{N}(R)$ is not a split graph.

Proof. (i) We know from [[5], Example (1), page 94] that $T=\mathbb{Z}_{p \mathbb{Z}}$ is a discrete valuation ring and so, T is a chained ring. Hence, we obtain from $(i i) \Rightarrow(i)$ of Proposition 8 that $\mathbb{N} \mathbb{C}(R)$ is a split graph.
(ii) It is convenient to denote $X+\mathfrak{m}^{2}$ by x and $Y+\mathfrak{m}^{2}$ by y. It is clear that $\frac{T}{\mathfrak{m}^{2}}$ is a local ring with unique maximal ideal $\frac{\mathfrak{m}}{\mathfrak{m}^{2}}$. Observe that $\mathbb{I}\left(\frac{T}{\mathfrak{m}^{2}}\right)=W_{1} \cup W_{2}$, where $W_{1}=\left\{\left(0+\mathfrak{m}^{2}\right), \frac{\mathfrak{m}}{\mathfrak{m}^{2}}\right\}$ and $W_{2}=\left\{\frac{T}{\mathfrak{m}^{2}} x, \frac{T}{\mathfrak{m}^{2}} y, \frac{T}{\mathfrak{m}^{2}}(x+y)\right\}$. It is clear that W_{1} is a chain under the inclusion relation and no two distinct members of W_{2} are comparable under the inclusion relation. Hence, we obtain from $(i i) \Rightarrow(i)$ of Proposition 8 that $\mathbb{N} \mathbb{C}(R)$ is a split graph.
(iii) It is convenient to denote $X+\mathfrak{m}^{2}$ by $x, Y+\mathfrak{m}^{2}$ by y, and $Z+\mathfrak{m}^{2}$ by z. It is clear that $\frac{A}{\mathfrak{m}^{2}}$ is a local ring with $\frac{\mathfrak{m}}{\mathfrak{m}^{2}}$ as its unique maximal ideal. It is convenient to denote $\frac{A}{\mathfrak{m}^{2}}$ by A_{1} and $\frac{\mathfrak{m}}{\mathfrak{m}^{2}}$ by \mathfrak{m}_{1}. Observe that $\mathbb{I}\left(A_{1}\right)=\left\{\left(0+\mathfrak{m}^{2}\right), A_{1} x, A_{1} y, A_{1} z, A_{1}(x+\right.$ y), $A_{1}(y+z), A_{1}(z+x), A_{1}(x+y+z), A_{1} x+A_{1} y, A_{1} y+A_{1} z, A_{1} z+A_{1} x, A_{1} x+$ $\left.A_{1}(y+z), A_{1} y+A_{1}(x+z), A_{1} z+A_{1}(x+y), \mathfrak{m}_{1}\right\}$. Note that A_{1} is not a field and is not a chained ring. Let W_{1}, W_{2} be subsets of $\mathbb{I}\left(A_{1}\right)$ such that W_{1} is a chain under the inclusion relation and no two distinct members of W_{2} are comparable under the inclusion relation. We claim that $\mathbb{I}\left(A_{1}\right) \neq W_{1} \cup W_{2}$. Suppose that $\mathbb{I}\left(A_{1}\right)=W_{1} \cup W_{2}$. If $A_{1} x \in W_{1}$, then $A_{1}(x+y+z), A_{1} y+A_{1}(x+z)$ must be in W_{2}. This is impossible since $A_{1}(x+y+z) \subset A_{1} y+A_{1}(x+z)$. Hence, $A_{1} x \notin W_{1}$. If $A_{1} x \in W_{2}$, then both $A_{1} x+A_{1} y$ and $A_{1} x+A_{1} z$ must be in W_{1}. This is impossible since $A_{1} x+A_{1} y$ and $A_{1} x+A_{1} z$ are not comparable under the inclusion relation. Therefore, $\mathbb{I}\left(A_{1}\right) \neq W_{1} \cup W_{2}$. Hence, it follows from $(i) \Rightarrow(i i)$ of Proposition 8 that $\mathbb{I N C}(R)$ is not a split graph.

4. When is $\mathbb{I N} \mathbb{C}(R)$ complemented?

Let R be a ring with $|\operatorname{Max}(R)| \geq 2$. In this section, we try to characterize such rings R whose $\mathbb{I N C}$ graph is complemented.

Lemma 9. Let R be a ring such that $|\operatorname{Max}(R)| \geq 2$. Let $I \in V(\mathbb{N} \mathbb{C}(R))$. If J is a vertex in $\mathbb{N} \mathbb{C}(R)$ such that $I \perp J$ in $\mathbb{N} \mathbb{C}(R)$, then $I J \subseteq J(R)$.

Proof. Now, by assumption $I \perp J$ in $\mathbb{N} \mathbb{C}(R)$. Hence, I and J are adjacent in $\mathbb{N} \mathbb{C}(R)$ and there is no $A \in V(\mathbb{N} \mathbb{C}(R))$ which is adjacent to both I and J in $\mathbb{N} \mathbb{C}(R)$. Let $\mathfrak{m} \in \operatorname{Max}(R)$. We claim that $I J \subseteq \mathfrak{m}$. This is clear if $\mathfrak{m} \in\{I, J\}$. Hence, we can assume that $\mathfrak{m} \notin\{I, J\}$. Since $I \perp J$, either \mathfrak{m} is not adjacent to I or \mathfrak{m} is not adjacent to J in $\mathbb{I N C}(R)$. Hence, either $I \subset \mathfrak{m}$ or $J \subset \mathfrak{m}$. Therefore, $I J \subset \mathfrak{m}$. This is true for any $\mathfrak{m} \in \operatorname{Max}(R)$ and so, $I J \subseteq J(R)$.

Lemma 10. Let R be a ring such that $|\operatorname{Max}(R)| \geq 2$. If $\mathbb{N} \mathbb{C}(R)$ is complemented, then $|\operatorname{Max}(R)| \leq 3$.

Proof. Assume that $\mathbb{N} \mathbb{C}(R)$ is complemented. Suppose that $|\operatorname{Max}(R)| \geq 4$. Let $\left\{\mathfrak{m}_{i} \mid i \in\{1,2,3,4\}\right\} \subseteq \operatorname{Max}(R)$. Note that $\mathfrak{m}_{1} \cap \mathfrak{m}_{2} \in V(\mathbb{N} \mathbb{C}(R))$. Let us denote $\mathfrak{m}_{1} \cap \mathfrak{m}_{2}$ by I. Since $\mathbb{I N C}(R)$ is complemented, there exists $J \in V(\mathbb{N} \mathbb{C}(R))$ such that $I \perp J$ in $\mathbb{N} \mathbb{C}(R)$. We know from Lemma 9 that $I J \subseteq J(R)$. It follows from [[5], Proposition $1.11(i i)]$ that $I \nsubseteq \mathfrak{m}$ for any $\mathfrak{m} \in \operatorname{Max}(R) \backslash\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}\right\}$. From $I J \subseteq J(R)$, we obtain that $J \subseteq \mathfrak{m}_{3} \cap \mathfrak{m}_{4}$. Since I and J are adjacent in $\mathbb{N} \mathbb{C}(R)$, we get that $J \nsubseteq I$. Hence, either $J \nsubseteq \mathfrak{m}_{1}$ or $J \nsubseteq \mathfrak{m}_{2}$. Without loss of generality, we can assume that $J \nsubseteq \mathfrak{m}_{1}$. Consider the ideal $A=\mathfrak{m}_{1} \cap \mathfrak{m}_{3}$. It is clear that $A \in V(\mathbb{N C}(R))$ and $I=\mathfrak{m}_{1} \cap \mathfrak{m}_{2} \nsubseteq A=\mathfrak{m}_{1} \cap \mathfrak{m}_{3}$ and $A \nsubseteq I$. Since $A \nsubseteq \mathfrak{m}_{4}$, we obtain that $A \nsubseteq J$. From $J \nsubseteq \mathfrak{m}_{1}$, it follows that $J \nsubseteq A$. Hence, we get that A is adjacent to both I and J in $\mathbb{N} \mathbb{C}(R)$. This is in contradiction to the assumption that $I \perp J$ in $\mathbb{N} \mathbb{C}(R)$. Therefore, $|\operatorname{Max}(R)| \leq 3$.

Let R be a ring such that $|\operatorname{Max}(R)|=2$. We try to characterize such rings R whose $\mathbb{I N C}$ graph is complemented.

Remark 3. Let R be a ring such that $|\operatorname{Max}(R)|=2$. Let $\operatorname{Max}(R)=\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}\right\}$. Let V_{1}, V_{2} be as in the statement of Lemma 3. If $\left|V_{i}\right|=1$ for each $i \in\{1,2\}$, then it is verified in the proof of $(i) \Rightarrow(i i)$ of Proposition 1 that $R \cong F_{1} \times F_{2}$ as rings, where F_{i} is a field for each $i \in\{1,2\}$ and in such a case, it is observed in $(i i) \Rightarrow(i)$ of Proposition 1 that $\mathbb{N N C}(R)$ is a complete graph on two vertices. Hence, $\mathbb{I N C}(R)$ is complemented. Thus in characterizing rings R with $|\operatorname{Max}(R)|=2$ whose $\mathbb{I N C}$ graph is complemented, we assume that $\left|V_{i}\right| \geq 2$ for at least one $i \in\{1,2\}$.

Lemma 11. Let R be a ring such that $|\operatorname{Max}(R)|=2$. Let $\operatorname{Max}(R)=\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}\right\}$. Let V_{1}, V_{2} be as in the statement of Lemma 3. Suppose that $\left|V_{i}\right| \geq 2$ for some $i \in\{1,2\}$. If $\mathbb{N} \mathbb{C}(R)$ is complemented, then any $I_{1}, I_{2} \in V_{i}$ are comparable under the inclusion relation.

Proof. Suppose that $\left|V_{1}\right| \geq 2$. Let $I_{1} \in V_{1}$. We are assuming that $\mathbb{N} \mathbb{C}(R)$ is complemented. Hence, there exists $J_{1} \in V(\mathbb{N} \mathbb{C}(R))$ such that $I_{1} \perp J_{1}$ in $\mathbb{N} \mathbb{C}(R)$. We know from Lemma 9 that $I_{1} J_{1} \subseteq J(R)=\mathfrak{m}_{1} \cap \mathfrak{m}_{2}$. From $I_{1} \nsubseteq \mathfrak{m}_{2}$, we obtain that $J_{1} \subseteq \mathfrak{m}_{2}$. Hence, $M\left(J_{1}\right)=\left\{\mathfrak{m}_{2}\right\}$ and so, $J_{1} \in V_{2}$. Let $I_{2} \in V_{1}$ be such that $I_{2} \neq I_{1}$. Since $I_{2}+J_{1}=R, I_{2}$ and J_{1} are adjacent in $\mathscr{C}(R)$ and hence, they are adjacent in $\mathbb{N} \mathbb{C}(R)$. As $I_{1} \perp J_{1}$ in $\mathbb{N} \mathbb{C}(R), I_{2}$ and I_{1} cannot be adjacent in $\mathbb{N} \mathbb{C}(R)$. Therefore, I_{1} and I_{2} are comparable under the inclusion relation. Similarly, if $\left|V_{2}\right| \geq 2$, it can be shown that any two members of V_{2} are comparable under the inclusion relation.

Proposition 9. Let R be a ring such that $|\operatorname{Max}(R)|=2$. Let $\operatorname{Max}(R)=\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}\right\}$. Let V_{1}, V_{2} be as in the statement of Lemma 3. Suppose that $\left|V_{1}\right|=1$ and $\left|V_{2}\right| \geq 2$. The following statements are equivalent:
(i) $\mathbb{N} \mathbb{N}(R)$ is complemented.
(ii) $R \cong R_{1} \times R_{2}$ as rings, where R_{1} is a chained ring which is not a field and R_{2} is a field.

Proof. $\quad(i) \Rightarrow(i i)$ Let $a \in \mathfrak{m}_{1} \backslash \mathfrak{m}_{2}$. It follows from $\left|V_{1}\right|=1$ that $\mathfrak{m}_{1}=R a=\mathfrak{m}_{1}^{2}=$ $R a^{2}$. Hence, there exists a nontrivial idempotent $e \in \mathfrak{m}_{1}$ such that $\mathfrak{m}_{1}=R e$. Note that the mapping $f: R \rightarrow R e \times R(1-e)$ defined by $f(r)=(r e, r(1-e))$ is an isomorphism of rings. Let us denote the ring $R e$ by $R_{1}, R(1-e)$ by R_{2}, and $R_{1} \times R_{2}$ by T. Observe that $f\left(\mathfrak{m}_{1}\right)=R_{1} \times(0)$ and as $f\left(\mathfrak{m}_{1}\right) \in \operatorname{Max}(T)$, it follows that R_{2} is a field. Since $R \cong T$ as rings, we obtain that $|\operatorname{Max}(T)|=2$ and so, R_{1} is quasilocal. Let us denote the unique maximal ideal of R_{1} by \mathfrak{n}_{1}. It is clear that $f\left(\mathfrak{m}_{2}\right)=\mathfrak{n}_{1} \times R_{2}$. Note that under the isomorphism f, V_{1} is mapped onto $W_{1}=\left\{R_{1} \times(0)\right\}$ and V_{2} is mapped onto $W_{2}=\left\{I \times R_{2} \mid I \in \mathbb{I}\left(R_{1}\right)\right\}$. We are assuming that $\mathbb{N} \mathbb{C}(R)$ is complemented. Therefore, $\mathbb{I N C}(T)$ is complemented. From $\left|W_{2}\right| \geq 2$, it follows from Lemma 11 that any two members of W_{2} are comparable under the inclusion relation. Hence, if $I_{1}, I_{2} \in \mathbb{I}\left(R_{1}\right)$, then I_{1} and I_{2} are comparable under the inclusion relation. Therefore, we obtain that R_{1} is a chained ring and it follows from $\left|W_{2}\right| \geq 2$ that R_{1} is not a field.
(ii) \Rightarrow (i) Assume that $R \cong R_{1} \times R_{2}$ as rings, where R_{1} is a chained ring which is not a field and R_{2} is a field. It follows from $(i i) \Rightarrow(i)$ of Proposition 4 that $\mathbb{N} \mathbb{C}(R)$ is a star graph and so, $\mathbb{I N C}(R)$ is complemented.

Proposition 10. Let R be a ring such that $|\operatorname{Max}(R)|=2$. Let $\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}\right\}$ denote the set of all maximal ideals of R. Let V_{1}, V_{2} be as in the statement of Lemma 3. Suppose that $\left|V_{i}\right| \geq 2$ for each $i \in\{1,2\}$. Then the following statements are equivalent:
(i) $\mathbb{N N C}(R)$ is complemented.
(ii) Any two members of V_{i} are comparable under the inclusion relation for each $i \in\{1,2\}$. (iii) $\mathbb{I N C}(R)=\mathscr{C}(R)$ is a complete bipartite graph.

Proof. $\quad(i) \Rightarrow(i i)$ We are assuming that $\mathbb{I N C}(R)$ is complemented. By hypothesis, $\left|V_{i}\right| \geq 2$ for each $i \in\{1,2\}$. Hence, we obtain from Lemma 11 that any two members of V_{i} are comparable under the inclusion relation for each $i \in\{1,2\}$.
(ii) \Rightarrow (iii) Note that $V(\mathbb{N} \mathbb{C}(R))=V_{1} \cup V_{2}$. Observe that $V_{1} \cap V_{2}=\emptyset$. It follows from (ii) that if $I_{1}-I_{2}$ is an edge of $\mathbb{N} \mathbb{C}(R)$, then both I_{1}, I_{2} cannot be in the same V_{i} for any $i \in\{1,2\}$. If $I \in V_{1}$ and $J \in V_{2}$, then $I+J=R$ and so, I and J are adjacent in $\mathbb{N} \mathbb{C}(R)$. Therefore, $\mathbb{I N C}(R)=\mathscr{C}(R)$ is a complete bipartite graph.
$(i i i) \Rightarrow(i)$ This is clear.
Let R be a ring with $|\operatorname{Max}(R)|=2$ satisfying the hypothesis of Proposition 10. We are not able to characterize such rings R which satisfies the statement (ii) of Proposition 10. However, we mention one instance where the statement (ii) of Proposition 10 is satisfied. Let R_{1}, R_{2} be chained rings which are not fields and let $R=R_{1} \times R_{2}$. Let $i \in\{1,2\}$ and let \mathfrak{m}_{i} denote the unique maximal ideal of R_{i}. Note that in this case, $V_{1}=\left\{I \times R_{2} \mid I \in \mathbb{I}\left(R_{1}\right)\right\}$ and $V_{2}=\left\{R_{1} \times J \mid J \in \mathbb{I}\left(R_{2}\right)\right\}$. Since R_{1} and R_{2} are not fields, we obtain that $\left|V_{i}\right| \geq 2$ for each $i \in\{1,2\}$. As R_{i} is a chained ring for each $i \in\{1,2\}$, we obtain that R satisfies the statement (ii) of Proposition 10. Therefore, $\mathbb{I N C}(R)$ is complemented. In Proposition 11, we characterize zero-dimensional rings R with $|\operatorname{Max}(R)|=2$ such that $\mathbb{N N} \mathbb{C}(R)$ is complemented.

Proposition 11. Let R be a ring with $|\operatorname{Max}(R)|=2$. Let $\operatorname{dim} R=0$. Let $\operatorname{Max}(R)=$ $\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}\right\}$ and let V_{1}, V_{2} be as in the statement of Lemma 3. Suppose that $\left|V_{i}\right| \geq 2$ for each $i \in\{1,2\}$. Then the following statements are equivalent:
(i) $\mathbb{N} \mathbb{N}(R)$ is complemented.
(ii) $R \cong R_{1} \times R_{2}$ as rings, where R_{i} is a chained ring which is not a field for each $i \in\{1,2\}$.

Proof. $\quad(i) \Rightarrow($ ii $)$ Since $\operatorname{dim} R=0$ and $|\operatorname{Max}(R)|=2$, we obtain from Remark 2 that $R \cong R_{1} \times R_{2}$ as rings, where $\left(R_{i}, \mathfrak{n}_{i}\right)$ is a quasilocal ring for each $i \in\{1,2\}$. Let us denote the ring $R_{1} \times R_{2}$ by T. Note that under the isomorphism from R onto T, V_{1} is mapped onto $W_{1}=\left\{I \times R_{2} \mid I \in \mathbb{I}\left(R_{1}\right)\right\}$ and V_{2} is mapped onto $W_{2}=\left\{R_{1} \times J \mid J \in \mathbb{I}\left(R_{2}\right)\right\}$. Since $R \cong T$ as rings, we obtain that $\mathbb{N} \mathbb{C}(T)$ is complemented. By hypothesis, $\left|V_{i}\right| \geq 2$ for each $i \in\{1,2\}$ and so, $\left|W_{i}\right| \geq 2$ for each $i \in\{1,2\}$. Therefore, R_{i} is not a field for each $i \in\{1,2\}$. Let $i \in\{1,2\}$. We know from Lemma 11 that any two members of W_{i} are comparable under the inclusion relation and so, any two proper ideals of R_{i} are comparable under the inclusion relation. Therefore, R_{i} is a chained ring.
$(i i) \Rightarrow(i)$ Let us denote the ring $R_{1} \times R_{2}$ by T. It follows from $(i i i) \Rightarrow(i i)$ of Proposition 3 that $\mathbb{N} \mathbb{C}(T)$ is a complete bipartite graph. Therefore, $\mathbb{N N C}(T)$ is complemented and so, $\mathbb{I N C}(R)$ is complemented.

Remark 4. In this Remark, we mention an example to illustrate that $(i) \Rightarrow$ (ii) of Proposition 11 can fail to hold if the hypothesis $\operatorname{dim} R=0$ is omitted in Proposition 11. Let p, q be distinct prime numbers and let $R=S^{-1} \mathbb{Z}$, where $S=\mathbb{Z} \backslash(p \mathbb{Z} \cup q \mathbb{Z})$. Note that R is a principal ideal domain and $\operatorname{Max}(R)=\{p R, q R\}$. It is verified in Example 1 that $\mathscr{C}(R)=\mathbb{N} \mathbb{N}(R)$ is a complete bipartite graph. Hence, $\mathbb{N} \mathbb{C}(R)$ is complemented. Since R is an integral domain, 0 and 1 are the only idempotent elements of R. Therefore, (ii) of Proposition 11 does not hold.

Let R be a ring with $|\operatorname{Max}(R)|=3$. In Theorem 3, we characterize such rings R whose $\mathbb{I N C}$ graph is complemented.

Lemma 12. Let R be a ring such that $|\operatorname{Max}(R)|=3$. Let $\left\{\mathfrak{m}_{i} \mid i \in\{1,2,3\}\right\}$ denote the set of all maximal ideals of R. If $\mathbb{N} \mathbb{C}(R)$ is complemented, then $\mathfrak{m}_{i}=\mathfrak{m}_{i}^{2}$ for each $i \in\{1,2,3\}$.

Proof. We are assuming that $\mathbb{N} \mathbb{C}(R)$ is complemented and $\operatorname{Max}(R)=\left\{\mathfrak{m}_{i} \mid i \in\right.$ $\{1,2,3\}\}$. We claim that $\mathfrak{m}_{i}=\mathfrak{m}_{i}^{2}$ for each $i \in\{1,2,3\}$. Since $\mathbb{I N C}(R)$ is complemented, there exists $J \in V(\mathbb{N} \mathbb{C}(R))$ such that $\mathfrak{m}_{1}^{2} \perp J$ in $\mathbb{N} \mathbb{C}(R)$. It now follows from Lemma 9 that $\mathfrak{m}_{1}^{2} J \subseteq J(R)=\cap_{i=1}^{3} \mathfrak{m}_{i}$. This implies that $J \subseteq \mathfrak{m}_{2} \cap \mathfrak{m}_{3}$. Let us denote the ideal $\mathfrak{m}_{1} \mathfrak{m}_{3}$ by A. It is clear that $A \in V(\mathbb{N} \mathbb{C}(R))$. Observe that $A \nsubseteq \mathfrak{m}_{2}$, whereas $J \subseteq \mathfrak{m}_{2}$ and so, $A \nsubseteq J$. Since $J \nsubseteq J(R)$, it follows that $J \nsubseteq \mathfrak{m}_{1}$. As $A \subseteq \mathfrak{m}_{1}$, we obtain that $J \nsubseteq A$. Hence, A and J are adjacent in $\mathbb{N} \mathbb{C}(R)$. Since $\mathfrak{m}_{1}^{2} \nsubseteq \mathfrak{m}_{3}$, whereas $A \subseteq \mathfrak{m}_{3}$, we obtain that $\mathfrak{m}_{1}^{2} \nsubseteq A$. As $\mathfrak{m}_{1}^{2} \perp J$ in $\mathbb{N} \mathbb{C}(R)$, it follows that \mathfrak{m}_{1}^{2} and A cannot be adjacent in $\mathbb{N} \mathbb{C}(R)$. Therefore, $A=\mathfrak{m}_{1} \mathfrak{m}_{3} \subseteq \mathfrak{m}_{1}^{2}$. We know from [[5], Proposition 4.2] that \mathfrak{m}_{1}^{2} is a \mathfrak{m}_{1}-primary ideal of R. As $\mathfrak{m}_{3} \nsubseteq \mathfrak{m}_{1}=\sqrt{\mathfrak{m}_{1}^{2}}$, we get that $\mathfrak{m}_{1} \subseteq \mathfrak{m}_{1}^{2}$ and so, $\mathfrak{m}_{1}=\mathfrak{m}_{1}^{2}$. Similarly, it can be shown that $\mathfrak{m}_{2}=\mathfrak{m}_{2}^{2}$ and $\mathfrak{m}_{3}=\mathfrak{m}_{3}^{2}$.

Lemma 13. Let R be a ring such that $|\operatorname{Max}(R)|=3$. Let $\left\{\mathfrak{m}_{i} \mid i \in\{1,2,3\}\right\}$ denote the set of all maximal ideals of R. If $\mathbb{I N C}(R)$ is complemented, then $R_{\mathfrak{m}_{i}}$ is a field for each $i \in\{1,2,3\}$.

Proof. We are assuming that $\mathbb{N} \mathbb{C}(R)$ is complemented. We first verify that $R_{\mathfrak{m}_{1}}$ is a field. Since $\mathfrak{m}_{1} \nsubseteq \mathfrak{m}_{2} \cup \mathfrak{m}_{3}$, there exists $a \in \mathfrak{m}_{1} \backslash\left(\mathfrak{m}_{2} \cup \mathfrak{m}_{3}\right)$. Note that $R a \in V(\mathbb{N} \mathbb{C}(R))$. As $\mathbb{N} \mathbb{C}(R)$ is complemented, there exists $J \in V(\mathbb{N} \mathbb{C}(R))$ such that $R a \perp J$ in $\mathbb{N} \mathbb{C}(R)$. We know from Lemma 9 that $(R a) J \subseteq J(R)=\cap_{i=1}^{3} \mathfrak{m}_{i}$. Hence, we obtain that $J \subseteq \mathfrak{m}_{2} \cap \mathfrak{m}_{3}$. Let us denote the ideal $\mathfrak{m}_{1} \mathfrak{m}_{2}$ by A. It is clear that $A \in V(\mathbb{N} \mathbb{C}(R))$. As $J \subseteq \mathfrak{m}_{3}$ and $A \nsubseteq \mathfrak{m}_{3}$, we obtain that $A \nsubseteq J$. Since $J \nsubseteq J(R)$, it follows that $J \nsubseteq \mathfrak{m}_{1}$ and so, $J \nsubseteq \mathfrak{m}_{1} \mathfrak{m}_{2}=A$. Hence, A and J are not comparable under the inclusion relation and therefore, A and J are adjacent in $\mathbb{N} \mathbb{C}(R)$. As $a \notin \mathfrak{m}_{2}$, it follows that $R a \nsubseteq A$. Since $R a \perp J$ in $\mathbb{N} \mathbb{C}(R)$, we obtain that $R a$ and A cannot be adjacent in $\mathbb{N} \mathbb{C}(R)$. Therefore, $A=\mathfrak{m}_{1} \mathfrak{m}_{2} \subseteq R a$. This implies that $\left(\mathfrak{m}_{1} \mathfrak{m}_{2}\right)_{\mathfrak{m}_{1}} \subseteq(R a)_{\mathfrak{m}_{1}} \subseteq$ $\left(\mathfrak{m}_{1}\right)_{\mathfrak{m}_{1}}$. From $\left(\mathfrak{m}_{2}\right)_{\mathfrak{m}_{1}}=R_{\mathfrak{m}_{1}}$, we get that $\left(\mathfrak{m}_{1}\right)_{\mathfrak{m}_{1}}=R_{\mathfrak{m}_{1}}\left(\frac{a}{1}\right)$. We know from Lemma 12 that $\mathfrak{m}_{1}=\mathfrak{m}_{1}^{2}$. Hence, we obtain that $R_{\mathfrak{m}_{1}}\left(\frac{a}{1}\right)=\left(\mathfrak{m}_{1}\right)_{\mathfrak{m}_{1}}=\left(\mathfrak{m}_{1}^{2}\right)_{\mathfrak{m}_{1}}=R_{\mathfrak{m}_{1}}\left(\frac{a^{2}}{1}\right)$. Hence, $\frac{a}{1}=\frac{r}{s} \frac{a^{2}}{1}$ for some $r \in R$ and $s \in R \backslash \mathfrak{m}_{1}$. Therefore, $\frac{a}{1}\left(\frac{1}{1}-\frac{r a}{s}\right)=\frac{0}{1}$. Since $R_{\mathfrak{m}_{1}}$ is quasilocal with $\left(\mathfrak{m}_{1}\right)_{\mathfrak{m}_{1}}$ as its unique maximal ideal, it follows that $\frac{1}{1}-\frac{r a}{s}$ is a unit in $R_{\mathfrak{m}_{1}}$, and so, we obtain that $\frac{a}{1}=\frac{0}{1}$. Therefore, $\left(\mathfrak{m}_{1}\right)_{\mathfrak{m}_{1}}=\left(\frac{0}{1}\right)$. This proves that $R_{\mathfrak{m}_{1}}$ is a field. Similarly, it can be shown that $R_{\mathfrak{m}_{i}}$ is a field for each $i \in\{2,3\}$.

Lemma 14. Let $R=F_{1} \times F_{2} \times F_{3}$, where F_{i} is a field for each $i \in\{1,2,3\}$. Then $\mathbb{N} \mathbb{C}(R)$ is complemented.

Proof. Note that $\operatorname{Max}(R)=\left\{\mathfrak{m}_{1}=(0) \times F_{2} \times F_{3}, \mathfrak{m}_{2}=F_{1} \times(0) \times F_{3}, \mathfrak{m}_{3}=F_{1} \times F_{2} \times\right.$ $(0)\}$. It is clear that $J(R)=(0) \times(0) \times(0)$ and $V(\mathbb{N N C}(R))=\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}, \mathfrak{m}_{3}, \mathfrak{m}_{1} \cap \mathfrak{m}_{2}, \mathfrak{m}_{2} \cap\right.$ $\left.\mathfrak{m}_{3}, \mathfrak{m}_{1} \cap \mathfrak{m}_{3}\right\}$. It is clear that $\mathfrak{m}_{1} \perp\left(\mathfrak{m}_{2} \cap \mathfrak{m}_{3}\right), \mathfrak{m}_{2} \perp\left(\mathfrak{m}_{1} \cap \mathfrak{m}_{3}\right)$, and $\mathfrak{m}_{3} \perp\left(\mathfrak{m}_{1} \cap \mathfrak{m}_{2}\right)$ in $\mathbb{N} \mathbb{C}(R)$. This proves that $\mathbb{N} \mathbb{C}(R)$ is complemented.

Theorem 3. Let R be a ring such that $|\operatorname{Max}(R)|=3$. The following statements are equivalent:
(i) $\mathbb{N} \mathbb{N}(R)$ is complemented.
(ii) $R \cong F_{1} \times F_{2} \times F_{3}$ as rings, where F_{i} is a field for each $i \in\{1,2,3\}$.

Proof. $\quad(i) \Rightarrow(i i)$ Assume that $\mathbb{I N C}(R)$ is complemented. Let $\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}, \mathfrak{m}_{3}\right\}$ denote the set of all maximal ideals of R. We know from Lemma 13 that $R_{\mathfrak{m}_{i}}$ is a field for each $i \in\{1,2,3\}$. Hence, $(J(R))_{\mathfrak{m}_{i}}=\left(\mathfrak{m}_{i}\right)_{\mathfrak{m}_{i}}=\left(\frac{0}{1}\right)$ for each $i \in\{1,2,3\}$. Therefore, we obtain from $(i i i) \Rightarrow(i)$ of [[5], Proposition 3.8] that $J(R)=(0)$. Thus $\cap_{i=1}^{3} \mathfrak{m}_{i}=$ (0). As distinct maximal ideals of a ring are comaximal, it follows from the Chinese remainder theorem [[5], Proposition $1.10(i i)$ and (iii)] that $R \cong \frac{R}{\mathfrak{m}_{1}} \times \frac{R}{\mathfrak{m}_{2}} \times \frac{R}{\mathfrak{m}_{3}}$.
(ii) \Rightarrow (i) Let us denote the ring $F_{1} \times F_{2} \times F_{3}$ by T. We know from Lemma 14 that $\mathbb{N} \mathbb{C}(T)$ is complemented. Since $R \cong T$ as rings, we obtain that $\mathbb{N} \mathbb{C}(R)$ is complemented.

References

[1] M. Afkhami and K. Khashyarmanesh, The cozero-divisor graph of a commutative ring., Southeast Asian Bull. Math. 35 (2011), no. 5, 753-762.
[2] \qquad , On the cozero-divisor graphs and comaximal graphs of commutative rings, J. Algebra Appl. 12 (2013), no. 3, Article ID: 1250173, 9 pages.
[3] , On the cozero-divisor graphs of commutative rings, Applied Mathematics 4 (2013), no. 7, 979-985.
[4] D.F. Anderson, R. Levy, and J. Shapiro, Zero-divisor graphs, von neumann regular rings, and boolean algebras, J. Pure Appl. Algebra 180 (2003), no. 3, 221-241.
[5] M.F. Atiyah and I.G. Macdonald, Introduction to Commutative Algebra, AddisonWesley Publishing Company, Reading Massachusetts, 1969.
[6] R. Balakrishnan and K. Ranganathan, A Textbook of Graph Theory, Universitext Springer, 2000.
[7] E. Bastida and R. Gilmer, Overrings and divisorial ideals of rings of the form $D+$ M., Michigan Math. J. 20 (1973), no. 1, 79-95.
[8] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl. 10 (2011), no. 4, 727-739.
[9] , The annihilating-ideal graph of commutative rings II, J. Algebra Appl. 10 (2011), no. 4, 741-753.
[10] S.M. Bhatwadekar and P.K. Sharma, A note on graphical representation of rings, J. Algebra 176 (1995), no. 1, 124-127.
[11] R. Gilmer, Multiplicative Ideal Theory, Marcel-Dekker, New York, 1972.
[12] M.I. Jinnah and S.C. Mathew, When is the comaximal graph split?, Comm. Algebra 40 (2012), no. 7, 2400-2404.
[13] H.R. Maimani, M. Salimi, A. Sattari, and S. Yassemi, Comaximal graph of commutative rings, J. Algebra 319 (2008), no. 4, 1801-1808.
[14] S.M. Moconja and Z.Z. Petrović, On the structure of comaximal graphs of commutative rings with identity, Bull. Aust. Math. Soc. 83 (2011), no. 1, 11-21.
[15] K. Samei, On the comaximal graph of a commutative ring, Canad. Math. Bull. 57 (2014), no. 2, 413-423.
[16] H.-Ju Wang, Graphs associated to co-maximal ideals of commutative rings, J. Algebra 320 (2008), no. 7, 2917-2933.
[17] M. Ye and T. Wu, Co-maximal ideal graphs of commutative rings, J. Algebra Appl. 11 (2012), no. 6, Article ID: 1250114, 14 pages.

