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Abstract: An eternal m-secure set of a graph G = (V, E) is a set So C V that
can defend against any sequence of single-vertex attacks by means of multiple-guard
shifts along the edges of G. A suitable placement of the guards is called an eternal m-
secure set. The eternal m-security number o,,(G) is the minimum cardinality among
all eternal m-secure sets in G. An edge uwv € E(G) is subdivided if we delete the
edge uv from G and add a new vertex x and two edges ux and vx. The eternal m-
security subdivision number sd,, (G) of a graph G is the minimum cardinality of a set
of edges that must be subdivided (where each edge in G can be subdivided at most
once) in order to increase the eternal m-security number of G. In this paper, we study
the eternal m-security subdivision number in trees. In particular, we show that the
eternal m-security subdivision number of trees is at most 2 and we characterize all trees
attaining this bound.

Keywords: eternal m-secure set, eternal m-security number, eternal m-security sub-
division number
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1. Introduction

Throughout this paper, G is a simple connected graph with vertex set V = V(G)
and edge set £ = E(G). The numbers of vertices and edges are called the order and
size of the G, respectively. For every vertex v € V, the open neighborhood of v is
the set N(v) = {u € V(GQ) | wv € E(G)} and the closed neighborhood of v is the set
N[v] = N(v) U{v}. The degree deg(v) of v is the number of edges incident with v or
equivalently deg(v) = |N(v)|. The minimum and mazimum degree of G are denoted
by §(G) and A(G), respectively. A leaf of G is a vertex of degree 1 and a support
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verter of G is a vertex adjacent to a leaf. A support vertex is called strong support
vertex if it is adjacent to at least two leaves. We denote the set of leaves of a graph
G and the set of leaves adjacent to v € V(G) by L(G) and L,, respectively. For a
vertex v in a rooted tree T, let D(v) denote the set of descendants of v. An edge
uwv € E(G) is subdivided if the edge uv is deleted and a new vertex z and two new
edges ur and vx are added in G.

The concept of domination in graphs was first defined by Ore in 1962 [7]. A set S
of vertices in a graph G is called a dominating set if every vertex in V is either an
element of S or is adjacent to an element of S. The domination number of G, denoted
by v(G), is the minimum cardinality among all dominating sets of G. A v(G)-set is
a dominating set of G of size v(G).

The domination subdivision number sd,(G) of a graph G is the minimum cardinality
of a set of edges of G that must be subdivided (where each edge in G can be subdivided
at most once) in order to increase the domination number of G. This concept was
first introduced by Velammal in his Ph.D. thesis [8] and since then many results have
been obtained on some domination parameters (see for instance [2, 5]).

An eternal 1-secure set of a graph G is a set Sy C V that can defend against any
sequence of single-vertex attacks by means of single-guard shifts along the edges of G.
That is, for any k£ and any sequence vy, vs,. .., v of vertices, there exists a sequence
of guards wy,us...,ux with u; € S;—1 and either u; = v; or w;v; € E, such that
each set S; = (Si—1 \ {u;}) U {v;} is a dominating set. It follows that each S; can
be chosen to be an eternal 1-secure set. The eternal 1-security number of G, denoted
by o1(G), is the minimum cardinality among all eternal 1-secure set. The eternal
1-security number was introduced by Burger et al. [3] using the notation 7. In
order to reduce the number of guards needed in an eternal secure set, Goddard et
al. [4] considered allowing more guards to move. Suppose that in responding to each
attack, every guard may shift along an incident edge. The eternal m-security number
om(G) is the minimum number of guards to handle an arbitrary sequence of single
attacks using multiple-guard shifts. A suitable placement of the guards is called an
eternal m-secure set (EmSS) of G. An EmSS of size 0,,(G) is called a 0,,(G)- set.
Obviously, any EmSS of G is a dominating set of G. So we have v(G) < op,(G).
When an edge uv € E(G) is subdivided with a vertex z, then the eternal m-security
number of G can not decrees. The eternal m-security subdivision number sd,, , (G) of
a graph G is the minimum cardinality of a set of edges of G that must be subdivided
(where each edge in G can be subdivided at most once) in order to increase the
eternal m-security number of G. Since in the study of eternal m-security subdivision
number, the assumption o,,(G) < n is necessary, we always assume that when we
discuss sd,,, (G), all graphs involved satisfy 0,,(G) < n, i.e., all graphs are nonempty.
In this paper, we study of the eternal m-security subdivision number in trees. In
particular, we prove that the eternal m-security subdivision number of a tree is at
most 2 and we characterize all trees attaining this bound. For a more thorough
treatment of domination parameters and for terminology not presented here see [6, 9].
The proof of the following results can be found in [4].
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Theorem A. For any graph G, v(G) < om(G).
Theorem B. For any graph G, om(G) < a(G).

Theorem C. 1. om(Ky,) =1.
2 on(P) = 3.
3. om(Cr) =[%2].

w3

Theorem D. For any graph G, o, (G) > (diam(G) + 1)/2.

Next results are immediate consequence of Propositions C and D.
Corollary 1. For any graph G, 0, (G) =1 if and only if G ~ K.
Corollary 2. For n > 2, sd,,, (Kn) = 1.

1, if nis even

Corollary 3. For n > 2, sd,,, (P.) = { 9 if nis odd

2. Main Results

In this section, we show that for any tree 7', sd,,, (T) < 2 and we characterize all
trees attaining this bound. We start with two propositions.

Proposition 1. Let G be a connected graph. If G has a vertex u with |L,| > 3, then
sde,, (G) = 1.

Proof. Let wi,wa,ws € L, and let G’ be the graph obtained from G by subdividing
the edge ww; by subdivision vertex . Let S be a 0,,,(G')— set containing wy (we may
assume that S is a response to an attack on ws). To dominate ws, we may assume
that u € S. On the other hand, to dominate wy, we must have |[S N {wy,z}| > 1. It
is easy to see that S\ {wy, 2} is an EmSS of G. This implies that sd, (T)=1. O

Proposition 2. Let G be a connected graph. If G has a vertex u with |L,| = 2, then
sdo, (G) < 2.

Proof. Let wy,ws € L, and let G’ is the graph obtained from G by subdividing
the edges ww; and uwy by subdivision vertices x and y respectively. Let S be a
om(G')— set containing u (we may assume that S is a response to an attack on ).
To dominate w; and ws, we must have |S N {wy,2}| > 1 and |S N {wy,y} > 1,
respectively. It is easy to see that (S \ {wi,z,y}) U {ws} is an EmSS of G. This
implies that sd,, (T') < 2. O
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Theorem 1. For any tree T, sdo,, (T') < 2.

Proof. The result is obvious for n(T) < 3. Let n(T) > 4. If T is a star, then
the result follows from Proposition 1. Assume that 7' is not a star and vivs...vg
be a diametrical path in T. Root T at vg. If deg(vz) > 3, then the result follows
from Proposition 2. Suppose that deg(ve) = 2 and T” is the tree obtained from T
by subdividing the edges vyv2 and vyvs by subdivision vertices x and y, respectively.
Let S be a 0,,(T")-set containing ve. To dominate v;, we may assume that z € S.
Let 8" = S\ {a}ify ¢ 5,58 = (S\ {z,y}) U{vs} if v3 ¢ S and y € S and
S = (S\ {z,y}) U{w} if v3,y € S, where w € Nr(v3) \ {va}. Clearly, S’ is an EmSS
of T of size |S| — 1 and this completes the proof. O

Now we give a constructive characterization of trees T' for which sd,,  (T) = 2. For
this purpose, we describe a procedure to build a family ¥ of trees as follows. Let T
be the family of trees that: A path Pj is a tree in ¥ and if T is a tree in T, then the
tree T” obtained from T by the following four operations which extend the tree T by
attaching a tree to a vertex v € V(T'), called an attacher, is also a tree in T.
Operation T;. If v € V(T), then T; adds a path vzy to T.

Operation T,. If v € V(T), then T adds a star K 3 with center y and leaves z, w, z
and joins x to v.

Operation T3. If v € V(T) is a leaf of T, then T3 adds a pendant edge vw and a
star Ko with center x and leaves y, z and joins z to v.

Operation T,. If v is a leaf of 7', then ¥4 adds two new stars K o with centers z;
and z2 and joins v to x1 and xo (see Fig. 1).

z
y ]
/

‘3:1: (‘ZQ:

531 ‘ .

‘34:

Fig. 1. The four operations
The proof of the following Lemmas can be found in [1].

Lemma 1. Let 7" be a tree, v € V(T") and T be obtained from T" by Operation T.
Then om (T) = om(T') + 1.
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Lemma 2. Let T’ be atree and v € V(T"). If T is the tree obtained from 7" by Operation
T, then 0, (T) = o (T") + 2.

Lemma 3. Let T’ be atree and v € L(T"). If T is the tree obtained from 7" by Operation
T3, then 0 (T) = o (T') + 2.

Lemma 4. Let T’ be a tree and let v € L(T"). If T is the tree obtained from 7" by
Operation T4, then o (T) = om(T") + 3.

Lemma 5. Let 7/ € ¥ and u € V(T'). If T is a tree obtained from 7" by adding a
pendant edge uu’, then 6., (T) = 0. (T").

Observation 2. Let T’ be a tree and T be obtained from T’ by an operation from the set
{‘21, {52, Tg, 34} . Then Sdo’m (T) S Sdam (T/) .

Proof. Let F be a set of edges in T" where subdividing the edges in F increases the
eternal m— security number of T”. Let T7 and T be the trees obtained from 7" and
T, by subdividing the edges in F, respectively. Then T is obtained from 77 by one
of the Operations ¥4, ...,%4 and the result follows from Lemmas 1, 2, 3 and 4. [

Theorem 3. Let T € T and let T be a tree obtained from T' by subdividing an edge of
T. Then o (T') = o (T).

Proof. Let T €%, e € E(T) and let T’ be the tree obtained from T by subdividing
the edge e by subdivision vertex u. First note that ¢,,(T") > o, (T). Let T be
obtained from a path P3 by successive operations T',...,T™, respectively, where
T e {T1,%2,%3, T4} for 1 <i <mifm>1and T = P3 if m = 0. We proceed by
induction on m. If m = 0, then clearly the statement is true by Corollary 3. Assume
m > 1 and that the statement holds for all trees which are obtained from Pj3 by
applying at most m — 1 operations. Suppose T},_1 is a tree obtained by applying the
first m — 1 operations T!,...,T™"1. When e € E(T},_1), let T!,_; be obtained from
T,.—1 by subdividing the edge e. We consider the following cases:

Case 1. ¥ = %;. Then T is obtained from 7;,_; by attaching a path vzy to v €
V(Tp-1). If e € E(T,,—1), then by the inductive hypothesis, o, (T, _1) = om(Tim-1)
and by Lemma 1,

om(T) =om(Th ) +1=0pm(Th_1)+1=0,(T).
Assume that e = zy (the case e = vx is similar). Let T* = T" — {u,y}. Then T*

is obtained from T,,_;1 by attaching a pendant edge vz. By Lemma 5, 0,,(T*) =
0m(Tm-1) and by Lemma 1, we have

om(T") = 0p(T*) +1 =04 (Trn-1) + 1 = 0, (T).
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Case 2. T™ = T5. Then T is obtained from T;,—; by adding a star K 3 centered
at y and leaves x,w, z and joining z to v. If e € E(T,,—1), then by the inductive
hypothesis, 0., (T, _1) = 0m(Tim—1) and by Lemma 2,

om(T) = om(Th 1) +2=0m(Thn_1)+2=0,(T).

If e = zy (the case e = vx is similar), then let T* = T" — {u,y, z,w}. Then T*
is obtained from T,_1 by attaching a pendant edge vz. By Lemma 5, 0,,,(T*) =
0m(Tm-1) and by Lemma 2, we have

Om (T = o (T*) +2 = 0 (Tyn1) + 2 = o (T).

Assume that e = yz (the case e = yw is similar ). Let 7% =T — z. Then T* ~ T
and T” is obtained from T* by attaching a pendant edge uz. It follows from Lemma
5 that 0, (T") = 0 (T*) = 01 (T).

Case 3. ¥ = T3. Then T is obtained from T,,,_; by attaching a pendant edge vw to
the leaf v € V(T,,,—1) and adding a star K; 5 with center x and leaves y, z and joining
z tov. If e € E(T),—1), then by the inductive hypothesis, 0., (T},_1) = om(Tm-1)
and by Lemma 3,

om(T) =om(Tr 1) +2=0m(Thn-1) +2=0n(T).

If e = zv, then let T* = T’ — {u,xz,y,z}. Then T" is obtained from T* by adding
a star with center z and leaves u,y, z and joining u to v. On the other hand, T* is
obtained from T,,_1 by attaching a pendant edge vw. By Lemmas 5 and 2,

on(T") = 0 (T*) +2 =00 (Trn_1) + 2 = 0 (T).

If ¢ = vw, then let T* = T — w. Then T* ~ T and T’ is obtained from T* by
attaching a pendant edge v'w. By Lemma 5, 0., (T") = 0 (T*) = 0 (T). If e = xy
(the case e = xz is similar ), then let 7* = T" — y. Then T* ~ T and T’ is obtained
from T™* by attaching a pendant edge uy. By Lemma 5, 0,,,(T") = 01 (T*) = 0. (T).

Case 4. " = T4. Then T is obtained from 7},_; by adding two stars K; o with
centers x; and xo and joining x1,x2 to v. Let y;, z; be the leaves adjacent to x;, for
i=1,2. If e € E(T),—1), then by the inductive hypothesis, 0., (T}, _1) = om(Trm-1)
and by Lemma 4,

om(T") =om(Th_1) +3=0m(Tm-1) +3 = on(T).
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If e = z1v (the case e = xov is similar), then let T* = T" — {z1,y1, 21}. Then T* is
obtained from T,,—; by an Operation 3. By Lemma 3, 0,,,(T*) = 0n(Tin—1) + 2.
Let S be a 0, (T*)— set which contains u. Then obviously, S U {x1} is an EmSS of
T’ and so

Im(T) < |S| + 1= 0 (T*) + 1 = 0 (Ti_1) + 3 = o (T).

Assume that e = z1y; (the cases e = x121, Z2y2, 222 are similar). Let T* =T — y;.
Then T* ~ T and T’ is obtained from T™* by attaching a pendant edge uy;. By
Lemma 5, 0, (T') = 0 (T*) = 6., (T'). This completes the proof. O

An immediate consequence of Theorem 3 and Corollary 1 now follows.

Corollary 4. For any tree T € %, sdo,, (T') = 2.

Tm

Proposition 3. Let T be a tree and v be a strong support vertex in T such that v is
adjacent to the center of a star Ki2. Then sd,,, (T) = 1.

Proof. Let v be adjacent to the vertex u which is a center of a star K; o and let T”
be the tree obtained from T by subdividing the edge vu with the subdivision vertex z.
Assume that S is a 0, (T")—set containing z (we may assume S as a response to an
attack on z). To dominate the leaves in L,, and L,, we have |(Ng [u]UNp: [v])NS| > 4
and we may assume that v,u € S. It is easy to see that S\ {z} is an EmSS of T of
size |S| — 1. This completes the proof. O

Proposition 4. Let T be a tree and v € V(T). If T is a tree obtained from T by adding
three copies z;¥;2; (1 <1 < 3) of P; and joining v to 1, y2, ys, then sd,,, (T") = 1.

Proof. Let T} be the tree obtained from T by subdividing the edge vy, by subdivision
vertex w. Let S be a o, (T )-set containing w (we may consider a response to an attack
on w). To dominate 1 and z;, we may assume that y; € S. If v ¢ S, then we may
assume that z;,y; € S for i = 2,3 and the set S = (S \ {w,y2}) U {v} is clearly an
EmSS of T” of size less than o,,,(T1). If v € S, then it is not hard to see that the set
S’ = S\ {w} is an EmSS of T of size |S| — 1. This implies that sd,, () = 1. O

Now we are ready to prove the main theorem of this section.

Theorem 4. For any tree T of order n > 3, sd,,, (T) = 2 if and only if T' € T.

Proof.  According to Corollary 4, we only need to prove the necessity. We proceed by
induction n. The result is trivial for n = 3. Let n > 4 and assume that the statement
holds for any tree of order less than n. Let T be a tree of order n and sd,, (T) = 2.
By Proposition 1, T is not a star and so diam(7T") > 3. Assume P := vy ...vy is the
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diametrical path in T such that deg(vs) is as small as possible. Suppose that T is
rooted at vg. It follows from Proposition 1 and the assumption sd,, (7') = 2 that
deg(ve) < 3. If deg(va) = 2, then let TV = T — {v1,v2}. It follows from Lemma 1
and Observation 2, that sd,,, (I') = 2. By the inductive hypothesis, 7" € . Now T
can be obtained from 7" by Operation ¥; and so T € T. Let deg(vy) = 3. Suppose
that w # vy is a leaf adjacent to vy. If deg(vs) = 2, then let 7" =T — {vy, va, v3, w}.
It follows from Lemma 2 and Observation 2 that sd,, (7') = 2. By the inductive
hypothesis, 7/ € €. Now T can be obtained from T” by Operation T, and so T € %.
Let deg(vz) > 3. Tt follows from the assumption about v and Propositions 3 and 4
that deg(vs) = 3 and there is only two possible cases.

Case 1. v3 is adjacent to a leaf x. Let 7" = T — {v1, vo, z, w}. It follows from Lemma
3 and Observation 2 that sd,, (T”) = 2. By the inductive hypothesis, 77 € ¥. Now
T can be obtained from 7" by Operation T3 and so T' € %.

Case 2. v3 is adjacent to the center of a star K4 o other than ve. Let TV = T — D(v3).
It follows from Lemma 4 and Observation 2 that sd,, (7) = 2. By the inductive
hypothesis, 77 € . Now T can be obtained from T” by Operation T4 and so T € ¥.
This completes the proof. O

We conclude this paper with the following problem.
Problem. Prove or disprove: For any nonempty graph G, 1 < sd,, (G) < 3.
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