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Abstract: An eternal m-secure set of a graph G = (V,E) is a set S0 ⊆ V that

can defend against any sequence of single-vertex attacks by means of multiple-guard

shifts along the edges of G. A suitable placement of the guards is called an eternal m-
secure set. The eternal m-security number σm(G) is the minimum cardinality among

all eternal m-secure sets in G. An edge uv ∈ E(G) is subdivided if we delete the
edge uv from G and add a new vertex x and two edges ux and vx. The eternal m-

security subdivision number sdσm (G) of a graph G is the minimum cardinality of a set

of edges that must be subdivided (where each edge in G can be subdivided at most
once) in order to increase the eternal m-security number of G. In this paper, we study

the eternal m-security subdivision number in trees. In particular, we show that the

eternalm-security subdivision number of trees is at most 2 and we characterize all trees
attaining this bound.

Keywords: eternal m-secure set, eternal m-security number, eternal m-security sub-
division number
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1. Introduction

Throughout this paper, G is a simple connected graph with vertex set V = V (G)

and edge set E = E(G). The numbers of vertices and edges are called the order and

size of the G, respectively. For every vertex v ∈ V , the open neighborhood of v is

the set N(v) = {u ∈ V (G) | uv ∈ E(G)} and the closed neighborhood of v is the set

N [v] = N(v) ∪ {v}. The degree deg(v) of v is the number of edges incident with v or

equivalently deg(v) = |N(v)|. The minimum and maximum degree of G are denoted

by δ(G) and ∆(G), respectively. A leaf of G is a vertex of degree 1 and a support
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vertex of G is a vertex adjacent to a leaf. A support vertex is called strong support

vertex if it is adjacent to at least two leaves. We denote the set of leaves of a graph

G and the set of leaves adjacent to v ∈ V (G) by L(G) and Lv, respectively. For a

vertex v in a rooted tree T , let D(v) denote the set of descendants of v. An edge

uv ∈ E(G) is subdivided if the edge uv is deleted and a new vertex x and two new

edges ux and vx are added in G.

The concept of domination in graphs was first defined by Ore in 1962 [7]. A set S

of vertices in a graph G is called a dominating set if every vertex in V is either an

element of S or is adjacent to an element of S. The domination number of G, denoted

by γ(G), is the minimum cardinality among all dominating sets of G. A γ(G)-set is

a dominating set of G of size γ(G).

The domination subdivision number sdγ(G) of a graph G is the minimum cardinality

of a set of edges of G that must be subdivided (where each edge in G can be subdivided

at most once) in order to increase the domination number of G. This concept was

first introduced by Velammal in his Ph.D. thesis [8] and since then many results have

been obtained on some domination parameters (see for instance [2, 5]).

An eternal 1-secure set of a graph G is a set S0 ⊆ V that can defend against any

sequence of single-vertex attacks by means of single-guard shifts along the edges of G.

That is, for any k and any sequence v1, v2, . . . , vk of vertices, there exists a sequence

of guards u1, u2 . . . , uk with ui ∈ Si−1 and either ui = vi or uivi ∈ E, such that

each set Si = (Si−1 \ {ui}) ∪ {vi} is a dominating set. It follows that each Si can

be chosen to be an eternal 1-secure set. The eternal 1-security number of G, denoted

by σ1(G), is the minimum cardinality among all eternal 1-secure set. The eternal

1-security number was introduced by Burger et al. [3] using the notation γ∞. In

order to reduce the number of guards needed in an eternal secure set, Goddard et

al. [4] considered allowing more guards to move. Suppose that in responding to each

attack, every guard may shift along an incident edge. The eternal m-security number

σm(G) is the minimum number of guards to handle an arbitrary sequence of single

attacks using multiple-guard shifts. A suitable placement of the guards is called an

eternal m-secure set (EmSS) of G. An EmSS of size σm(G) is called a σm(G)- set.

Obviously, any EmSS of G is a dominating set of G. So we have γ(G) ≤ σm(G).

When an edge uv ∈ E(G) is subdivided with a vertex x, then the eternal m-security

number of G can not decrees. The eternal m-security subdivision number sdσm
(G) of

a graph G is the minimum cardinality of a set of edges of G that must be subdivided

(where each edge in G can be subdivided at most once) in order to increase the

eternal m-security number of G. Since in the study of eternal m-security subdivision

number, the assumption σm(G) < n is necessary, we always assume that when we

discuss sdσm
(G), all graphs involved satisfy σm(G) < n, i.e., all graphs are nonempty.

In this paper, we study of the eternal m-security subdivision number in trees. In

particular, we prove that the eternal m-security subdivision number of a tree is at

most 2 and we characterize all trees attaining this bound. For a more thorough

treatment of domination parameters and for terminology not presented here see [6, 9].

The proof of the following results can be found in [4].
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Theorem A. For any graph G, γ(G) ≤ σm(G).

Theorem B. For any graph G, σm(G) ≤ α(G).

Theorem C. 1. σm(Kn) = 1.

2. σm(Pn) = dn2 e.

3. σm(Cn) = dn3 e.

Theorem D. For any graph G, σm(G) ≥ (diam(G) + 1)/2.

Next results are immediate consequence of Propositions C and D.

Corollary 1. For any graph G, σm(G) = 1 if and only if G ' Kn.

Corollary 2. For n ≥ 2, sdσm(Kn) = 1.

Corollary 3. For n ≥ 2, sdσm(Pn) =

{
1, if n is even
2, if n is odd.

2. Main Results

In this section, we show that for any tree T , sdσm
(T ) ≤ 2 and we characterize all

trees attaining this bound. We start with two propositions.

Proposition 1. Let G be a connected graph. If G has a vertex u with |Lu| ≥ 3, then
sdσm(G) = 1.

Proof. Let w1, w2, w3 ∈ Lu and let G′ be the graph obtained from G by subdividing

the edge uw1 by subdivision vertex x. Let S be a σm(G′)− set containing w2 (we may

assume that S is a response to an attack on w2). To dominate w3, we may assume

that u ∈ S. On the other hand, to dominate w1, we must have |S ∩ {w1, x}| ≥ 1. It

is easy to see that S \ {w1, x} is an EmSS of G. This implies that sdσm
(T ) = 1.

Proposition 2. Let G be a connected graph. If G has a vertex u with |Lu| = 2, then
sdσm(G) ≤ 2.

Proof. Let w1, w2 ∈ Lu and let G′ is the graph obtained from G by subdividing

the edges uw1 and uw2 by subdivision vertices x and y respectively. Let S be a

σm(G′)− set containing u (we may assume that S is a response to an attack on u).

To dominate w1 and w2, we must have |S ∩ {w1, x}| ≥ 1 and |S ∩ {w1, y}| ≥ 1,

respectively. It is easy to see that (S \ {w1, x, y}) ∪ {w2} is an EmSS of G. This

implies that sdσm(T ) ≤ 2.
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Theorem 1. For any tree T , sdσm(T ) ≤ 2.

Proof. The result is obvious for n(T ) ≤ 3. Let n(T ) ≥ 4. If T is a star, then

the result follows from Proposition 1. Assume that T is not a star and v1v2 . . . vk
be a diametrical path in T . Root T at vk. If deg(v2) ≥ 3, then the result follows

from Proposition 2. Suppose that deg(v2) = 2 and T ′ is the tree obtained from T

by subdividing the edges v1v2 and v2v3 by subdivision vertices x and y, respectively.

Let S be a σm(T ′)-set containing v2. To dominate v1, we may assume that x ∈ S.

Let S′ = S \ {x} if y /∈ S, S′ = (S \ {x, y}) ∪ {v3} if v3 /∈ S and y ∈ S and

S′ = (S \ {x, y})∪ {w} if v3, y ∈ S, where w ∈ NT (v3) \ {v2}. Clearly, S′ is an EmSS

of T of size |S| − 1 and this completes the proof.

Now we give a constructive characterization of trees T for which sdσm
(T ) = 2. For

this purpose, we describe a procedure to build a family T of trees as follows. Let T

be the family of trees that: A path P3 is a tree in T and if T is a tree in T, then the

tree T ′ obtained from T by the following four operations which extend the tree T by

attaching a tree to a vertex v ∈ V (T ), called an attacher, is also a tree in T.

Operation T1. If v ∈ V (T ), then T1 adds a path vxy to T .

Operation T2. If v ∈ V (T ), then T2 adds a star K1,3 with center y and leaves x,w, z

and joins x to v.

Operation T3. If v ∈ V (T ) is a leaf of T , then T3 adds a pendant edge vw and a

star K1,2 with center x and leaves y, z and joins x to v.

Operation T4. If v is a leaf of T , then T4 adds two new stars K1,2 with centers x1
and x2 and joins v to x1 and x2 (see Fig. 1).
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Fig. 1. The four operations

The proof of the following Lemmas can be found in [1].

Lemma 1. Let T ′ be a tree, v ∈ V (T ′) and T be obtained from T ′ by Operation T1.
Then σm(T ) = σm(T ′) + 1.
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Lemma 2. Let T ′ be a tree and v ∈ V (T ′). If T is the tree obtained from T ′ by Operation
T2, then σm(T ) = σm(T ′) + 2.

Lemma 3. Let T ′ be a tree and v ∈ L(T ′). If T is the tree obtained from T ′ by Operation
T3, then σm(T ) = σm(T ′) + 2.

Lemma 4. Let T ′ be a tree and let v ∈ L(T ′). If T is the tree obtained from T ′ by
Operation T4, then σm(T ) = σm(T ′) + 3.

Lemma 5. Let T ′ ∈ T and u ∈ V (T ′). If T is a tree obtained from T ′ by adding a
pendant edge uu′, then σm(T ) = σm(T ′).

Observation 2. Let T ′ be a tree and T be obtained from T ′ by an operation from the set
{T1,T2,T3,T4}. Then sdσm(T ) ≤ sdσm(T ′).

Proof. Let F be a set of edges in T ′ where subdividing the edges in F increases the

eternal m− security number of T ′. Let T1 and T2 be the trees obtained from T ′ and

T , by subdividing the edges in F , respectively. Then T2 is obtained from T1 by one

of the Operations T1, . . . ,T4 and the result follows from Lemmas 1, 2, 3 and 4.

Theorem 3. Let T ∈ T and let T ′ be a tree obtained from T by subdividing an edge of
T . Then σm(T ′) = σm(T ).

Proof. Let T ∈ T, e ∈ E(T ) and let T ′ be the tree obtained from T by subdividing

the edge e by subdivision vertex u. First note that σm(T ′) ≥ σm(T ). Let T be

obtained from a path P3 by successive operations T1, . . . ,Tm, respectively, where

Ti ∈ {T1,T2,T3,T4} for 1 ≤ i ≤ m if m ≥ 1 and T = P3 if m = 0. We proceed by

induction on m. If m = 0, then clearly the statement is true by Corollary 3. Assume

m ≥ 1 and that the statement holds for all trees which are obtained from P3 by

applying at most m− 1 operations. Suppose Tm−1 is a tree obtained by applying the

first m− 1 operations T1, . . . ,Tm−1. When e ∈ E(Tm−1), let T ′m−1 be obtained from

Tm−1 by subdividing the edge e. We consider the following cases:

Case 1. Tm = T1. Then T is obtained from Tm−1 by attaching a path vxy to v ∈
V (Tm−1). If e ∈ E(Tm−1), then by the inductive hypothesis, σm(T ′m−1) = σm(Tm−1)

and by Lemma 1,

σm(T ′) = σm(T ′m−1) + 1 = σm(Tm−1) + 1 = σm(T ).

Assume that e = xy (the case e = vx is similar). Let T ∗ = T ′ − {u, y}. Then T ∗

is obtained from Tm−1 by attaching a pendant edge vx. By Lemma 5, σm(T ∗) =

σm(Tm−1) and by Lemma 1, we have

σm(T ′) = σm(T ∗) + 1 = σm(Tm−1) + 1 = σm(T ).
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Case 2. Tm = T2. Then T is obtained from Tm−1 by adding a star K1,3 centered

at y and leaves x,w, z and joining x to v. If e ∈ E(Tm−1), then by the inductive

hypothesis, σm(T ′m−1) = σm(Tm−1) and by Lemma 2,

σm(T ′) = σm(T ′m−1) + 2 = σm(Tm−1) + 2 = σm(T ).

If e = xy (the case e = vx is similar), then let T ∗ = T ′ − {u, y, z, w}. Then T ∗

is obtained from Tm−1 by attaching a pendant edge vx. By Lemma 5, σm(T ∗) =

σm(Tm−1) and by Lemma 2, we have

σm(T ′) = σm(T ∗) + 2 = σm(Tm−1) + 2 = σm(T ).

Assume that e = yz (the case e = yw is similar ). Let T ∗ = T ′ − z. Then T ∗ ' T

and T ′ is obtained from T ∗ by attaching a pendant edge uz. It follows from Lemma

5 that σm(T ′) = σm(T ∗) = σm(T ).

Case 3. Tm = T3. Then T is obtained from Tm−1 by attaching a pendant edge vw to

the leaf v ∈ V (Tm−1) and adding a star K1,2 with center x and leaves y, z and joining

x to v. If e ∈ E(Tm−1), then by the inductive hypothesis, σm(T ′m−1) = σm(Tm−1)

and by Lemma 3,

σm(T ′) = σm(T ′m−1) + 2 = σm(Tm−1) + 2 = σm(T ).

If e = xv, then let T ∗ = T ′ − {u, x, y, z}. Then T ′ is obtained from T ∗ by adding

a star with center x and leaves u, y, z and joining u to v. On the other hand, T ∗ is

obtained from Tm−1 by attaching a pendant edge vw. By Lemmas 5 and 2,

σm(T ′) = σm(T ∗) + 2 = σm(Tm−1) + 2 = σm(T ).

If e = vw, then let T ∗ = T ′ − w. Then T ∗ ' T and T ′ is obtained from T ∗ by

attaching a pendant edge u′w. By Lemma 5, σm(T ′) = σm(T ∗) = σm(T ). If e = xy

(the case e = xz is similar ), then let T ∗ = T ′ − y. Then T ∗ ' T and T ′ is obtained

from T ∗ by attaching a pendant edge uy. By Lemma 5, σm(T ′) = σm(T ∗) = σm(T ).

Case 4. Tm = T4. Then T is obtained from Tm−1 by adding two stars K1,2 with

centers x1 and x2 and joining x1, x2 to v. Let yi, zi be the leaves adjacent to xi, for

i = 1, 2. If e ∈ E(Tm−1), then by the inductive hypothesis, σm(T ′m−1) = σm(Tm−1)

and by Lemma 4,

σm(T ′) = σm(T ′m−1) + 3 = σm(Tm−1) + 3 = σm(T ).
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If e = x1v (the case e = x2v is similar), then let T ∗ = T ′ − {x1, y1, z1}. Then T ∗ is

obtained from Tm−1 by an Operation T3. By Lemma 3, σm(T ∗) = σm(Tm−1) + 2.

Let S be a σm(T ∗)− set which contains u. Then obviously, S ∪ {x1} is an EmSS of

T ′ and so

σm(T ′) ≤ |S|+ 1 = σm(T ∗) + 1 = σm(Tm−1) + 3 = σm(T ).

Assume that e = x1y1 (the cases e = x1z1, x2y2, x2z2 are similar). Let T ∗ = T ′ − y1.

Then T ∗ ' T and T ′ is obtained from T ∗ by attaching a pendant edge uy1. By

Lemma 5, σm(T ′) = σm(T ∗) = σm(T ). This completes the proof.

An immediate consequence of Theorem 3 and Corollary 1 now follows.

Corollary 4. For any tree T ∈ T, sdσm(T ) = 2.

Proposition 3. Let T be a tree and v be a strong support vertex in T such that v is
adjacent to the center of a star K1,2. Then sdσm(T ) = 1.

Proof. Let v be adjacent to the vertex u which is a center of a star K1,2 and let T ′

be the tree obtained from T by subdividing the edge vu with the subdivision vertex z.

Assume that S is a σm(T ′)−set containing z (we may assume S as a response to an

attack on z). To dominate the leaves in Lu and Lv, we have |(NT ′ [u]∪NT ′ [v])∩S| ≥ 4

and we may assume that v, u ∈ S. It is easy to see that S \ {z} is an EmSS of T of

size |S| − 1. This completes the proof.

Proposition 4. Let T be a tree and v ∈ V (T ). If T ′ is a tree obtained from T by adding
three copies xiyizi (1 ≤ i ≤ 3) of P3 and joining v to y1, y2, y3, then sdσm(T ′) = 1.

Proof. Let T1 be the tree obtained from T by subdividing the edge vy1 by subdivision

vertex w. Let S be a σm(T1)-set containing w (we may consider a response to an attack

on w). To dominate x1 and z1, we may assume that y1 ∈ S. If v /∈ S, then we may

assume that zi, yi ∈ S for i = 2, 3 and the set S′ = (S \ {w, y2}) ∪ {v} is clearly an

EmSS of T ′ of size less than σm(T1). If v ∈ S, then it is not hard to see that the set

S′ = S \ {w} is an EmSS of T of size |S| − 1. This implies that sdσm
(T ) = 1.

Now we are ready to prove the main theorem of this section.

Theorem 4. For any tree T of order n ≥ 3, sdσm(T ) = 2 if and only if T ∈ T.

Proof. According to Corollary 4, we only need to prove the necessity. We proceed by

induction n. The result is trivial for n = 3. Let n ≥ 4 and assume that the statement

holds for any tree of order less than n. Let T be a tree of order n and sdσm
(T ) = 2.

By Proposition 1, T is not a star and so diam(T ) ≥ 3. Assume P := v1 . . . vk is the
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diametrical path in T such that deg(v2) is as small as possible. Suppose that T is

rooted at vk. It follows from Proposition 1 and the assumption sdσm(T ) = 2 that

deg(v2) ≤ 3. If deg(v2) = 2, then let T ′ = T − {v1, v2}. It follows from Lemma 1

and Observation 2, that sdσm
(T ′) = 2. By the inductive hypothesis, T ′ ∈ T. Now T

can be obtained from T ′ by Operation T1 and so T ∈ T. Let deg(v2) = 3. Suppose

that w 6= v1 is a leaf adjacent to v2. If deg(v3) = 2, then let T ′ = T − {v1, v2, v3, w}.
It follows from Lemma 2 and Observation 2 that sdσm(T ′) = 2. By the inductive

hypothesis, T ′ ∈ T. Now T can be obtained from T ′ by Operation T2 and so T ∈ T.

Let deg(v3) ≥ 3. It follows from the assumption about v2 and Propositions 3 and 4

that deg(v3) = 3 and there is only two possible cases.

Case 1. v3 is adjacent to a leaf x. Let T ′ = T −{v1, v2, x, w}. It follows from Lemma

3 and Observation 2 that sdσm(T ′) = 2. By the inductive hypothesis, T ′ ∈ T. Now

T can be obtained from T ′ by Operation T3 and so T ∈ T.

Case 2. v3 is adjacent to the center of a star K1,2 other than v2. Let T ′ = T −D(v3).

It follows from Lemma 4 and Observation 2 that sdσm(T ′) = 2. By the inductive

hypothesis, T ′ ∈ T. Now T can be obtained from T ′ by Operation T4 and so T ∈ T.

This completes the proof.

We conclude this paper with the following problem.

Problem. Prove or disprove: For any nonempty graph G, 1 ≤ sdσm(G) ≤ 3.
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