
CCO
Commun. Comb. Optim.

c© 2019 Azarbaijan Shahid Madani University.

Communications in Combinatorics and Optimization

Vol. 4 No. 1, 2019 pp.35-46

DOI: 10.22049/CCO.2018.26231.1087

On the inverse maximum perfect matching problem under the

bottleneck-type Hamming distance

Javad Tayyebi

Department of Industrial Engineering, Birjand University of Technology, Birjand, Iran
javadtayyebi@birjandut.ac.ir & javadtayyebi@birjand.ac.ir

Received: 18 May 2018; Accepted: 30 October 2018

Published Online: 1 November 2018

Communicated by Stephan Wagner

Abstract: Given an undirected network G(V,A, c) and a perfect matching M of

G, the inverse maximum perfect matching problem consists of modifying minimally

the elements of c so that M becomes a maximum perfect matching with respect to the
modified vector. In this article, we consider the inverse problem when the modifications

are measured by the weighted bottleneck-type Hamming distance. We propose an

algorithm based on the binary search technique for solving the problem. Our proposed
algorithm has a better time complexity than the one presented in [13]. We also study the

inverse assignment problem as a special case of the inverse maximum perfect matching

problem in which the network is bipartite and present an efficient algorithm for solving
the problem. Finally, we compare the algorithm with those presented in the literature.

Keywords: Inverse problem, Hamming distance, perfect matching, binary search

AMS Subject classification: 05C70, 05C85

1. Introduction

Suppose G(V,A, c) is an undirected network where V = {1, 2, . . . , n} is the node set,

A is the set of m arcs and c is the profit vector for arcs. A matching M is a subset of A

so that no two arcs in M share a common node, i.e., for each two arcs (i, j), (k, l) ∈M ,

we have i /∈ {k, l} and j /∈ {k, l}. A perfect matching is a matching which matches

all nodes of the network. Clearly, a necessary condition for the existence of a perfect

matching is that the number of nodes is even. Thus, we assume that n is an even

positive integer. The well-known maximum perfect matching problem is to find a

perfect matching M so that its total profit (i.e.,
∑

(i,j)∈M cij) is maximized. There

exist several strongly polynomial-time algorithms for solving the maximum perfect

36 The inverse maximum perfect matching problem

matching problem [7, 10].

For a maximum perfect matching problem defined on G(V,A, c) and a perfect match-

ing M of G, the inverse maximum perfect matching problem is to modify the profit

vector c into ĉ minimally so that M becomes a maximum perfect matching. There-

fore, the inverse problem can be formulated as follows [13]:

min d(c, ĉ),

M is a maximum perfect matching in G(V,A, ĉ), (1)

lij ≤ ĉij − cij ≤ uij ∀(i, j) ∈ A,

where ĉ is to be determined, lij and uij , (i, j) ∈ A, are the given bounds for decreasing

and increasing cij , respectively and d(., .) is a distance function which measures the

modifications.

Liu and Zhang [14] studied the problem (1) when the modifications are measured by

the l1 and l∞ norms. They presented strongly polynomial-time algorithms for solving

the problem. Demange and Monnot [5] provided an introduction to inverse combina-

torial optimization under the l1 norm. As a special case, they considered the problem

(1) with the additional constraint that each component of the vector ĉ belongs to a

discrete finite set. They showed that this problem is NP-hard. They also showed the

problem is polynomially solvable when the discrete sets are restricted to {0, 1} and

the network is bipartite.

Over the past decade, inverse optimization problems under the Hamming distances

received attention (readers are referred to [2, 8, 9, 11, 12, 16, 17] and papers cited

therein). The inverse maximum perfect matching problems under the Hamming dis-

tances have been considered in [13]. The authors studied both the sum-type and the

bottleneck type cases. In the sum-type case, it is shown that the problem is NP-hard.

In the bottleneck-type case, an O(mn3) algorithm is proposed to solve the problem.

In this article, we consider the inverse maximum perfect matching problem under

the weighted bottleneck-type Hamming distance. We present an algorithm based on

the binary search approach for solving the problem. The proposed algorithm runs in

O(n3 log n) time which has better time complexity than one presented in [13].

The binary search approach has been used for solving some inverse optimization prob-

lems under the l∞ norm and the bottleneck-type Hamming distance. For instance,

Liu and Zhang [14] presented a polynomial-time algorithm by using the binary search

approach to solve the inverse maximum perfect matching problem under the l∞ norm.

Inverse multi-objective combinatorial optimization problem under the l∞ norm has

been considered in [15]. The authors used the binary search approach to present a

method for solving the problem. Duin and Volgenant [6] also applied this approach

for solving some inverse combinatorial problems under the bottleneck-type Hamming

distance such as the inverse shortest path problem, inverse maximum spanning tree

problem and the inverse assignment problem. They presented three approaches for

solving the inverse assignment problem which run in O(n2 log n), O(n3 log n) and

O(mn2) time, respectively.

J. Tayyebi 37

As a special case of the inverse maximum perfect matching problem, we also consider

the inverse assignment problem and present an efficient algorithm for solving this

problem. Finally, we compare the algorithm with those presented in [6].

The rest of this article is organized as follows: In Section 2, the inverse perfect

matching problem is studied and an algorithm based on the binary search approach is

proposed. In Section 3, the inverse assignment problem is considered. Finally, some

concluding remarks are provided in Section 4.

2. Inverse perfect matching problem

In this section, we consider the inverse maximum perfect matching problem when

the modifications are measured by the weighted bottleneck-type Hamming distance.

Suppose that we incur a penalty wij ≥ 0 for modifying cij , (i, j) ∈ A. Thus, the

problem can be formulated as follows [13]:

min max
(i,j)∈A

wijH(cij , ĉij),

M is a maximum perfect matching in G(V,A, ĉ), (2)

lij ≤ ĉij − cij ≤ uij ∀(i, j) ∈ A,

where H(cij , ĉij) is the Hamming distance between cij and ĉij , i.e., H(cij , ĉij) = 1

if cij 6= ĉij and H(cij , ĉij) = 0 otherwise. The problem parameters are defined as in

the problem (1).

Definition 1. For an undirected network G(V,A, c), a cycle C is called an alternating
cycle with respect to a prefect matching M if the arcs around C alternately belong to M
and A\M . For an alternating cycle C, its cost is defined as c(C) =

∑
(i,j)∈C∩M cij −∑

(i,j)∈C\M cij.

The following lemma due to Berge [4] states the optimality condition of a perfect

matching M for the maximum perfect matching problem.

Lemma 1. A perfect matching M of G(V,A, c) is a maximum perfect matching if each
alternating cycle with respect to M has a nonnegative cost.

Note that each objective value of the problem (2) belongs to the set W = {wij : (i, j) ∈
A} ∪ {0} because if the initial profit vector c is feasible to the problem (2), then its

objective value is 0. Suppose that the elements of W are arranged in nondecreasing

order: let w0 = 0 ≤ w1 ≤ w2 ≤ . . . ≤ wm be the sorted list of penalties. For

k ∈ {0, 1, 2, . . . ,m}, we introduce the solution ĉ(k) as

ĉ
(k)
ij =


cij + uij (i, j) ∈ Ak ∩M,

cij − lij (i, j) ∈ Ak\M,

cij (i, j) ∈ A\Ak,

∀(i, j) ∈ A, (3)

38 The inverse maximum perfect matching problem

where Ak = {(i, j) ∈ A : wij ≤ wk}. The following theorem is on the feasibility of

ĉ(k).

Theorem 1. For k ∈ {0, 1, . . . ,m}, if the problem (2) has a feasible solution with objective
value less than or equal to wk, then ĉ(k) defined by (3) is a feasible solution with the objective
value wk

Proof. It is obvious that ĉ(k) satisfies the bound constraints lij ≤ ĉij − cij ≤ uij ,

(i, j) ∈ A.

Let ĉ be a feasible solution to the problem (1) with objective value less than or equal

to wk. By the definition (3) and the fact that the objective value of ĉ is less than or

equal to wk, we have

ĉ
(k)
ij = ĉij = cij (i, j) ∈ A\Ak,

ĉ
(k)
ij = cij + uij ≥ ĉij (i, j) ∈ Ak ∩M,

ĉ
(k)
ij = cij − lij ≤ ĉij (i, j) ∈ Ak\M.

and consequently,

ĉ
(k)
ij ≥ ĉij (i, j) ∈M,

ĉ
(k)
ij ≤ ĉij (i, j) ∈ A\M. (4)

Let C be an arbitrary alternating cycle with respect to M . Based on Lemma 1,

ĉ(C) ≥ 0 due to the feasibility of ĉ. By using (4),

ĉ(k)(C) =
∑

(i,j)∈C∩M

ĉ
(k)
ij −

∑
(i,j)∈C\M

ĉ
(k)
ij ≥

∑
(i,j)∈C∩M

ĉij −
∑

(i,j)∈C\M

ĉij = ĉ(C) ≥ 0.

Thus, ĉ(k) is a feasible solution to the problem (2).

Since the modified components of ĉ(k) belong to Ak, it follows that its objective value

is wk. This completes the proof.

The following results are two immediate consequences of Theorem 1.

Corollary 1. The problem (2) is feasible if and only if M is a maximum perfect matching
of G(V,A, ĉ(m)) where ĉ(m) is defined by (3) for k = m.

Proof.

Sufficient condition. If M is a maximum perfect matching of G(V,A, ĉ(m)), then the

solution ĉ(m) is feasible to the problem (2) and consequently, the problem is feasible.

Necessary condition. Suppose that M is not a maximum perfect matching of

G(V,A, ĉ(m)) by contradiction. Thus, the solution ĉ(m) is not feasible to the problem

J. Tayyebi 39

(2). Based on Theorem 1, there exists no solution with objective value less than or

equal to wm. This together with the fact that the greatest objective value of the

problem is wm show that the problem is infeasible.

Corollary 2. If k ∈ {0, 1, . . . ,m} is the least index such that ĉ(k) is feasible to the
problem (2), then the solution ĉ(k) is optimal.

Proof. Let k be the least index such that ĉ(k) is feasible to the problem (2). Thus,

ĉ(k−1) is not feasible. By using Theorem 1, there exists no feasible solution with

objective value less than or equal to wk−1. Therefore, the feasible solution ĉ(k) is

optimal.

From Corollary 2, the problem (2) reduces to finding the least index k so that ĉ(k)

is a feasible solution to the problem. It is obvious that ĉ(k), k = 0, 1, . . . ,m, satisfies

the bound constraints lij ≤ ĉij − cij ≤ uij , (i, j) ∈ A. Thus, the feasibility of ĉ(k)

is guaranteed if M is a maximum perfect matching of G(V,A, ĉ(k)). Our proposed

algorithm applies the binary search approach to find the least index k so that ĉ(k) is

feasible. In each iteration, it uses the fact that ĉ(k) is feasible if ĉ(k)(M∗) = ĉ(k)(M)

where M∗ is a maximum perfect matching of G(V,A, ĉ(k)). Let us state formally our

proposed algorithm.

Algorithm 1 to solve the problem (2) by the binary search approach.

Input: A network G(V,A, c), a perfect matching M of G, a penalty vector w and bound vectors

l and u.
Output: An optimal solution ĉ∗ with the objective value w∗.
Set k = m and s = m.
Solve the maximum perfect matching problem on G(V,A, ĉ(k)). Let M∗ be a maximum perfect

matching.

if ĉ(k)(M∗) 6= ĉ(k)(M) then
The problem (2) is infeasible and stop (see Corollary 1).

end if

Set ĉ∗ = ĉ(k), w∗ = wk, s = [s
2

], k = k − s.
while s 6= 0 do

Solve the maximum perfect matching problem on G(V,A, ĉ(k)). Let M∗ be the optimal perfect
matching.

if ĉ(k)(M∗) = ĉ(k)(M) then

Update ĉ∗ = ĉ(k), w∗ = wk, s = [s
2

], k = k − s.
else

Update s = [s
2

], k = k + s.

end if
end while

if the problem (2) is feasible then
ĉ∗ is an optimal solution to it with the objective value w∗.

end if

ĉ∗ stores the last feasible solution of the problem (2) found by Algorithm 1 and w∗

is its objective value.

We now analyze the time complexity of the algorithm. It is obvious that the bottleneck

40 The inverse maximum perfect matching problem

operation in each iteration is to solve a maximum perfect matching problem which

can be done by a modified version of Edmonds’ algorithm in O(n3) time [10]. Since

Algorithm 1 uses the binary search approach to find an optimal index k in the range

0 to m, the number of iterations is O(log(m+ 1)) = O(log n). Consequently, the time

complexity of Algorithm 1 is O(n3 log n). Thus, we have established the following

result.

Theorem 2. Algorithm 1 solves the problem (2) in O(n3 logn) time.

3. Inverse assignment problem

In this section, we consider the inverse assignment problem under the weighted

bottleneck-type hamming distance. This problem is a special case of the problem

(2) when G(V,A, c) is a bipartite network. We present an efficient Algorithm to solve

the inverse assignment problem. Finally, we compare the algorithm with those pre-

sented in [6].

The assignment problem is one of the fundamental combinatorial optimization prob-

lems. The problem can be described as follows: Suppose that V1 = {1, 2, . . . , n} and

V2 = {1′, 2′, . . . , n′} are the sets of persons and tasks, respectively. Any person i ∈ V1
can be assigned to perform any task j′ ∈ V2 incurring some cost cij′ . An assignment

is a pattern that assigns exactly one person to each task and exactly one task to each

person. The assignment problem is to find an assignment in such a way that its total

cost is minimized.

The assignment problem is a special case of the maximum perfect matching prob-

lem when the network is bipartite and its cost vector is the opposite of the profit

vector of the maximum perfect matching problem. Note that each perfect matching

M corresponds to exactly one assignment and vice versa. Hence, we use the words

’assignment’ and ’perfect matching’ interchangeably.

In the operations research literature, the assignment problem is also a special case

of the minimum cost flow problem [1]. Thus, one can use the fundamental notions

of network optimization for solving the assignment problem. Here, we consider the

assignment problem as a minimum cost flow problem. Suppose that G = (V,A, c) is

a bipartite directed network where V = V1 ∪ V2, A = V1 × V2 and cij′ is the cost of

sending a unit of flow on (i, j′) ∈ A. Let each node i ∈ V1 be a supply node with 1

unit of supply and each node j′ ∈ V2 a demand node with 1 unit of demand. The

assignment problem is to send n unit of flow from supply nodes to demand nodes with

minimum cost. Each perfect matching M ∈ G corresponds to the zero-one feasible

flow x defined by xij′ = 1 if (i, j′) ∈ M and xij′ = 0 else. The integrality property

of optimal solutions in the minimum cost flow problems implies that the assignment

problem is equivalent to this special case of the minimum cost flow problem [1].

Suppose that x is a feasible flow on G(V,A, c). The residual network G′(V,A′, c′)

with respect to x is constructed as follows:

J. Tayyebi 41

Algorithm 2 Constructing the residual network
The node set is still V .

for (i, j′) ∈ A do
if x0

ij′ < 1 then

Add (i, j′) to A′ with c′
ij′ = cij′ .

end if

if x0
ij′ > 0 then

Add (j′, i) to A′ with c′
j′i = −cij′ .

end if

end for

The following lemma states an optimality condition for a given feasible solution of

the assignment problem.

Lemma 2. (Negative cycle optimality condition)[1] A feasible flow x0 is optimal to
the assignment problem if and only if the corresponding residual network does not contain
any negative (cost) directed cycle.

Now, we are ready to describe our algorithm. Since the inverse assignment problem

is a special case of the inverse perfect matching problem, Algorithm 1 can be used

directly to solve an instance of the inverse assignment problem. For using Algorithm

1, we must apply an algorithm as a subroutine for solving assignment problems in

each iteration to test the optimality of the given assignment M . Instead of solving

assignment problems, one can check directly whether or not the given assignment M

is optimal by some optimality conditions to reduce the time complexity of Algorithm

1. Here, we suggest that the optimality of M is determined by the negative cycle

optimality condition (see Lemma 2). This argument implies the following algorithm.

42 The inverse maximum perfect matching problem

Algorithm 3 to solve the inverse assignment problem
Input: A bipartite network G(V1 ∪ V2, V1 × V2, c), an assignment M of G, a penalty vector w

and bound vectors l and u.
Output: An optimal solution ĉ∗ with the objective value w∗.
Set k = m and s = m.

Construct the feasible flow x0 on G as

x0
ij =

{
1 (i, j) ∈M,

0 (i, j) /∈M.

Construct the residual network of G(V1 ∪ V2, V1 × V2, ĉ(m)) with respect to x0 by Algorithm 2.

if the residual network contains at least one negative cycle then
The inverse assignment problem is infeasible and stop.

end if
Set ĉ∗ = ĉ(k), w∗ = wk, s = [s

2
], k = k − s.

while s 6= 0 do

Construct the residual network of G(V1 ∪V2, V1×V2, ĉ(k)) with respect to x0 by Algorithm 2.
if the residual network contains no negative cycle then

Update ĉ∗ = ĉ(k), w∗ = wk, s = [s
2

], k = k − s.

else,
Update s = [s

2
], k = k + s.

end if
end while

if the inverse assignment problem is feasible then
ĉ∗ is an optimal solution to the problem with the objective value w∗.

end if

We now analyze the time complexity of Algorithm 3. It is obvious that the bottle-

neck operation is to detect a negative cycle in the current residual network. Since the

presence of a negative cycle can be identified by the FIFO label-correcting algorithm,

it follows that each iteration can be done in O(mn) time [1]. The number of itera-

tions is O(logm) = O(log n) because of the binary search approach. Thus, we have

established the following result.

Theorem 3. The inverse assignment problem can be solved in O(mn logn).

3.1. Comparison of algorithm efficiency

Duin and Volgenant [6] studied the general inverse combinatorial optimization prob-

lem. As a special case, they considered the inverse assignment problem. They used the

linear search approach together with the concepts of sensitivity analysis to present an

O(n2m) algorithm for solving the inverse assignment problem. They also proposed an

O(n3 log n) algorithm based on the binary search approach. Their second algorithm

is similar to Algorithm 1 and solves an assignment problem in each iteration. Note

that our proposed algorithm has a better time complexity than both their algorithms.

To present a faster algorithm, Duin and Volgenant[6] introduced a method for com-

puting the reduced costs of arcs with this property that the reduced cost of each arc

corresponds to an alternating cycle. They applied their method together with the

J. Tayyebi 43

reduced cost optimality condition instead of solving an assignment problem in each

iteration to reduce the time complexity of the second algorithm to O(n2 log n) (see

Theorem 4 in [6]). Here, we give an example to show their method for computing

reduced costs is not valid in the general case.

Let us first review some notions. Each basic feasible solution x of the assignment

problem corresponds to a spanning tree T of G where xij′ = 0 if (i, j′) /∈ T . There-

fore, one can construct a basic feasible solution x from a given assignment M by

adding n − 1 additional arcs to M such that M becomes a spanning tree of G. An

assignment M corresponds to several basic feasible solutions because there exist var-

ious ways for choosing additional arcs. For a basic feasible solution corresponding to

tree T , we refer to the arcs belonging to T as tree arcs and arcs not belonging to T

as nontree arcs.

Suppose that we assign a node potential pi to each i ∈ V . The reduced cost of each

arc (i, j′) is defined as cpij′ = cij′ − pi + pj′ . For a basic feasible solution, one can

obtain the node potentials by the fact that cpij′ = 0 for each tree arc (i, j′) and then,

compute the reduced cost of each nontree arc. Another approach is to compute the

reduced costs by using the fact that the reduced cost of each nontree arc (i, j′) equals

c′(Cij′) =
∑

(k,l′)∈Cij′
c′kl′ where Cij′ is the unique cycle contained in T ∪ {(i, j′)}.

The following lemma states an optimality condition for a basic feasible solution of the

assignment problem.

Lemma 3. (Reduced cost optimality condition) A basic feasible solution x is optimal
to the assignment problem if the reduced cost of each nontree arc is nonnegative.

Proof. Since the assignment problem is a special case of the minimum cost flow

problem, the proof is immediate by the reduced cost optimality condition to the

minimum cost flow problem (see Chapter 11 of [1]).

Lemma 3 is not a necessary condition, i.e., it is possible that some reduced costs of a

basic feasible flow are negative while the corresponding assignment is optimal due to

degeneracy [1, 3].

Now, we review the method computing the reduced costs presented by Duin and Vol-

genant [6]. An assignment M of the network G(V1∪V2, V1×V2, c) can be represented

as (i, π(i)) for i = 1, 2, . . . , n where π is a bijective mapping from V1 onto V2. For

computing the reduced cost of the arcs (i, j′) emanating from some node i, they in-

troduced a basic solution tree Ti which has n− 1 additional arcs (l, π(l+ 1)) for each

l ∈ V1\{i} with assuming π(n + 1) = π(1) (see Figure 1 (a)). It is remarkable that

the cycle Cij′ is an alternating cycle for each j′ ∈ V2. Then, one can compute cpij′
either by obtaining the cost of the corresponding alternating cycle Cij′ or computing

node potentials.

Example 1. The assignment problem associated with cost values shown in Table 1 is
considered.

44 The inverse maximum perfect matching problem

Figure 1. (a) A tree Ti; (b) trees T1, T2 and T3 for Example 1.

aaaaaaaa
Persons

Tasks

1′ 2′ 3′

1 1 2 0

2 0 0 1
3 2 0 1

Table 1. Cost values of Example 1

It is easy to see that an optimal assignment is 1↔ 3′, 2↔ 1′ and 3↔ 2′ with the objective
value 0. Here, we consider the assignment 1 ↔ 1′, 2 ↔ 2′ and 3 ↔ 3′. Clearly, it is not
optimal. Figure 1 (b) illustrates the basic solution trees T1, T2 and T3 and also, the node
potentials pi, i ∈ V . Table 2 provides the reduced cost of each nonbasic arc by the method
proposed in [6].
Since all of the reduced cost values are nonnegative, Lemma 3 implies that the assignment
is optimal which leads to a contradiction. Therefore, their method is not valid.

Basic tree
Associated

nonbasic arcs

Reduced cost of arc (i, j′)
(cp

ij′ = cij′ − pi + pj′)

T1
(1, 2′)
(1, 3′)

cp
12′ = 2− 0 + 1 = 3

cp
13′ = 0− 0 + 0 = 0

T2
(2, 1′)
(2, 3′)

cp
21′ = 0− (−2) + (−1) = 1

cp
23′ = 1− (−2) + 0 = 3

T3
(3, 1′)
(3, 2′)

cp
31′ = 2− (−1) + 0 = 3

cp
32′ = 0− (−1) + (−1) = 0

Table 2. Basic trees of Example 1

J. Tayyebi 45

Their method is based on changing dynamically basic trees in such a way that each

cycle Cij′ becomes an alternating cycle and consequently, the reduced cost cpij′ equals

the cost of Cij′ . The major problem is that they applied Lemma 3 for a given

assignment which corresponds to several basic feasible solutions while Lemma 3 is on

the optimality of one basic feasible solution. Therefore, it can not be applied in a

situation like this one.

Although each cycle Cij′ corresponds to an alternating cycle, Lemma 1 can not be

used for checking the optimality because some negative alternating cycles are not

identified by their method. As an example, in the tree T1, the reduced cost of (2, 1′),

i.e., cp21′ = c21′ − p2 + p1′ = 0 − 1 + (−1) = −2 < 0, corresponds to the negative

alternating cycle 2− 1′ − 3− 3′ − 2 with the cost equal to −2 which is not identified

by the method.

4. Conclusions

In this article, we considered the inverse maximum perfect matching problem under

the bottleneck-type Hamming distance. We proposed an algorithm based on the

binary search approach for solving the problem. The algorithm runs in O(n3 log n)

time which has better time complexity than the one presented in [13] with an O(mn3)

time bound. As a special case, we also considered the inverse assignment problem and

showed that one of the approaches proposed in [6] does not solve the problem in the

general case. Finally, we proposed an algorithm for solving the problem inO(mn log n)

time. This algorithm has better time complexity than the other approaches presented

in [6] which run in O(n3 log n) and O(mn2) time, respectively.

Acknowledgments

The author wishes to thank the anonymous referees for valuable comments which

improves the paper.

References

[1] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, Network flows, Prentice-Hall, En-

glewood Cliffs, 1993.

[2] M. Aman and J. Tayyebi, Capacity inverse minimum cost flow problem under the

weighted hamming distances, Iranian Journal of Operations Research 5 (2014),

no. 2, 12–25.

[3] M.S. Bazaraa and J. Jarvis, Linear programming and network flows, Wiley, New

York, 1997.

46 The inverse maximum perfect matching problem

[4] C. Berge, Two theorems in graph theory, Proceedings of the National Academy

of Sciences 43 (1957), no. 9, 842–844.

[5] M. Demange and J. Monnot, An introduction to inverse combinatorial problems,

in: Paradigms of combinatorial optimization (problems and new approaches),

Wiley, London-Hoboken (UK-USA), Vangelis Th. Paschos, 2010, 547–586.

[6] C.W. Duin and A. Volgenant, Some inverse optimization problems under the

hamming distance, European J. Oper. Res. 170 (2006), no. 3, 887–899.

[7] J. Edmonds, Maximum matching and a polyhedron with 0, 1-vertices, J. Res.

Natl. Bureau Stand. B 69B (1965), no. 1-2, 125–130.

[8] Y. He, B. Zhang, and E. Yao, Weighted inverse minimum spanning tree problems

under hamming distance, J. Comb. Optim. 9 (2005), no. 1, 91–100.

[9] Y. Jiang, L. Liu, B. Wu, and E. Yao, Inverse minimum cost flow problems under

the weighted hamming distance, European J. Oper. Res. 207 (2010), no. 1, 50–54.

[10] E.L. Lawler, Combinatorial optimization: Networks and matroids, Holt, Rinehart

and Winston, New York, 1976.

[11] L. Liu and Q. Wang, Constrained inverse min–max spanning tree problems under

the weighted hamming distance, J. Global Optim. 43 (2009), no. 1, 83–95.

[12] L. Liu and E. Yao, Inverse minmax spanning tree problem under the weighted

sum-type hamming distance, Theoret. Comput. Sci. 396 (2008), 28–34.

[13] , Weighted inverse maximum perfect matching problems under the ham-

ming distance, J. Global Optim. 55 (2013), no. 3, 549–557.

[14] Z. Liu and J. Zhang, On inverse problems of optimum perfect matching, J. Comb.

Optim. 7 (2003), no. 3, 215–228.

[15] J. Roland, Y.D. Smeta, and J. Figueira, Inverse multi-objective combinatorial

optimization, Discrete Appl. Math. 161 (2013), no. 16-17, 2764–2771.

[16] J. Tayyebi and M. Aman, Note on“inverse minimum cost flow problems under the

weighted hamming distance”, European J. Oper. Res. 234 (2014), no. 3, 916–920.

[17] , On inverse linear programming problems under the bottleneck-type

weighted hamming distance, Discrete Appl. Math. 240 (2018), 92–101.

	Introduction
	Inverse perfect matching problem
	Inverse assignment problem
	Conclusions
	Acknowledgments
	References

