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Abstract: In this paper, we continue the study of the domination game in graphs

introduced by Brešar, Klavžar, and Rall [SIAM J. Discrete Math. 24 (2010) 979–

991]. We study the paired-domination version of the domination game which adds a
matching dimension to the game. This game is played on a graph G by two players,

named Dominator and Pairer. They alternately take turns choosing vertices of G such

that each vertex chosen by Dominator dominates at least one vertex not dominated
by the vertices previously chosen, while each vertex chosen by Pairer is a vertex not

previously chosen that is a neighbor of the vertex played by Dominator on his previous

move. This process eventually produces a paired-dominating set of vertices of G; that
is, a dominating set in G that induces a subgraph that contains a perfect matching.

Dominator wishes to minimize the number of vertices chosen, while Pairer wishes to
maximize it. The game paired-domination number γgpr(G) of G is the number of
vertices chosen when Dominator starts the game and both players play optimally. Let G

be a graph on n vertices with minimum degree at least 2. We show that γgpr(G) ≤ 4
5
n,

and this bound is tight. Further we show that if G is (C4, C5)-free, then γgpr(G) ≤ 3
4
n,

where a graph is (C4, C5)-free if it has no induced 4-cycle or 5-cycle. If G is 2-connected
and bipartite or if G is 2-connected and the sum of every two adjacent vertices in G is
at least 5, then we show that γgpr(G) ≤ 3

4
n.
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1. Introduction

The domination game in graphs was first introduced by Brešar, Klavžar, and Rall [7]

and extensively studied afterwards in [4–6, 8, 9, 12, 17, 32, 33] and elsewhere. Before

formally defining the domination game, we briefly describe basic concepts needed

throughout the paper. For notation and graph theory terminology not defined herein,

we in general follow [31]. We denote the degree of a vertex v in a graph G by dG(v),

or simply by d(v) if the graph G is clear from the context. The minimum degree

among the vertices of G is denoted by δ(G). A vertex of degree 1 is called a leaf. A

cycle component and a path component of a graph is a component in the graph that

is isomorphic to a cycle and a path, respectively. A set S of edges in a graph G are

independent if no two edges in S are incident to the same vertex. A matching in a

graph G is a set of independent edges in G. A perfect matching M in G is a matching

in G such that every vertex of G is incident to an edge of M .

A vertex dominates itself and its neighbors. A dominating set of a graph G is a

set S of vertices of G such that every vertex in G is dominated by a vertex in S.

The domination number of G, denoted by γ(G), is the minimum cardinality of a

dominating set. We call a dominating set of cardinality γ(G) in G a γ-set of G. The

notion of domination and its variations in graphs and has been studied a great deal;

a rough estimate says that it occurs in more than 6000 papers to date. Fundamental

concepts of domination in graphs can be found in [22].

A dominating set S with the additional property that the subgraph G[S] induced

by S contains a perfect matching M (not necessarily induced) is a paired-dominating

set of G. Two vertices joined by an edge of M are said to be paired. The paired-

domination number γpr(G) of G is the minimum cardinality of a paired-dominating

set in G. Haynes and Slater [23] introduced the concept of paired-domination in

graphs as a model for assigning backups to guards for security purposes. A recent

survey of paired-domination in graphs can be found in [15].

The domination game played on a graph G consists of two players, Dominator and

Staller, who take turns choosing a vertex from G. Each vertex chosen must dominate

at least one vertex not dominated by the vertices previously chosen. The game ends

when the set of vertices chosen becomes a dominating set in G. Dominator wishes to

minimize the number of vertices chosen, while Staller wishes to end the game with

as many vertices chosen as possible. The game domination number γg(G) of G is the

number of vertices chosen when Dominator starts the game and both players play

optimally.

In this paper we introduce and study the paired version of the domination game.

The paired-domination game, played on a graph G consists of two players called

Dominator and Pairer who take turns choosing a vertex from G. In this version of

the game, each vertex chosen by Dominator must dominate at least one vertex not

dominated by the vertices previously chosen, while each vertex chosen by Pairer must

be a neighbor of the vertex chosen by Dominator on his previous move that has not

previously been chosen. The vertex played by Pairer, together with the vertex played

on the previous move by Dominator, are said to be partners. A vertex is unpaired
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if it is chosen in a move played by Dominator but does not have a partner. This

process eventually produces a paired-dominating set of vertices of G, in which the

partners form a matching in the subgraph induced by the set. Dominator wishes to

minimize the number of vertices chosen, while Pairer wishes to maximize it. The

game paired-domination number γgpr(G) of G is the number of vertices chosen when

Dominator starts the game and both players play optimally. The sequence of moves of

the two players will be denoted d1, p1, d2, p2, d3, p3, . . .; that is, the ith vertex played

by Dominator is the vertex di and the ith vertex played by Pairer is the vertex pi.

We note that the vertices di and pi are adjacent, and are partners.

The paired-domination game belongs to the growing family of competitive optimiza-

tion games on graphs and hypergraphs. As remarked in [24], broadly speaking,

“competitive optimization” describes a process in which multiple agents with con-

flicting goals collaboratively produce some special structure in an underlying host

graph/hypergraph. In the paired-domination game, that structure is a paired-

dominating set, and the players’ goals are completely antithetical: while Pairer wants

to maximize the size of a paired-dominating set constructed during the game, Dom-

inator wants to minimize it. Thus, the paired-domination game is a competitive

optimization variant of the well-studied paired-domination problem on graphs.

As remarked in [10, 24] and elsewhere, one of the first and best-known competitive

optimization parameters is the game chromatic number, which was introduced by

Brams for planar graphs (cf. [18]) and independently by Bodlaender [1] for general

graphs; it has seen extensive study, see the survey [36]. Recently, work has been done

on competitive optimization variants of list-colouring [3] and its more studied related

version called paintability as introduced in [35] (for further references see Section 8

of [36]), matching [14, 19], domination [7, 24], total domination [16, 25–29], disjoint

domination [12], Ramsey theory [13, 20, 21], transversals in hypergraphs [10, 11] and

more [2].

If a graph G does not contain a graph F as an induced subgraph, then we say that G

is F -free. We say that G is (C4, C5)-free if G is both C4-free and C5-free; that is, if

G has no induced 4-cycle and no induced 5-cycle. By contracting two vertices x and

y in G, we mean replacing the vertices x and y by a new vertex vxy and joining vxy
to all vertices that were adjacent to x or y in G.

In this paper, we introduce and study the paired-domination version of the domination

game. In Section 2, we present some preliminary observations. In Section 3, we

present some known results on the domination number that we will need in proving

our main results, which are stated in Section 4. Thereafter we present proofs of our

main results in Section 5. We close in Section 6 with two conjectures that we have

yet to settle.

2. Preliminary Observations

As observed earlier, upon completion of the paired-domination game played on a

graph G the resulting set of played vertices is a paired-dominating set of G. Hence,
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the paired-domination of a graph is at most its game paired-domination number.

Observation 1. For every graph G with no isolated vertex, γpr(G) ≤ γgpr(G).

Haynes and Slater [23] were the first to observe that if G is a connected graph of order

n ≥ 3, then γpr(G) ≤ n − 1. That this bound is tight may be seen by subdividing

each edge of a star K1,r, where r ≥ 1, precisely once. The graph G obtained from

an arbitrary connected graph H by attaching a pendant edge to each vertex has

game paired-domination number equal to its order, since whenever Dominator plays

a vertex of H, Pairer responds by playing its leaf neighbor in G. This implies the

following observation.

Observation 2. If G is a graph of order n with no isolated vertex, then γgpr(G) ≤ n,
and this bound is tight.

3. Known Results

In this section, we present some known results on the domination number in graphs

with minimum degree at least 2. If we restrict the minimum degree to be at least 2

and the order to be at least 6, then Haynes and Slater [23] established the following

upper bound on the paired-domination number.

Theorem 3. ([23]) If G is a connected graph of order n ≥ 6 with δ(G) ≥ 2, then
γpr(G) ≤ 2

3
n.

In [30] the authors define two types of reducible graphs and use these reductions to

define a family F of graphs. For completeness, we repeat the definitions here.

Definition 1. ([30]) If there is a path v1u1u2v2 on four vertices in a graph G such that
d(u1) = d(u2) = 2 in G, then the graph obtained from G by contracting v1 and v2 and
deleting {u1, u2} is called a type-1 G-reducible graph.

Definition 2. ([30]) If there is a path x1w1w2w3x2 on five vertices in a graph G such
that d(w2) = 2 and N(w1) = N(w3) = {x1, x2, w2} in G, then the graph obtained from G
by deleting {w1, w2, w3} and adding the edge x1x2 if the edge is not already present in G is
called a type-2 G-reducible graph.

Definition 3. ([30]) Let F4 be a set of graphs only containing one element, namely the
4-cycle C4. Thus, F4 = {C4}. For every i > 4 with i ≡ 1 (mod 3), we define the family Fi as
follows. A graph G belongs to Fi if and only if δ(G) ≥ 2 and there is a type-1 or a type-2
G-reducible graph that belongs to Fi−3.

The six graphs in the family F7 are shown in Figure 1.
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Figure 1. The family F7.

Definition 4. ([30]) Let F≤13 = F4 ∪ F7 ∪ F10 ∪ F13.

Definition 5. ([30]) A vertex x in a graph G is a bad-cut-vertex of G if G − x contains
a component Cx, which is an induced 4-cycle such that x is adjacent to at least one but at
most three vertices on Cx. Let bc(G) denote the number of bad-cut-vertices in G.

As remarked in [30], there are 28076 non-isomorphic graphs in the family F≤13, and

41 of these graphs possess bad-cut-vertices. Let

F = {G ∈ F≤13 | bc(G) = 0};

that is, F consists of the 28035 non-isomorphic graphs in the family F≤13 that do

not have a bad-cut-vertex. We note that F4 ∪ F7 ⊂ F . We shall need the following

properties of graphs in the family F .

Lemma 1. ([30]) If G ∈ F has order n, and u and v are arbitrary distinct vertices in G,
then the following holds.

1. γ(G) = 1
3
(n+ 2).

2. There is a γ-set of G containing both u and v.

In 1989, McCuaig and Shepherd [34] presented the classical result that the domination

number of a connected graph with minimum degree at least 2 is at most two-fifths

its order except for seven exceptional graphs. These seven exceptional graphs are

precisely the graphs in the family F4 ∪ F7. Hence the McCuaig-Shepherd result can

be stated as follows:

Theorem 4. ([34]) If G is a connected graph of order n with δ(G) ≥ 2 and G /∈ F4 ∪F7,
then γ(G) ≤ 2

5
n.

We shall also need the following structural result given in [30].

Theorem 5. ([30]) If G /∈ F is a connected graph of order n with δ(G) ≥ 2, then the
following holds.

1. If (C4, C5)-free, then γ(G) ≤ 3
8
n.
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2. If G is bipartite and bc(G) = 0, then γ(G) ≤ 3
8
n.

3. If G is 2-connected and bipartite, then γ(G) ≤ 3
8
n.

4. If G is 2-connected and dG(u) + dG(v) ≥ 5 for every two adjacent vertices u and v,
then γ(G) ≤ 3

8
n.

4. Main Results

In view of Observation 2 it is only of interest to determine upper bounds on the

game paired-domination number of a graph with minimum degree at least 2. By

Observation 2 and Theorem 3, the best we can hope for is an upper bound of two-

thirds the order of the graph. We show that this is not possible. However, we prove

that Dominator always has a strategy that will finish the game in at most four-fifths

the order of the graph. A proof of Theorem 6 is given in Section 5.

Theorem 6. If G is a connected graph on n vertices with δ(G) ≥ 2, then γgpr(G) ≤ 4
5
n,

and this bound is tight.

If we impose certain structural restrictions on the graph, then the 4
5 -upper bound

on the game paired-domination number given in Theorem 6 can be improved to a
3
4 -upper bound. We state this result formally as follows. A proof of Theorem 7 is

given in Section 5.

Theorem 7. If G is a connected graph on n vertices with δ(G) ≥ 2, then the following
holds.

1. If G is (C4, C5)-free, then γgpr(G) ≤ 3
4
n.

2. If G is bipartite and bc(G) = 0, then γgpr(G) ≤ 3
4
n.

3. If G is 2-connected and bipartite, then γgpr(G) ≤ 3
4
n.

4. If G is 2-connected and dG(u) + dG(v) ≥ 5 for every two adjacent vertices u and v,
then γgpr(G) ≤ 3

4
n.

5. Proof of Main Results

In this section we present a proof of our main results, namely Theorem 6 and Theo-

rem 7. For this purpose, we shall need the following lemma.

Lemma 2. If G ∈ F has order n, then γgpr(G) ≤ 2
3
(n− 1).

Proof. Let G ∈ F have order n. Let γ = γ(G). We note that n ≥ 4 and n ≡
1 (mod 3). Further by Lemma 1, γ = 1

3 (n+ 2). Recall that we denote the sequence of

moves of the two players by d1, p1, d2, p2, d3, p3, . . . where di and pi are the ith moves
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played by Dominator and Pairer, respectively. We note that the vertices di and pi
are partners. In particular, the vertex pi is a neighbor of the vertex di.

Dominator’s strategy is to choose as his first vertex an arbitrary vertex, say u, of G.

Let v be the first vertex chosen by Pairer. Thus, d1 = u and p1 = v. By Lemma 1,

there is a γ-set, D say, of G that contains both vertices u and v. Thus, {u, v} ⊆ D

and |D| = γ. If γ = 2, then D = {u, v} and γgpr(G) = 2 ≤ 2
3 (n − 1) noting that

n ≥ 4. Hence, we may assume that γ ≥ 3, for otherwise the desired result holds. Let

D = {u, v} ∪D′, where |D′| = γ − 2 and D′ = {v1, . . . , vγ−2}.
Dominator now orders the vertices in D′ and plays the vertices v1, v2, . . . , vγ−2 se-

quentially when it is his turn to move, provided none of these vertices were previously

chosen by Pairer on one of her earlier moves and provided that each vertex played by

Dominator dominates at least one new vertex at that stage of the game. If, however,

one of these vertices were already chosen by Pairer on one of her previous moves or

if such a vertex does not dominate at least one new vertex at that stage of the game,

then Dominator plays the next available vertex in the ordering v1, v2, . . . , vγ−2 that

has not yet been played and that dominates at least one new vertex at that stage of

the game.

In the case when Dominator plays all vertices in D′, the sequence of moves

d2, d3, . . . , dγ−1 of Dominator correspond to the sequence of moves v1, v2, . . . , vγ−2;

that is, di+1 = vi for i ∈ [γ − 2]. In the case when a vertex of D′ has already been

played by Pairer or a vertex in D′ cannot be played by Dominator since it dominates

no new vertex at that stage of the game, Dominator plays at most γ−3 vertices from

the set D′ and therefore at most γ − 2 vertices in total. Hence, Dominator’s strategy

of playing the vertices v1, v2, . . . , vγ−2 sequentially when it is his turn to move, if

possible, guarantees that the game will finish after at most 2(γ − 1) moves. Hence,

γgpr(G) ≤ 2(γ − 1) = 2( 1
3 (n+ 2)− 1) = 2

3 (n− 1).

We are now in a position to present a proof of Theorem 6. Recall its statement.

Theorem 6 If G is a connected graph on n vertices with δ(G) ≥ 2, then γgpr(G) ≤
4
5n, and this bound is tight.

Proof. If G ∈ F4 ∪ F7, then noting that F4 ∪ F7 ⊂ F , Lemma 2 implies that

γgpr(G) ≤ 2
3 (n − 1) < 4

5n. Hence, we may assume that G /∈ F4 ∪ F7, for otherwise

the desired upper bound follows. With this assumption, Theorem 4 implies that

γ(G) ≤ 2
5n.

We now prove that Dominator always has a strategy that will finish the game in at

most four-fifths the order of the graph. Dominator’s strategy is to choose an arbitrary

γ-set, D say, of G. Let D = {v1, v2, . . . , vγ}, where γ = γ(G). Dominator now orders

the vertices in D and plays the vertices v1, v2, . . . , vγ sequentially when it is his turn

to move, provided none of these vertices were previously chosen by Pairer on one of

her earlier moves. If, however, one of these vertices has already been chosen by Pairer,

then Dominator simply plays the next available vertex in the ordering v1, v2, . . . , vγ
that has not yet been played and that dominates at least one new vertex at that stage

of the game.
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In the case when Dominator plays all vertices in D, the sequence of moves

d1, d2, . . . , dγ of Dominator correspond to the sequence of moves v1, v2, . . . , vγ ; that is,

di = vi for i ∈ [γ]. In the case when a vertex of D has already been played by Pairer

or a vertex in D cannot be played by Dominator since it dominates no new vertices

at that stage of the game, Dominator plays at most γ−1 vertices in the course of the

game. Therefore, Dominator’s strategy of playing the vertices v1, v2, . . . , vγ sequen-

tially when it is his turn to move, if possible, guarantees that the game will finish

after at most 2γ moves. Hence, γgpr(G) ≤ 2γ ≤ 2 · 25n = 4
5n. This establishes the

desired upper bound.

We prove next that the bound is tight. Let G be the family of connected graphs

with minimum degree at least 2 constructed as follows. For k ≥ 1, let Gk be a graph

obtained from the vertex disjoint union of k 5-cycles by selecting any two non-adjacent

vertices from each cycle and designating them as gluing vertices and then adding any

number of edges joining gluing vertices so that the resulting graph Gk is connected.

We note that Gk is a graph on n = 5k vertices with δ(G) ≥ 2. When k = 4, an

example of a graph G4 constructed in this way is illustrated in Figure 2, where the

gluing vertices are depicted by solid (darkened) vertices. Let G be the family of all

such graphs Gk where k ≥ 1.

Figure 2. A graph G4 in the family G

.

Let G be an arbitrary graph in G and let G have order n. Thus, G = Gk for

some integer k ≥ 1. Pairer adopts the following strategy. Let C : v1v2 . . . v5v1 be an

arbitrary 5-cycle used in the construction of the graph G, where v1 and v3 are the

gluing vertices selected from C. Pairer waits for Dominator to be the first to play a

vertex from the cycle C. Let v be the first move that Dominator plays from the cycle

C.

If v = v1, then Pairer responds to Dominator’s move by playing the vertex v2. Since

the vertex v4 is not yet dominated, Dominator must play a second move in C, namely

one of the vertices v3, v4 or v5 in order to dominate v4. If Dominator plays v3 or v5,

then Pairer responds by playing v4, while if Dominator plays v4, then Pairer responds

by playing v3. Analogously, if v = v3, Pairer guarantees that at least four vertices will

be played from C. If v = v2, then Pairer responds to Dominator’s move by playing

the vertex v1, and as before she can guarantee that at least four vertices will be played

from C.

If v = v4, then Pairer responds to Dominator’s move by playing the vertex v5. Since
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the vertex v2 is not yet dominated, Dominator must play a second move in C, namely

one of the vertices v1, v2 or v3 in order to dominate v1. If Dominator plays v1 or v3,

then Pairer responds by playing v2, while if Dominator plays v2, then Pairer responds

by playing v1 (or v3). In this way, Pairer has a strategy that will force at least four

vertices to be played from C. Since C is an arbitrary 5-cycle used in the construction

of the graph G, Pairer has a strategy that will force at least 4k vertices to be played

in G. Thus, γgpr(G) ≥ 4k = 4
5n. As observed earlier, γgpr(G) ≤ 4

5n. Consequently,

γgpr(G) = 4
5n. Since G was an arbitrary graph in the family G, every graph in G

has game paired-domination number equal to four-fifths its order. This establishes

tightness of the 4
5n-upper bound.

Next we present a proof of Theorem 7. Recall its statement.

Theorem 7 If G is a connected graph on n vertices with δ(G) ≥ 2, then the following

holds.

1. If G is (C4, C5)-free, then γgpr(G) ≤ 3
4n.

2. If G is bipartite and bc(G) = 0, then γgpr(G) ≤ 3
4n.

3. If G is 2-connected and bipartite, then γgpr(G) ≤ 3
4n.

4. If G is 2-connected and dG(u)+dG(v) ≥ 5 for every two adjacent vertices u and

v, then γgpr(G) ≤ 3
4n.

Proof. Let G be a connected graph on n vertices with δ(G) ≥ 2. Suppose that

G ∈ F . By Lemma 2, γgpr(G) ≤ 2
3 (n− 1) < 3

4n. Hence, we may assume that G /∈ F ,

for otherwise the desired upper bound follows. With this assumption, Theorem 5

implies that if G is a (C4, C5)-free graph or if G is bipartite and bc(G) = 0 or if G is

2-connected and bipartite or if G is 2-connected and dG(u) + dG(v) ≥ 5 for every two

adjacent vertices u and v, then γ(G) ≤ 3
8n. Dominator’s strategy is now identical

to that presented in the proof of Theorem 6. He chooses an arbitrary γ-set, D say,

of G and orders the vertices in D. On each of his moves, Dominator plays the next

available vertex in the ordering of vertices of D that has not yet been played and

that dominates at least one new vertex at that stage of the game. This strategy

of Dominator guarantees that the game will finish after at most 2γ moves. Hence,

γgpr(G) ≤ 2γ ≤ 2 · 38n = 3
4n. This completes the proof of the theorem.

We show next that the bounds of Theorem 7(a) and 7(b) are tight.

Proposition 1. There exists an infinite family Bbip of connected, bipartite, C4-free
graphs with minimum degree at least 2 such that if F ∈ Bbip has order n, then γgpr(F ) = 3

4
n.

Proof. Let Bbip be the family of connected, bipartite, C4-free graphs with minimum

degree at least 2 constructed as follows. For k ≥ 1, let Bk be a bipartite graph

obtained from the vertex disjoint union of k 8-cycles by selecting one vertex from

each cycle and designating it as a gluing vertex and then adding any number of
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edges joining gluing vertices so that the subgraph induced by the gluing vertices is

a connected, C4-free, bipartite graph. We call the subgraph of Bk induced by the k

selected gluing vertices an underlying graph of Bk. When k = 4, an example of a

graph B4 constructed in this way is illustrated in Figure 3, where the gluing vertices

are depicted by four large solid vertices and the underlying graph is a path P4. Let

Bbip be the family of all such graphs Bk where k ≥ 1.
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Figure 3. A graph B4 in the family Bbip.

Let F be an arbitrary graph in Bbip and let F have order n. Thus, F = Bk for

some integer k ≥ 1, and so n = 8k. Pairer adopts the following strategy. Let

C : v1v2 . . . v8v1 be an arbitrary 8-cycle used in the construction of the graph F . By

construction, exactly one vertex from C is the gluing vertex. Renaming vertices,

if necessary, we may assume that v8 is the gluing vertex. Thus, the vertex vi has

degree 2 in both C and F for all i ∈ [7].

We show that Pairer has a strategy to force six vertices on the cycle C to be played.

Pairer waits for Dominator to be the first to play a vertex from the cycle C. Let

d1, d2, d3, . . . be the sequence of moves that Dominator plays on C, and let p1, p2, p3, . . .

be the response of Pairer to Dominator’s moves; that is, when Dominator plays the

vertex di, then Pairer responds by playing the vertex pi.

Suppose that d1 = v8. Pairer responds by playing p1 = v1. If d2 = v3, then Pairer

plays p2 = v2. If d2 ∈ {v2, v4}, then Pairer plays p2 = v3. If d2 = v6, then Pairer

plays p2 = v7. If d2 ∈ {v5, v7}, then Pairer plays p2 = v6. In all cases, at least one

vertex on C has yet to be dominated, forcing Dominator to play a third vertex on the

cycle C. Pairer responds by playing her third vertex on the cycle C. Thus, at least

six vertices on the cycle C are played. Suppose that d1 ∈ {v1, v7}. Pairer responds

by playing p1 = v8, and identical arguments as before show that Pairer can force at

least six vertices on C to be played.

Suppose that d1 = v2. Pairer responds by playing p1 = v1. If d2 = v7, then Pairer

plays p2 = v6. If d2 ∈ {v6, v8}, then Pairer plays p2 = v7. If d2 = v4, then Pairer

plays p2 = v3. If d2 ∈ {v3, v5}, then Pairer plays p2 = v4. In all cases, at least one

vertex on C has yet to be dominated, forcing Dominator to play a third vertex on the

cycle C. Pairer responds by playing her third vertex on the cycle C. Analogously, if

d1 = v6, then Pairer can force at least six vertices on C to be played.

Suppose that d1 = v3. Pairer responds by playing p1 = v4. If d2 = v1, then Pairer
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plays p2 = v2. If d2 ∈ {v2, v8}, then Pairer plays p2 = v1. If d2 = v6, then Pairer

plays p2 = v5. If d2 ∈ {v5, v7}, then Pairer plays p2 = v6. In all cases, at least one

vertex on C has yet to be dominated, forcing Dominator to play a third vertex on the

cycle C. Pairer responds by playing her third vertex on the cycle C. Analogously, if

d1 = v5, then Pairer can force at least six vertices on C to be played. Suppose that

d1 = v4. Pairer responds by playing p1 = v3, and analogously as in the case when

d1 = v3 and p1 = v4, Pairer can force at least six vertices on C to be played.

In this way, Pairer has a strategy that will force at least six vertices to be played

from C. Since C is an arbitrary 8-cycle used in the construction of the graph F ,

Pairer has a strategy that will force at least 6k vertices to be played in F . Thus,

γgpr(F ) ≥ 6k = 3
4n. By Theorem 7(a) and 7(b), γgpr(F ) ≤ 3

4n. Consequently,

γgpr(F ) = 3
4n. Since F was an arbitrary graph in the family Bbip, every graph in the

Bbip has game paired-domination number equal to three-fourths its order.

We show next that the bound of Theorem 7(c) is tight in that there exists an infinite

family of graphs achieving equality in this bound.

Proposition 2. There exists an infinite family H2conn of 2-connected, bipartite graphs
such that if H ∈ H2conn has order n, then γgpr(H) = 3

4
n.

Proof. Let H2conn be the family of 2-connected bipartite graphs constructed as

follows. For k ≥ 2, let Hk be the graph obtained from a cycle C2k on 2k vertices

as follows. Let M be a perfect matching in the cycle. For each edge e = uv in the

matching M , duplicate the edge e, subdivide one of the duplicated edges twice and

subdivide the other duplicated edge four times. (Hence each edge uv is deleted from

H and replaced by an 8-cycle containing u and v as vertices at distance 3 apart on

the cycle.) Let Hk denote the resulting graph of order n = 8k. The graph H4 in the

family H2conn obtained from an 8-cycle is shown in Figure 4. We call the original

vertices of the cycle C2k the gluing vertices of Hk.

t t t t t t t t
t t t t t t t tt t t t t t t tt t t t t t t t

&
'

%
$

u v

Figure 4. The graph H4 in the family H2conn.

Let H be an arbitrary graph in H2conn and let H have order n. Thus, H = Hk

for some integer k ≥ 2, and so n = 8k. Pairer adopts the following strategy. Let

C : v1v2 . . . v8v1 be an arbitrary 8-cycle used in the construction of the graph H.

Renaming vertices, if necessary, we may assume that v3 and v8 are the gluing vertices
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of H that belong to the cycle C. We show that Pairer has a strategy to force six

vertices on the cycle C to be played. Pairer waits for Dominator to be the first to

play a vertex from the cycle C. Let d1, d2, d3, . . . be the sequence of moves that

Dominator plays on C, and let p1, p2, p3, . . . be the response of Pairer to these moves

of Dominator.

Suppose that d1 = v1. Pairer responds by playing p1 = v2. If d2 ∈ {v3, v5}, then

Pairer plays p2 = v4. If d2 ∈ {v6, v8}, then Pairer plays p2 = v7. If d2 = v4, then

Pairer plays p2 = v3. If d2 = v7, then Pairer plays p2 = v8. In all cases, at least one

vertex on C has yet to be dominated, forcing Dominator to play a third vertex on the

cycle C. Pairer responds by playing her third vertex on the cycle C. Thus, at least

six vertices on the cycle C are played. If d1 = v2, then Pairer responds by playing

p1 = v1 and, analogously as above, Pairer can force at least six vertices on C to be

played.

Suppose that d1 = v3. Pairer responds by playing p1 = v4. If d2 ∈ {v5, v7}, then

Pairer plays p2 = v6. If d2 ∈ {v2, v8}, then Pairer plays p2 = v1. If d2 = v6, then

Pairer plays p2 = v5. If d2 = v1, then Pairer plays p2 = v2. In all cases, at least one

vertex on C has yet to be dominated, forcing Dominator to play a third vertex on the

cycle C. Pairer responds by playing her third vertex on the cycle C. Thus, at least

six vertices on the cycle C are played. If d1 = v4, then Pairer responds by playing

p1 = v3 and, analogously as above, Pairer can force at least six vertices on C to be

played. If d1 ∈ {v7, v8}, then analogously as above when d1 ∈ {v3, v4}, Pairer can

force at least six vertices on C to be played.

Suppose that d1 = v5. Pairer responds by playing p1 = v4. If d2 ∈ {v1, v3}, then

Pairer plays p2 = v2. If d2 ∈ {v6, v8}, then Pairer plays p2 = v7. If d2 = v7, then

Pairer plays p2 = v6. If d2 = v2, then Pairer plays p2 = v3. In all cases, at least one

vertex on C has yet to be dominated, forcing Dominator to play a third vertex on the

cycle C. Pairer responds by playing her third vertex on the cycle C. Thus, at least

six vertices on the cycle C are played. If d1 = v6, then Pairer responds by playing

p1 = v7 and, analogously as above, Pairer can force at least six vertices on C to be

played.

In this way, Pairer has a strategy that will force at least six vertices to be played

from C. Since C is an arbitrary 8-cycle used in the construction of the graph H,

Pairer has a strategy that will force at least 6k vertices to be played in H. Thus,

γgpr(H) ≥ 6k = 3
4n. By Theorem 7(c), γgpr(H) ≤ 3

4n. Consequently, γgpr(H) = 3
4n.

Since H was an arbitrary graph in the family H, every graph in the H has game

paired-domination number equal to three-fourths its order.

6. Closing Conjectures

In this paper we introduce and study the paired-domination version of the domination

game. We show in Theorem 6 that if G is a connected graph on n vertices with

δ(G) ≥ 2, then γgpr(G) ≤ 4
5n, and this bound is tight. We also show that if we

impose certain structural restrictions on the graph, then the 4
5 -upper bound can be
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improved to a 3
4 -upper bound. We pose the following conjecture that we have yet to

settle.

Conjecture 1. If G is a bipartite graph of order n with δ(G) ≥ 2, then γgpr(G) ≤ 3
4
n.

By Theorem 7, we note that Conjecture 1 is true if the bipartite graph G satisfies

bc(G) = 0. In particular, if the bipartite graph G is C4-free or 2-connected, then we

note that bc(G) = 0, and therefore the conjecture holds. Hence a counterexample to

Conjecture 1, if it exists, must contain at least one bad-cut-vertex.

However, we believe the 4
5n upper bound on the paired-domination number in a graph

of order n with minimum degree at least 2 can be improved to 2
3n if we impose the

restriction that the graph has minimum degree at least 3. We state our conjecture

formally as follows.

Conjecture 2. If G is a graph of order n with δ(G) ≥ 3, then γgpr(G) ≤ 2
3
n.

We remark that if Conjecture 2 is true, then the bound is tight as there exists an

infinite family of graphs achieving equality in this bound. In order to construct such

a family, by a 3-prism we mean the graph C3 2K2 shown in Figure 5.

Figure 5. The 3-prism C32K2.

Proposition 3. There exists an infinite family L of graphs with minimum degree 3 such
that if L ∈ L has order n, then γgpr(L) = 2

3
n.

Proof. Let L be the family of connected graphs with minimum degree 3 constructed

as follows. Let (C3 2K2)− be the graph obtained from a 3-prism by deleting from

it one edge that does not belong to a triangle. We call the two vertices of degree 2

in (C3 2K2)− the gluing vertices of (C3 2K2)−. For k ≥ 1, let Lk be obtained from

k vertex disjoint copies of (C3 2K2)− by adding any number of edges joining gluing

vertices so that the resulting graph is connected and has minimum degree 3. We note

that Lk is a graph on n = 6k vertices with δ(G) = 3. We note that L1 is precisely

the 3-prism C3 2K2. When k = 4, an example of a graph L4 constructed in this way

is illustrated in Figure 6, where the gluing vertices are depicted by solid (darkened)

vertices. Let L be the family of all such graphs Lk where k ≥ 1.

Let L be an arbitrary graph in L and let L have order n. Thus, L = Lk for some

integer k ≥ 1, and so n = 6k. Pairer adopts the following strategy. Consider an

arbitrary copy of G = (C3 2K2)− used in the construction of the graph L, where
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Figure 6. A graph L4 in the family L.

V (G) = {a1, a2, a3, b1, b2, b3} and where G[{a1, a2, a3}] = C3 and G[{b1, b2, b3}] = C3.

Further, let a2b2 and a3b3 be edges of G, and so a1b1 was the edge deleted from the

3-prism C3 2K2 when constructing G. We note that a1 and b1 are the two gluing

vertices of G. We show that Pairer has a strategy to force four vertices of G to be

played. Pairer waits for Dominator to be the first to play a vertex from the subgraph

G in L. Let d1, d2, . . . be the sequence of moves that Dominator plays in G, and let

p1, p2, . . . be the response of Pairer to these moves of Dominator.

Suppose that d1 = a1. Pairer responds by playing p1 = a2. In order to dominate

the vertex b3, Dominator must play at least one additional vertex from G. If d2 ∈
{a3, b1, b2}, then Pairer plays p2 = b3. If d2 = b3, then Pairer plays p2 = b2. Thus, at

least four vertices from the graph G are played. Suppose that d1 ∈ {a2, a3}. Pairer

responds by playing p1 = a1, and, analogously as above, Pairer can force at least four

vertices from the graph G to be played. By symmetry, if d1 ∈ {b1, b2, b3}, then Pairer

can force at least four vertices from the graph G to be played.

In this way, Pairer has a strategy that will force at least four vertices to be played

from the graph G. Since G is an arbitrary copy of (C3 2K2)− used in the construction

of the graph L, Pairer has a strategy that will force at least 4k vertices to be played

in L. Thus, γgpr(L) ≥ 4k = 2
3n. However, once all vertices in a copy of (C3 2K2)−

are dominated, Dominator starts playing in a new copy of (C3 2K2)−, thereby guar-

anteeing that the game is complete after at most 4k moves. Thus, γgpr(L) ≤ 4k.

Consequently, γgpr(L) = 4k = 2
3n. Since L was an arbitrary graph in the family

L, every graph in the L has game paired-domination number equal to two-thirds its

order.
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