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Abstract: A set S = {u1, u2, . . . , ut} of vertices of G is an efficient dominating set if

every vertex of G is dominated exactly once by the vertices of S. Letting Ui denote the
set of vertices dominated by ui, we note that {U1, U2, . . . Ut} is a partition of the vertex

set of G and that each Ui contains the vertex ui and all the vertices at distance 1 from
it in G. In this paper, we generalize the concept of efficient domination by considering

k-efficient domination partitions of the vertex set of G, where each element of the
partition is a set consisting of a vertex ui and all the vertices at distance di from it,
where di ∈ {0, 1, . . . , k}. For any integer k ≥ 0, the k-efficient domination number of

G equals the minimum order of a k-efficient partition of G. We determine bounds on
the k-efficient domination number for general graphs, and for k ∈ {1, 2}, we give exact
values for some graph families. Complexity results are also obtained.
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1. Introduction

A vertex in a graph G is said to dominate itself and all the vertices adjacent to it in G.

Bange et al. [1] introduced the concept of efficiency for domination and defined a set
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S of vertices of G to be an efficient dominating set if every vertex of G is dominated

exactly once by the vertices of S. Thus, an efficient dominating set dominates every

vertex with no redundancy (no vertex dominated twice). In this paper, we study a

generalization of efficiency. First we present some notation and terminology.

Let G be a graph with vertex set V = V (G) and edge set E = E(G). Two vertices

v and w are neighbors in G if they are adjacent; that is, if vw ∈ E. The open

neighborhood of a vertex v in G is the set of neighbors of v, denoted N(v), and

its closed neighborhood is the set N [v] = N(v) ∪ {v}. If S is a subset of V , then

the open neighborhood of S is N(S) = ∪x∈SN(x) and the closed neighborhood is

N [S] = ∪x∈SN [x]. The degree of v is the cardinality of its open neighborhood. The

minimum and maximum degree of G are denoted by δ(G) and ∆(G), respectively.

A set S ⊆ V is called a dominating set if N [S] = V , and the domination number

γ(G) equals the minimum cardinality of a dominating set in G. A set S ⊆ V is called

independent if no two vertices in S are adjacent, and the vertex independence number

α(G) equals the maximum cardinality of an independent set in G. The subgraph

induced by a set S of vertices in G is denoted G[S]. We use the standard notation

[k] = {1, . . . , k}.
For any two vertices u and v in G, the distance d(u, v) equals the length (number of

edges) of a shortest path between u and v in G. Such a path is called a u-v geodesic.

The eccentricity ecc(v) of a vertex v ∈ V equals the maximum length of a v-w geodesic

in G. The diameter of G equals diam(G) = max{ecc(v) : v ∈ V } and the radius

rad(G) = min{ecc(v) : v ∈ V }. For any integer k, the distance-k closed neighborhood

of a vertex v ∈ V is Nk[v] = {w ∈ V : d(v, w) ≤ k}, and its distance-k open

neighborhood is Nk(v) = Nk[v]−{v}. The k-degree, denoted degk(v), of a vertex v in

G is |Nk(v)|. The minimum k-degree of G is δk(G) = min{degk(v) : v ∈ V } and the

maximum k-degree of G is ∆k(G) = max{degk(v) : v ∈ V }. Hence, N1(v) = N(v),

deg1(v) = deg(v), δ1(G) = δ(G) and ∆1(G) = ∆(G).

In 1975, Meir and Moon [6] introduced the concepts of distance k-domination and

distance-k packing. For a positive integer k, a set Dk ⊆ V is a distance k-dominating

set in G if every vertex v ∈ V belongs to Nk[w] for some vertex w ∈ Dk. The set

Dk is a k-packing in G if d(x, y) > k for all pairs of distinct vertices x and y in

Dk. The k-domination number γ≤k(G) is the minimum cardinality of a distance k-

dominating set in G, and the k-packing number ρk(G) is the maximum cardinality of

a k-packing in G. Thus for k = 1, the distance 1-domination number γ≤1(G) equals

the domination number γ(G), and the 1-packing number ρ1(G) equals the vertex

independence number α(G).

As defined in Bange et al. [1], a dominating set S for which |N [v]∩S| = 1 for all v ∈ V
is an efficient dominating set. Equivalently, a set S is an efficient dominating set if

S is both a dominating set and a 2-packing in G. Not every graph has an efficient

dominating set, for example, the cycle C5 does not.

It is important to note that if we define efficiency in terms of a partition of the

vertices of G, we can say that G is 1-efficient if it has a set S = {v1, v2, . . . , vt}
for which π = {N [v1], N [v2], . . . , N [vt]} is a (neighborhood) partition of V . In other

words, G is 1-efficient if it has an efficient dominating set. More generally, a graph
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G is k-efficient, for some positive integer k, if it has a set S = {v1, v2, . . . , vt} for

which π = {Nk[v1], Nk[v2], . . . , Nk[vt]} is a (distance-k neighborhood) partition of V .

Clearly, every graph G is rad-efficient, since for any vertex v for which ecc(v) =rad(G),

we have Nrad[v] = V .

We introduce the following generalization of efficiency, where the neighborhood dis-

tances are allowed to vary.

Definition 1. A partition π = {Ni1 [v1], . . . , Nit [vt]} is called a k-efficient partition of V
if for every j ∈ [t], we have ij ∈ {0, 1, . . . , k}. The vertices v1, v2, . . . , vt will be called the
essential vertices of the partition π.

Definition 2. For any integer k ≥ 0, the k-efficient domination number of G, denoted
εk(G), equals the minimum order of a k-efficient partition of G. A k-efficient partition of G
having cardinality εk(G) is called an εk-partition of G.

Since the partition of the vertices of G into singleton sets is a 0-efficient partition

of V , every graph G has a 0-efficient partition and ε0(G) = |V |. It follows that

every graph has a k-efficient partition for all k ≥ 0 since a 0-efficient partition is a

k-efficient partition. Recall that the cycle C5 does not have an efficient dominating

set, that is, C5 is not 1-efficient. However, with the generalization of efficiency, C5

has a 1-efficient partition. For example, {N1[v1], N0[v3], N0[v4]} is an ε1-partition of

the 5-cycle v1v2v3v4v5v1, and so γ(C5) = 2 < ε1(C5) = 3.

In this paper, we study the k-efficient domination number with a focus on ε1(G) and

ε2(G), that is, we are interested primarily in minimum order partitions of the vertex

set V into distance-0, distance-1 and distance-2 neighborhoods. Obviously, for any

graph G, εi(G) ≥ εj(G) for i ≤ j. We note that for every integer t ≥ 1, there exists

a graph Gt such that ε1(Gt) = ε2(Gt) = t. Indeed, if t = 1, then let G1 be any

nontrivial star, and if t ≥ 2, then let Gt be the connected graph obtained from t− 1

disjoint cycles C6 sharing a same vertex.

In Section 2, we discuss the relationship between the k-efficient partitions and broad-

casts in graphs. In Section 3, we give bounds on the k-efficient domination number,

and in Section 4, we give exact values of the 1-efficient domination number for some

graph families. In Section 5, we show that the decision problems associated with

ε1(G) and ε2(G) are NP-complete, even when restricted to bipartite graphs. Finally,

in Section 6 we mention several problems for further study.

2. Broadcast Domination

An equivalent formulation of k-efficient partitions can be given in terms of the concept

of broadcasting in graphs. Broadcasts were introduced by Erwin [3] in 2004 and

extended by Dunbar et al. [2] in 2006.

A function f : V → {0, 1, 2, . . . ,diam(G)} on the vertex set V of a connected graph

G = (V,E) is called a broadcast if for every vertex v ∈ V , f(v) ≤ ecc(v). The cost
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f(V ) of a broadcast f is f(V ) = Σv∈V f(v). For a broadcast f , let V 0
f = {v : f(v) = 0}

and V +
f = V −V 0

f = {u : f(u) > 0}. The vertices in V +
f are called broadcast vertices.

For a broadcast f and a broadcast vertex v, the broadcast neighborhood of v is the set

Nf [v] = {u : d(u, v) ≤ f(v)}. We say that every vertex in the broadcast neighborhood

Nf [v] can hear a broadcast from v, or is broadcast dominated by v.

A vertex u with f(u) = 0 hears a broadcast if there exists a vertex v ∈ V +
f where

d(u, v) ≤ f(v). The set of vertices that a vertex u hears is the set H(u) = {v ∈ V +
f :

d(u, v) ≤ f(v)}. Thus, every broadcast vertex automatically hears itself. Define

H(f) ⊆ V to equal the set of vertices that hear a broadcast from at least one vertex

v ∈ V +
f . Finally, we say that a broadcast g satisfies g ≤ f , if for every vertex v ∈ V ,

g(v) ≤ f(v). Notice that when we say g ≤ f we are saying that for at least one vertex

v, g(v) < f(v).

A broadcast f is called a dominating broadcast if H(f) = V , that is, for every vertex

u ∈ V with f(u) = 0, there exists a broadcast vertex v with d(u, v) ≤ f(v), or

equivalently, if H(u) 6= ∅. The broadcast domination number γb(G) of a graph G

equals the minimum weight f(V ) of a dominating broadcast f in G. We say that a

dominating broadcast f is minimal if there does not exist a dominating broadcast g

for which (i) g ≤ f .

The following characterization of minimal dominating broadcasts is due to Erwin [3].

Theorem 1. (Erwin [3]) A dominating broadcast f on a graph G is minimal if and only
if the following two conditions are satisfied:

1. for every broadcast vertex v with f(v) ≥ 2, there exists a vertex u ∈ V 0
f such that

H(u) = {v}, and d(u, v) = f(v), and

2. for every broadcast vertex v with f(v) = 1, there exists a vertex u ∈ N [v] such that
H(u) = {v}.

Let S ⊆ V be a minimal dominating set in a graph G. The characteristic function fS
of S is the broadcast function defined as follows: fS(v) = 0 if v /∈ S, and fS(v) = 1 if

v ∈ S.

Proposition 1. (Erwin [3]) If S ⊆ V is a minimal dominating set in a graph G, then
the characteristic function fS is a minimal dominating broadcast.

Corollary 1. For any graph G, γb(G) ≤ γ(G).

It is worth pointing out that the broadcast domination number of a graph G can be

considerably smaller than its domination number. For example, let S(K1,n) denote a

subdivided star, that is, a graph having one central vertex of degree n, to which are

attached n paths of length 2. It is easy to see that γb(S(K1,n)) = 2 < γ(S(K1,n)) = n.

A broadcast f is called efficient if every vertex hears exactly one broadcast, that is,

for every vertex v ∈ V , |H(v)| = 1. The minimum weight of an efficient broadcast is

denoted γeb(G). In [2], Dunbar et al. prove the following.
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Theorem 2. (Dunbar et al. [2]) Every graph G has an efficient γb-broadcast, that is, for
any graph G, γb(G) = γeb(G).

This theorem means that every connected graph G can achieve γb(G) with an ef-

ficient broadcast f . An efficient broadcast is equivalent to a k-efficient partition

π = {Ni1 [v1], . . . , Nit [vt]}, where (i) 1 ≤ k = max{f(v) : v ∈ V }, and (ii) for every

j ∈ [t], we have ij ∈ [k], that is, the value ij > 0 always holds.

Notice that in broadcast domination, one is interested in the minimum value of the

sum of the neighborhood distances, f(V ) = Σt
i=1ij , of a dominating broadcast, while

in determining the k-efficient domination number, one is only interested in the mini-

mum number of neighborhoods required, that is, the minimum t for which a k-efficient

partition of order t exists. Further, for k-efficient domination, the distance-i neighbor-

hoods of vertices for 0 ≤ i ≤ k are considered; while in broadcast domination, there is

no upper limit on the value assigned to a broadcast vertex, other than f(v) ≤ diam(G).

3. Bounds on εk(G)

Our first three observations follow directly from the definitions and previous com-

ments.

Observation 3. For any graph G of order n and integers j and k, 1 ≤ j ≤ k, εk(G) ≤
εj(G) ≤ ε0(G) = n.

Observation 4. For any graph G, εk(G) = 1 for all k ≥ rad(G).

Since the essential vertices of any k-efficient partition of G form a distance k-

dominating set, the k-efficient domination number of every graph is bounded below

by the distance k-domination number.

Observation 5. For every graph G and positive integer k, εk(G) ≥ γ≤k(G).

If we consider efficient distance k-dominating sets as a generalization of efficient dom-

inating sets, then it is trivial that graphs G having such sets satisfy εk(G) = γ≤k(G).

In particular, if G has an efficient dominating set, then ε1(G) = γ(G). However, the

converse is not true as can be seen by the connected graph G obtained from two cycles

C2k+2 having one vertex in common. Then εk(G) = γ≤k(G) = 3, but G does not

have an efficient distance k-dominating set.

Next we give a necessary condition for graphs G with εk(G) = γ≤k(G).

Proposition 2. For any graph G with εk(G) = γ≤k(G) for k ≥ 1, the set of essential
vertices from any εk-partition of G is independent.



114 k-Efficient partitions of graphs

Proof. Let G be a graph with εk(G) = γ≤k(G) = t, and let {Ni1 [v1], . . . , Nit [vt]} be

an εk-partition of V , where k ≥ 1 and ij ∈ {0, 1, . . . , k} for every j ∈ [t]. Suppose,

to the contrary, that S = {v1, v2, . . . , vt} is not independent, and let vp and vq two

adjacent vertices in S. Since Nip [vp] ∩Niq [vq] = ∅, we deduce that ip = iq = 0. But

since k ≥ 1, the set S − {vq} is a distance-k dominating set of G. Hence, γ≤k(G) ≤
|S − {vq}| = |S| − 1 < εk(G), contradicting the fact that εk(G) = γ≤k(G).

Let i(G) denote the minimum cardinality of an independent dominating set of G.

Corollary 2. If G is a graph with ε1(G) = γ(G), then γ(G) = i(G) = ε1(G).

Theorem 6. Let G be a graph of order n, k be a positive integer, and S ⊆ V be any
2k-packing set of a graph G. Then

εk(G) ≤ n− |Nk(S)|.

Proof. Let k ≥ 1 and let S = {v1, v2, . . . , vs} be a 2k-packing set of G (not neces-

sarily of maximum order), and let V −Nk[S] = {u1, u2, . . . , ut}. Then

{Nk[v1], . . . , Nk[vs], N0[u1], . . . , N0[ut]}

is a k-efficient partition of G. Therefore,

εk(G) ≤ s+ t

= |S|+ |V −Nk[S]|
= n− |Nk(S)|.

If we choose S = {v}, where v is a vertex of maximum k-degree, then we have the

following corollary.

Corollary 3. If G is a graph of order n and k is a positive integer, then

εk(G) ≤ n−∆k(G).

Moreover, if S is a maximum 2k-packing set in G, then |Nk(S)| ≥ δk|S|, and so

Theorem 6 leads to the following.

Corollary 4. If G is a graph of order n and δ(G) = δ, then

ε1(G) ≤ n− δρ2(G).
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Corollary 5. If G is a graph of order n and δ2(G) = δ2, then

ε2(G) ≤ n− δ2ρ4(G).

Before showing that the upper bound of Corollary 4 is reached for all regular

graphs, we shall show that this upper bound can also be strict and the difference

(n− δρ2(G))− ε1(G) may be arbitrarily large.

Proposition 3. For every positive integer p, there exists a graph Gp of order np such
that

(np − δρ2(Gp))− ε1(Gp) ≥ p.

Proof. Let Hi = K2,3 and denote by xi and yi the vertices of V (Hi) of degree three.

For a positive integer p, let Gp be a graph obtained from H1, H2, . . . ,Hp by adding

p− 1 edges between vertices of degree two so that Gp is connected. Clearly, np = 5p

and δ(Gp) = δ = 2. Since no two vertices in a maximum 2-packing can be in the

same subgraph Hi, it follows that ρ2(Gp) = p.

On the other hand, {N1[x1], . . . , N1[xp], N0[y1], . . . , N0[yp]} is a 1-efficient partition

of Gp, and so, ε1(Gp) ≤ 2p. Therefore, (np − δρ2(Gp))− ε1(Gp) ≥ p.

Theorem 7. If G is an r-regular graph of order n, then ε1(G) = n− rρ2(G).

Proof. Let G be an r-regular graph of order n. By Corollary 4, we have that

ε1(G) ≤ n− rρ2(G). Suppose, to the contrary, that ε1(G) < n− rρ2(G).

Let ε1(G) = p and {N1[v1], . . . , N1[vq], N0[vq+1], . . . , N0[vp]} be an ε1-partition of

V . Note that q ≥ 1, and since S1 = {v1, v2, . . . , vq} is a 2-packing set of G, we have

q ∈ [ρ2(G)]. Now using the fact that G is r-regular, we deduce that ε1(G) = n−r|S1|.
Thus, n− r|S1| = ε1(G) < n− rρ2(G) implies that |S1| > ρ2(G), which is impossible.

Hence, ε1(G) = n− rρ2(G).

We close this section by giving a Nordhaus-Gaddum bound for εk(G)+εk(G) in terms

of the order of the graph G.

Theorem 8. For every graph G of order n and positive integer k,

εk(G) + εk(G) ≤ n+ 1.

Proof. By Corollary 3, εk(G) ≤ n − ∆k(G). Let v be a vertex having k-degree

∆k(G) in G. Let {u1, u2, . . . , ut}
be the neighbors of v in G. Note that deg(v) = t ≤ degk(v) = ∆k(G) in G. Then in

G, the partition

{N1[v]], N0[u1], . . . , N0[ut]}

is a k-efficient partition of V (G). Hence, εk(G) + εk(G) ≤ n − ∆k(G) + 1 + t ≤
n−∆k(G) + 1 + ∆k(G) = n+ 1.
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4. Exact Values of ε1(G) for Some Graphs G

We begin with characterizations of graphs G with ε1(G) ∈ {1, 2}. The first result

applies to εk(G) all k ≥ 0.

Proposition 4. For every graph G of order n, εk(G) = 1 if and only if ∆k(G) = n− 1.

Proof. Let v be a vertex of degree ∆k(G) = n−1 in G. Then {Nk[v]} is a k-efficient

partition of V , so εk(G) = 1. Clearly, if εk(G) = 1, then ∆k(G) = n− 1.

Proposition 5. For every graph G, ε1(G) = 2 if and only if either

i) G has two components G1 and G2 such that ε1(G1) = ε1(G2) = 1, or

ii) G is connected such that either ∆(G) = n−2 or G has a minimum efficient dominating
set of cardinality 2.

Proof. Let G be a graph such that ε1(G) = 2, and let {Ni[x], Nj [y]} be an ε1(G)-

partition of V , where i, j ∈ {0, 1}. Clearly, G can have at most two components.

Now, if G is not connected, then G has exactly two components, G1 and G2, such

that ε1(G1) = ε1(G2) = 1. Hence, (i) holds. Thus, we may assume that G is

connected. It follows that max{i, j} 6= 0. Without loss of generality, we assume that

i = 1. Moreover, by Proposition 4, we have ∆(G) ≤ n − 2. Now if j = 0, then

V −N [x] = {y}, and so, ∆(G) = n−2 and (ii) holds. Therefore, we may assume that

j = 1. Thus, {x, y} is a minimum efficient dominating set of G, and so, (ii) holds.

The converse is straightfoward.

Next provide exact values of εk(G) for some particular graphs G.

Theorem 9. If G is a graph of order n and diameter 2, then ε1(G) = n−∆(G).

Proof. By Corollary 3, ε1(G) ≤ n−∆(G). Since diam(G) = 2, ∆(G) ≥ 2. Suppose

that ε1(G) < n − ∆(G), and let π = {Ni1 [v1], . . . , Nit [vt]} be an ε1-partition of V ,

where ij ∈ {0, 1} for all j ∈ [t]. Clearly, if ij = 0 for every j, then |π| = n, a

contradiction. Suppose now there are two indices p and q such that ip = iq = 1.

Then vertices vp and vq are at distance at least three from each other, contradicting

the fact that G has diameter two. Hence, there is exactly one index j such that ij = 1.

But then |π| = |V |−|N1(vj)| = n−deg(vj) < n−∆(G), implies that |N1(vj)| > ∆(G),

which is impossible. Therefore, ε1(G) = n−∆(G).

As an immediate consequence of Theorem 9, we have the following.

Corollary 6. If G is a complete bipartite graph Kp,q with p ≥ q ≥ 1, then ε1(G) = p.
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Next we give the 1-efficient domination number of cycles and paths. It is well-known

(see [4]) that if G is a path Pn or a cycle Cn, then γ(G) = dn/3e, ρ2(Pn) = dn/3e
and ρ2(Cn) = bn/3c. Hence, Theorem 7 leads to the following result.

Corollary 7. For every cycle Cn with n ≥ 3,

ε1(Cn) =


n/3 if n ≡ 0 (mod 3)
(n+ 2)/3 if n ≡ 1 (mod 3)
(n+ 4)/3 if n ≡ 2 (mod 3).

Proposition 6. For every path Pn on n vertices,

γ(Pn) = i(Pn) = ε1(Pn) = dn/3e .

Proof. Since the result holds for n ≤ 2, we may assume that n ≥ 3. By Ob-

servation 5, ε1(Pn) ≥ γ(Pn) = dn/3e. Let v1, v2, . . . , vn be the path Pn. Let

π = {N1[v3i+2] : 0 ≤ i ≤ bn−23 c}. If n ≡ 0, 2 mod 3, then π is a 1-efficient par-

tition of V (Pn). If n ≡ 1 mod 3, then π ∪ {N0[vn]} is a 1-efficient partition of V (Pn).

In any case, ε1(Pn) ≤ dn/3e, and the equality follows.

We next extend Proposition 6 to 2-by-n and 3-by-n grid graphs. An m-by-n grid graph

Gm,n is the Cartesian product Gm,n = Pm2Pn = (V (Pm)×V (Pn), Em,n), where two

vertices (vi, vj) and (vk, vl) are adjacent in Em,n if and only if either vi = vk and vj is

adjacent to vl in Pn or vi is adjacent to vk in Pm and vj = vl. For ease of discussion,

we will consider the m-by-n grid as a m-by-n array and denote by vi,j the vertex in

the ith row and jth column for i ∈ [m] and j ∈ [n].

1

1

1 1

1

1

1

Figure 1. Examples 2-by-n Grids, n odd

1

1

1

0

1

1

1

1

0

Figure 2. Examples 2-by-n Grids, n even

Theorem 10. For any 2-by-n grid graph G, ε1(G) = γ(G) = b(n+ 2)/2c.
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Proof. The value of the domination number of 2-by-n grid graphs in the statement

of the theorem was originally determined by Jacobson and Kinch in 1983 [5].

By Observation 5, ε1(G) ≥ γ(G) = b(n+ 2)/2c. To complete the proof, it suffices to

give a 1-efficient partition of order b(n+2)/2c. We build such a partition by selecting

the essential vertices as follows: beginning with vertex v1,1, select a vertex from each

odd labeled column by alternating rows. If n is odd, we are finished. If n is even,

then we add the vertex from the nth column that is in a different row from the vertex

selected from column n − 1. Thus, if n is odd, the set of selected essential vertices

is {v1,1, v2,3, v1,5, v2,7, . . . , vi,n−2, v3−i,n}, where i is the appropriate row label in the

sequence. If n is even, then the set is {v1,1, v2,3, v1,5, v2,7, . . . , vj,n−3, v3−j,n−1, vj,n},
where j is the appropriate row label in the sequence. For examples, see Figures 1

and 2, where the selected essential vertices are labeled either 0 or 1 depending on the

k-neighborhood, k ∈ {0, 1}, used in the 1-efficient partition.

Then if n is odd, {N1[v1,1], N1[v2,3], . . . , N1[vi,n]}, where i is the appropriate row

label, is a 1-efficient partition of V having cardinality b(n + 2)/2c. For even n,

{N1[v1,1], N1[v2,3], . . . , N1[vi,n−3], N1[v3−i,n−1], N0[vi,n]}, where i is the appropriate

row label, is a 1-efficient partition of V having cardinality b(n+ 2)/2c.

1

(a) n = 1

1

1

(b) n = 2

1

1

10

(c) n = 4

1

1

10

0

1

1

10

(d) n = 9

Figure 3. Base Patterns 3-by-n Grid

Theorem 11. For any 3-by-n grid graph G3,n, ε1(G3,n) = n, unless n = 3, in which
case ε1(G3,n) = 4.

Proof. We first show that for every n ≥ 1, ε1(G3,n) ≥ n. Assume that for some n,

ε1(G3,n) < n. This means that there exists at least one column, none of the three

vertices in which are essential vertices in any ε1-partition of G3,n. Hence, each of these
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three vertices must appear in a 1-neighborhood of an essential vertex in either the

preceding or succeeding column. This means that at least two of these three essential

vertices must appear in the same column, implying that the distance between these

two essential vertices is at most 2, contradicting the fact that the essential vertices in

any 1-efficient partition form a 2-packing. Hence, ε1(G3,n) ≥ n.

It is straightforward to check that ε1(G3,3) = 4. It remains to show that except for

n = 3, every 3-by-n grid graph has an 1-efficient partition of order n. Again we build

a 1-efficient partition by selecting essential vertices. For this selection, we assign the

label of i for some i ∈ {0, 1} to an essential vertex v to indicate that the Ni[v] is in

the 1-efficient partition.

For n = 1, assign the label of 1 to vertex v2,1. For n = 2, assign the label of 1 to each

of v3,1 and v1,2. For n = 4, assign 1 to each of v2,1, v3,3, and v1,4, and assign 0 to

v1,2. For n = 6, use the assignment of labels for n = 4 on the first four columns, and

assign 1 to v2,6 and 0 to v3,5. If n = 9, then use the assignment of labels for n = 6 for

the first six columns, and assign 1 to each of v3,8 and v1,9 and 0 to v1,7. See Figure 3

for illustration of these labelings.

To complete the set of essential vertices, we consider n modulo 3. We refer to the

labeling shown in Figure 4 of three consecutive columns, where the third vertex in

the first row and the second vertex in the third row are labeled 1 and the first vertex

in the second row is labeled 0, as pattern R. If n = 3j for j ≥ 4, then use the labeling

for n = 9 on the first nine columns and repeat the pattern R labeling j − 3 times

to label the remaining grid columns. If n = 3j + 1 for j ≥ 2, then use the labeling

for n = 4 on the first four columns and repeat the pattern R labeling j − 1 times to

label the remaining grid columns. If n = 3j + 2 for j ≥ 1, then use the labeling for

n = 2 on the first two columns and repeat the pattern R labeling j times to label the

remaining grid columns. This completes the proof.

It is interesting to compare ε1(G3,n) = n with the domination number γ(G3,n) =

b 3n+4
4 c, which was originally determined by Jacobson and Kinch in 1983 [5].

0

1

1

Figure 4. Pattern R

5. Complexity

Our aim in this section is to show that the decision problems associated with ε1(G)

and ε2(G) are NP-complete, even when restricted to bipartite graphs.
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r-EFFICIENCY PARTITION PROBLEM (r-EPP)

Instance: Graph G = (V,E), positive integer k ≤ |V |.
Question: Does G have an r-efficient partition of order at most k?

We will show that this problem is NP-complete by reducing the well-known NP-

complete problem, Exact-3-Cover (X3C), to r-EPP.

EXACT 3-COVER (X3C)

Instance: A finite set X with |X| = 3q and a collection C of 3-element subsets of X.

Question: Is there a subcollection C ′ of C such that every element of X appears in

exactly one element of C ′?

Theorem 12. 1-EPP is NP-Complete for bipartite graphs.

Proof. Clearly, 1-EPP is a member of NP, since we can check in polynomial time

that a partition of order at most k is 1-efficient. Now let us show how to transform

any instance of X3C into an instance G of 1-EPP so that one of them has a solution

if and only if the other one has a solution. Let X = {x1, x2, . . . , x3q} and C =

{C1, C2, . . . , Ct} be an arbitrary instance of X3C.

For each xi ∈ X, we create a cycle C4 : xiuiviwixi. For each Cj ∈ C, we create a

path P3 : ajbjcj . Now to obtain a graph G, we add edges cjxi if xi ∈ Cj . Clearly, G

is a bipartite graph. Set k = t+ 4q.

Suppose that the instance X,C of X3C has a solution C ′. We construct a 1-efficient

partition π of order k by putting in π the sets N1[v1], N1[v2],. . . , N1[v3q]. Moreover,

for each Cj ∈ C ′, we put in π the sets N1[cj ] and N0[aj ], and for each Cj /∈ C ′, we

put in π the set N1[bj ]. Note that since C ′ exists, its cardinality is precisely q, and

so the number of essential vertices cj ’s in π is q, having disjoint neighborhoods in

{x1, x2, . . . , x3q}. Hence, π is a 1-efficient partition of V of order 3q+2q+(t−q) = k.

Conversely, suppose that G has a 1-efficient partition π of order at most k. Clearly,

at least one vertex of each path ajbjcj is essential in π. Likewise, at least one vertex

from the set {ui, vi, wi} is essential in π; we can assume, without loss of generality,

that it is vertex vi. Using the fact that each cj has exactly three neighbors in X,

and since we can not consider more than q other essential vertices in π, the only way

to spread the vertices of X in π is to consider the 1-neighborhood of q vertices of

{c1, c2, . . . , ct}. Consequently, C ′ = {Cj : cj is essential in π} is an exact cover for

C.

Theorem 13. 2-EPP is NP-Complete for bipartite graphs.

Proof. Clearly, 2-EPP is a member of NP, since we can check in polynomial time

that a partition of order at most k is 2-efficient. Now let us show how to transform

any instance of X3C into an instance G of 2-EPP so that one of them has a solution
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if and only if the other one has a solution. Let X = {x1, x2, . . . , x3q} and C =

{C1, C2, . . . , Ct} be an arbitrary instance of X3C.

For each xi ∈ X, we build a connected graph Hi obtained from a 6-cycle

y1i y
2
i y

3
i y

4
i y

5
i y

6
i y

1
i by adding a vertex xi and the edge xiy

1
i . For each Cj ∈ C, we

create a path P4 : cjujvjwj . Now to obtain a graph G, we add edges cjxi if xi ∈ Cj .

Clearly, G is a bipartite graph. Set k = t+ 4q.

Suppose that the instance X,C of X3C has a solution C ′. We construct a 2-efficient

partition π of order k by putting in π the sets N2[y41 ], N2[y42 ],. . . , N2[y43q]. Moreover,

for each Cj ∈ C ′, we put in π the sets N2[cj ] and N0[wj ], and for each Cj /∈ C ′, we

put in π the set Np[vj ], where p ∈ {1, 2} depending on whether cj belongs or not to

N2[cd] for some Cd ∈ C ′, respectively. We note that since C ′ exists, its cardinality

is precisely q, and so the number of essential vertices cj ’s in π is q, having disjoint

neighborhoods in {x1, x2, . . . , x3q}. Moreover, it is easy to see that π is a 2-efficient

partition of V of order 3q + 2q + (t− q) = k.

Conversely, suppose that G has a 2-efficient partition π of order at most k. Clearly,

for each j at least one vertex of {uj , vj , wj} is essential in π. Likewise, for each i, at

least one vertex of {y1i , y2i , y3i , y4i , y5i , y6i } is essential in π. Using the fact that each cj
has exactly three neighbors in X, and since we can not consider more than q other

essential vertices in π, the only way to spread in π the remaining vertex of each C6 as

well as those of X is to consider the 2-neighborhood of q vertices of {c1, c2, . . . , ct}.
Consequently, C ′ = {Cj : cj is essential in π} is an exact cover for C.

6. Open Problems

We conclude by mentioning several open problems.

Problem 1. Design algorithms to compute the values of ε1(T ) and ε2(T ) for any tree T .

Problem 2. Characterize the graphs G (or at least trees) such that ε1(G) = γ(G).

Problem 3. Characterize the graphs G (or at least trees) such that ε1(G) = ε2(G).

Problem 4. Determine ε1(Gm,n) for every m-by-n grid graph Gm,n.
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