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Abstract: Let G be a connected graph of order n and minimum degree δ(G). The

edge-connectivity λ(G) of G is the minimum number of edges whose removal renders

G disconnected. It is well-known that λ(G) ≤ δ(G), and if λ(G) = δ(G), then G is said
to be maximally edge-connected. A classical result by Chartrand gives the sufficient

condition δ(G) ≥ n−1
2

for a graph to be maximally edge-connected. We give lower

bounds on the edge-connectivity of graphs not containing 4-cycles that imply that for

graphs not containing a 4-cycle Chartrand’s condition can be relaxed to δ(G) ≥
√
n
2

+1,

and if the graph also contains no 5-cycle, or if it has girth at least six, then this condition
can be relaxed further, by a factor of approximately

√
2. We construct graphs to show

that for an infinite number of values of n both sufficient conditions are best possible

apart from a small additive constant.
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1. Introduction

Let G be a finite graph. The minimum number of edges whose removal renders G

disconnected is called the edge-connectivity of G and denoted by λ(G). The degree of

a vertex v, deg(v), is the number of vertices v is adjacent to in G, and δ(G) denotes

the minimum degree of G, i.e., the smallest of all degrees of vertices of G.

It was first observed by Whitney [19] that λ(G) ≤ δ(G). If for a graphG this inequality

holds with equality, that is, if λ(G) = δ(G), then G is said to be maximally edge-

connected. The first sufficient condition for graphs to be maximally edge-connected

is a classical result due to Chartrand [4], who showed that if a graph G on n vertices

satisfies

δ(G) ≥ n− 1

2
, (1)
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then G is maximally edge-connected. Subsequently it has been shown that the degree

condition (1) can be relaxed in the sense that if some vertices have degree less than n−1
2

but others have sufficiently large degrees to make up for the small degree vertices,

then maximal edge-connectivity is still guaranteed. Lesniak [15] showed that if G

satisfies deg(u) + deg(v) ≥ n − 1 for every pair of non-adjacent vertices, then G is

maximally edge-connected. Bollobás [2], Dankelmann and Volkmann [8] and Hellwig

and Volkmann [13] pursued this idea further by giving degree sequence conditions for

maximally edge-connected graphs. There are also many degree sequence conditions

for maximally edge-connected digraphs, see, for example, [13] and [18]. Sufficient

conditions for maximally edge-connected graphs in terms of the inverse degree were

given in [6].

It has also be shown that (1) can be relaxed, sometimes considerably, if only graphs

from various graph classes are considered. This approach was taken by Volkmann

[17], who showed that (1) can be relaxed for p-partite graphs to

n(G) ≤ 2
⌊
δ
p− 1

p

⌋
− 1. (2)

In [7] it was shown that (2) guarantees maximal edge-connectivity not only for p-

partite graphs, but for all graphs not containing a complete subgraph on p+1 vertices.

Setting p = 2 in (2) yields the condition δ(G) ≥ n+1
4 , which was proved in [16]. A

generalisation of (2) for p = 2 to bipartite digraphs, in the vein of the above-mentioned

result by Lesniak, was given by Balbuena and Carmona [1]. Condition (2) was also

relaxed to degree sequence conditions for maximally edge-connected graphs without

complete subgraphs on p + 1 vertices, see [9]. Hellwig and Volkmann [14] give an

excellent survey of these and many other sufficient conditions for maximally edge-

connected graphs and digraphs.

In this paper we follow the latter approach and consider C4-free graphs, that is, graphs

not containing a 4-cycle. While lower bounds on the connectivity of C4-free graphs

were studied in [5], no lower bounds on the edge-connectivity of such graphs appear

to be known. We give a lower bound on the edge-connectivity of C4-free graphs in

terms of order and minimum degree which implies that in graphs with no 4-cycle the

condition δ(G) ≥ n−1
2 in (1) can be replaced by the much weaker condition δ(G) ≥√

bn2 c+1 to guarantee that G is maximally edge-connected. We show that for graphs

that are C4-free and C5-free, this condition can be improved to δ(G) ≥ 1
2

√
n− 1 + 3

2 ,

and for graphs that are C3-free, C4-free and C5-free, i.e., for graphs of girth at least

6, this in turn can be improved slightly to δ(G) ≥ 1
2

√
n− 7

4 + 3
4 . We construct graphs

that show that for an infinite number of values of n these conditions are best possible

apart from a small additive constant.

The notation we use is as follows. The vertex and edge set of a graph G are denoted

by V (G) and E(G), respectively. We use n(G) for the order of G, i.e., the number of

vertices of G. A subset S ⊆ E(G) is an edge-cut of G if G−S, the graph obtained by

deleting all edges of S from G, is disconnected. The edge-connectivity of G is defined

as the minimal cardinality of an edge-cut of G and denoted by λ(G). For each vertex
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v ∈ V (G), the open neighbourhood N(v) of v is the set of all vertices adjacent to v,

while N [v] = N(v) is the closed neighbourhood of v, and deg(v) = |N(v)| is the degree

of v. We denote by δ(G) the minimum degree of G, i.e., the smallest of the degrees of

vertices of G. The distance d(u, v) between two vertices of a graph G is the minimum

number of edges on a (u, v)-path. The second neighbourhood of v, denoted by N2[v],

is the set of vertices whose distance from v is not more than two. The girth of G is

the length of a shortest cycle. For n ∈ N with n ≥ 3 we denote the cycle on n vertices

by Cn. We say that a graph is Ck-free if it does not contain C4 as a subgraph.

2. Graphs containing no C4

In our proofs we make use of the following result by Hamidoune [12]. If S is an

edge-cut of G and G1 a component of G − S, then we say that a vertex of G1 is an

interior vertex of G1 if it is not incident with any edge of S.

Lemma 1. (Hamidoune [12]) Let G be a connected graph containing an edge-cut S with
|S| < δ(G). Then every component of G− S contains an interior vertex. 2

Theorem 1. Let G be a C4-free graph of order n and minimum degree δ. If G is not
maximally edge-connected, then

λ(G) ≥ δ2 − δ + 1 + εδ − b
n

2
c,

where εδ is 0 if δ is even, and 1 if δ is odd.

Proof. Let S ⊆ E(G) be a minimum edge-cut. Since G is not maximally edge-

connected, we have |S| < δ(G). Let G1 and G2 be the two components of G− S and

let U and W be their respective vertex sets. Without loss of generality we may assume

that |U | ≤ |W |, so |U | ≤ bn2 c. By Lemma 1, G1 has an interior vertex u ∈ U . Let

u1, u2, . . . , ud be its neighbours. Since G is C4-free, each ui has at most one neighbour

in N(u). If d is odd, then it follows by the handshake lemma that at most d − 1 of

the ui can have a neighbour in N(u), so there exists j ∈ {1, 2, . . . , d} such that uj has

no neighbour in N(u). Also, since G is C4-free, the sets N(ui)−N [u], i = 1, 2, . . . , d,

are pairwise disjoint. Hence, by d ≥ δ,

|N2[u]| ≥ 1 + d+ d(δ − 2) + εd ≥ δ2 − δ + 1 + εδ. (3)

Since |U | ≤ bn2 c it follows that

|N2[u] ∩W | ≥ |N2[u]| − |U | ≥ δ2 − δ + 1 + εδ −
⌊n

2

⌋
.
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Since u is an interior vertex of G1, the vertices of the set N2[u]∩W are all at distance

exactly two from u. Therefore, each vertex in N2[u] ∩W has a neighbour in N(u),

and thus in U , to which it is joined by an edge in S. It follows that

|S| ≥ |N2[u] ∩W | ≥ δ2 − δ + 1 + εδ −
⌊n

2

⌋
,

and by λ(G) = |S| the theorem follows.

Now δ2− δ+ 1 + εδ −bn2 c ≥ δ holds if and only if (δ− 1)2 + εδ ≥ bn2 c. Hence we have

the following corollaries.

Corollary 1. Let G be a C4-free graph of order n. If

(δ(G)− 1)2 + εδ ≥
⌊n

2

⌋
,

then G is maximally edge-connected.

Corollary 2. Let G be a C4-free graph of order n. If

δ(G) ≥
√
n− εn

2
+ 1,

then G is maximally edge-connected.

In Example 1 we construct graphs which show that Corollary 2 is sharp apart from a

small additive constant for infinitely many values of n. The construction makes use

of a C4-free graph, the graph Hq in Example 1 below, first constructed by Erdös and

Rényi [10] and independently Brown [3].

We need the following notation from linear algebra. If q is a prime power, then we

denote the field of order q by GF (q), and the vector space of all 3× 1 column vectors

with entries in GF (q) by GF (q)3. For x ∈ GF (q)3 we denote the transpose of x by

xt. If U ⊆ GF (q)3, then the subspace generated by U is denoted by 〈U〉. Two vectors

x, y ∈ GF (q)3 are orthogonal if xty = 0 over GF (q), where xt is the transpose of x,

and xty denotes the dot product of x and y. The orthogonal complement of U , i.e.,

the subspace of all vectors x ∈ GF (q)3 with xty = 0 for all y ∈ U , is denoted by

U⊥. We write x⊥ for {x}⊥ and 〈x〉 for 〈{x}〉. We make use of the fact from linear

algebra that the orthogonal complement of a k-dimensional subspace of GF (q)3 is a

(3− k)-dimensional subspace of GF (q)3.

Example 1. Let q be an odd prime power. Define the graph Hq as follows. The
vertices of Hq are the one-dimensional subspaces of the vector space GF (q)3. Since each
one-dimensional subspace of GF (q)3 contains q − 1 non-zero vectors and since any two

distinct one-dimensional subspaces share only the zero-vector, Hq has q3−1
q−1

= q2 + q + 1
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vertices. Two vertices 〈x〉 and 〈y〉 of Hq are adjacent if x and y, as vectors of GF (q)3, are

orthogonal. If 〈x〉 is a one-dimensional subspace of GF (q)3, then the orthogonal complement
〈x〉⊥ is a subspace of GF (q)3 of dimension two containing q2 − 1 non-zero vectors. Hence,

if x /∈ x⊥, i.e., if xtx 6= 0, then deg(x) = q2−1
q−1

= q + 1, and if x ∈ x⊥, i.e., if xtx = 0, then

deg(x) = (q2−1)−(q−1)
q−1

= q. One can show that GF (q)3 always contains a self-orthogonal
vector, hence δ(Hq) = q. Now let Gq be the graph obtained from two disjoint copies of Hq
by adding an edge joining two vertices of degree q + 1 in distinct copies of Hq. Clearly, Gq
is C4-free, n(Gq) = 2q2 + 2q + 2, δ(G)q) = q, and λ(G1) = 1. Moreover, with n = n(Gq),

δ(Gq) =

√
n

2
− 3

4
− 1

2
,

so δ(Gq) differs from the term
√
n/2 + 1 in Corollary 2 by less than 2. Hence Corollary 2 is

sharp apart from a small additive constant.

3. Graphs containing neither C4 nor C5

We now show that Theorem 1 can be strengthened if G contains neither 4-cycles nor

5-cycles.

Theorem 2. Let G be a graph of order n and minimum degree δ ≥ 3 that contains
neither C4 nor C5 as a subgraph. If G is not maximally edge-connected, then

λ(G) ≥ 2δ2 − 5δ + 5 + 2εδ −
⌊n

2

⌋
.

Proof. Let G1 G2, U , W , u, u1, . . . , ud and d be as in the proof of Theorem 1.

We first show that there exists i ∈ {1, 2, . . . , d} such that ui is an interior vertex of

G1. Suppose to the contrary that each of u1, u2, . . . , ud is incident with an edge in

S. Then |S| ≥ d ≥ δ, a contradiction. Hence u has a neighbour, without loss of

generality u1, that is also an interior vertex. We prove that

|N2[u] ∪N2[u1]| ≥ 2δ2 − 5δ + 5 + 2εδ. (4)

We consider two cases, depending on whether u and u1 have a common neighbour or

not.

Case 1: N(u) ∩N(u1) = ∅.
As in the proof of Theorem 1 we show that

|N2[u]| ≥ 1 + d+ d(δ − 2) + εd = 1 + d(δ − 1) + εd. (5)

Similarly, if d1 is the degree of u1, we show that |N2[u1]| ≥ 1 + d1(δ − 1) + εd1 . We

now bound |N2[u] ∪ N2[u1]| from below using inclusion-exclusion. Since G contains

no cycle of length five, there is no vertex in G that is at distance exactly two from
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both, u and u1. Hence the intersection N2[u] ∩ N2[u1] is contained in, and in fact

equal to, N [u] ∪N [v], and so |N2[u] ∩N2[u1]| = d+ d1. Therefore,

|N2[u] ∪N2[u1]| = |N2[u]|+ |N2[u1]| − |N2[u] ∩N2[u1]|
= |N2[u]|+ |N2[u1]| − |N [u] ∪N [u1]|
≥ 2 + (d+ d1)(δ − 1) + εd + εd1 − d− d1
= 2 + (d+ d1)(δ − 2) + εd + εd1

≥ 2(δ − 1)2 + 2εδ,

and (4) follows since 2(δ − 1)2 ≥ 2δ2 − 5δ + 5.

Case 2: N(u) ∩N(u1) 6= ∅.
Without loss of generality we may assume that u2 is a common neighbour of u and

u1. Since G contains no 4-cycle, u2 is the only common neighbour of u and u1, and

furthermore, u2 has no neighbour in (N(u) ∪ N(u1)) − ({u, u1}. Denote the degree

of u2 by d2. Since G contains no cycle of length five, every vertex of G that is at

distance exactly two from both, u and u1, is adjacent to u2, so there are exactly d2−2

such vertices. We now bound |N2[u]| from below. Vertices u1 and u2 have exactly

d1 − 2 and d2 − 2 neighbours, respectively, at distance exactly two from u. As in the

proof of Theorem 1, each of the vertices u3, u4, . . . , ud have at least δ − 2 neighbours

at distance exactly two from u, and if d is odd, then one of these d − 2 vertices has

at least δ − 1 neighbours at distance exactly two from u. Hence

|N2[u]| ≥ 1+d+(d1−2)+(d2−2)+(d−2)(δ−2)+εd−2 = d1+d2−1+(d−2)(δ−1)+εd,

and similarly,

|N2[u]| ≥ d+ d2 − 1 + (d1 − 2)(δ − 1) + εd1 .

We now bound |N2[u]∪N2[u1]| from below using inclusion-exclusion. Since G contains

no cycle of length five, the only vertices at distance exactly two from both, u and u1,

are the d2 − 2 vertices in N(u2) − {u, u1}. Since every vertex in N2[u] ∩ N2[u1] is

either a neighbour of u or u1, or has distance exactly two from both, u and u1, we

have |N2[u] ∩N2[u1]| = d+ d1 + d2 − 3. By inclusion-exclusion we have

|N2[u] ∪N2[u1]| = |N2[u]|+ |N2[u1]| − |N2[u] ∩N2[u1]|

≥
[
d1 + d2 − 1 + (d− 2)(δ − 1) + εd

]
+
[
d+ d2 − 1 + (d1 − 2)(δ − 1) + εd1

]
−

[
d+ d1 + d2 − 3

]
= (d+ d1 − 4)(δ − 1) + d2 + 1 + εd + εd1

≥ (2δ − 4)(δ − 1) + δ + 1 + 2εδ

= 2δ2 − 5δ + 5 + 2εδ,

which is (4).
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Since |U | ≤ bn2 c, we have

|(N2[u] ∪N2[u1]) ∩W | ≥ |N2[u] ∪N2[u1]| − |U | ≥ 2δ2 − 5δ + 5 + 2εδ −
⌊n

2

⌋
.

Since u and u1 are interior vertices of G1, the vertices of the set (N2[u]∪N2[u1])∩W
are all at distance exactly two from u or u1. Therefore, each vertex in (N2[u] ∪
N2[u1]) ∩W has a neighbour in N(u) ∪N(u1), and thus in U . It follows that

|S| ≥ |(N2[u] ∪N2[u1]) ∩W | ≥ 2δ2 − 5δ + 5 + 2εδ −
⌊n

2

⌋
,

as desired.

Now 2δ2− 5δ+ 5 + 2εδ −bn2 c ≥ δ holds if and only if δ2− 3δ+ 5
2 + εδ ≥ 1

2b
n
2 c. Hence

we have the following corollaries.

Corollary 3. Let G be a graph of order n and minimum degree δ that contains neither
C4 nor C5 as a subgraph. If

δ2 − 3δ +
5

2
+ εδ ≥

⌊n
2

⌋
,

then G is maximally edge-connected.

Corollary 4. Let G be a graph of order n and minimum degree δ that contains neither
C4 nor C5 as a subgraph. If

δ(G) ≥ 3

2
+

1

2

√
n− 1,

then G is maximally edge-connected.

The following example demonstrates that for an infinite number of values of n, Corol-

lary 4 is sharp apart from a small additive constant. The construction is based on

the well-known construction of a projective plane and its incidence graph (see, for

example [11]), the graph H ′q below.

Example 2. Let q be a prime power. Define the graph H ′q as follows. Let Aq (Bq) be
the set of all 1-dimensional (2-dimensional) subspaces of the vector space GF (q)3. Let H ′q
be the bipartite graph with partite sets Aq and Bq, where a ∈ Aq and b ∈ Bq are adjacent
if a is a subspace of b in GF (q)3. As in Example 1 we have |Aq| = |Bq| = q2 + q + 1, so
n(H ′q) = 2(q2 +q+1). and that H ′q is (q+1)-regular since every two-dimensional subspace of
GF (1)3 contains exactly q+1 one-dimensional subspaces,and every one-dimensional subspace
of GF (1)3 is contained in exactly q + 1 two-dimensional subspaces. H ′q does not contain a
4-cycle since any two vertices a1, a2 ∈ Aq have exactly one common neighbour b, where b is
the two-dimensional subspace 〈a1 ∪ a2〉 of GF (q)3.
Now let G′q be the graph obtained from two disjoint copies of H ′q by adding an edge joining
two vertices in distinct copies of H ′q. Since H ′q is bipartite and C4-free, G′q contains neither C4

nor C5 as a subgraph. We have n(G′q) = 4(q2+q+1), δ(G′q) = q+1, and λ(G′q) = 1 < δ(G′q).
Moreover,

δ(G′q) = q + 1 =

√
n(G′q)− 3

4
− 1

2
,

which differs from the value 3
2

+ 1
2

√
n− 1 by less than 5.
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4. Graphs of girth at least 6

We now show that Theorems 1 and 2 can be strengthened further if G contains neither

C3, nor C4, nor C5 as a subgraph, i.e., if G has girth at least 6.

Theorem 3. Let G be a C4-free graph of order n, minimum degree δ and girth at least
6. If G is not maximally edge-connected, then

λ(G) ≥ 2δ2 − 2δ + 2−
⌊n

2

⌋
.

Proof. Let G1 G2, U , W , u, u1, . . . , ud and d be as in the proof of Theorem 1. As

in the proof of Theorem 2 we may assume that u1 is an interior vertex of G1.

We now bound |N2[u] ∪N2[u1]| from below. Since G is C3-free, the neighbours of u

form an independent set, so each ui has at least δ− 1 neighbours that are at distance

two from u. Since G is C4-free the sets N(ui) − {u} are disjoint for i = 1, 2, . . . , d.

Hence

|N2[u]| ≥ 1 + d+ d(δ − 1) = dδ + 1. (6)

Similarly, if d1 is the degree of u1, we show that |N2[u1]| ≥ d1δ+ 1. Since G contains

no cycle of length five, there is no vertex in G that is at distance exactly two from

both, u and u1. Hence the intersection N2[u] ∩ N2[u1] is contained in, and in fact

equal to, N [u] ∪N [v]. Hence, by inclusion-exclusion,

|N2[u] ∪N2[u1]| = |N2[u]|+ |N2[u1]| − |N2[u] ∩N2[u1]|
= |N2[u]|+ |N2[u1]| − |N [u] ∪N [u1]|
≥ (dδ + 1) + (d1δ + 1)− d− d1
= (d+ d1)(δ − 1) + 2

≥ 2δ(δ − 1) + 2.

Since |U | ≤ bn2 c, we have

|(N2[u] ∪N2[u1]) ∩W | ≥ |N2[u] ∪N2[u1]| − |U | ≥ 2δ2 − 2δ + 2−
⌊n

2

⌋
.

Since u and u1 are interior vertices of G1, the vertices of the set (N2[u]∪N2[u1])∩W
are all at distance exactly two from u or u1. Therefore, each vertex in (N2[u] ∪
N2[u1]) ∩W has a neighbour in N(u) ∪N(u1), and thus in U . It follows that

|S| ≥ |(N2[u] ∪N2[u1]) ∩W | ≥ 2δ2 − 2δ + 2−
⌊n

2

⌋
,

as desired.
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Now 2δ2 − 2δ + 2− bn2 c ≥ δ holds if and only if 2δ2 − 3δ + 2 ≥ bn2 c. Hence we have

the following corollaries.

Corollary 5. Let G be a graph of order n, minimum degree δ and girth at least six. If

2δ2 − 3δ + 2 ≥ bn
2
c,

then G is maximally edge-connected.

Corollary 6. Let G be a graph of order n, minimum degree δ and girth at least six. If

δ(G) ≥ 1

2

√
n− εn −

7

4
+

3

4
,

then G is maximally edge-connected.

Again, Example 2 shows that Corollary 6 is sharp apart from a small additive constant

for an infinite number of values of n and δ.
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