

On the edge-connectivity of C_4 -free graphs

Peter Dankelmann

Department of Pure and Applied Mathematics, University of Johannesburg pdankelmann@uj.ac.za

Received: 1 August 2018; Accepted: 13 March 2019 Published Online 15 March 2019:

Dedicated to Lutz Volkmann on the occasion of his 75th birthday.

Abstract: Let G be a connected graph of order n and minimum degree $\delta(G)$. The edge-connectivity $\lambda(G)$ of G is the minimum number of edges whose removal renders G disconnected. It is well-known that $\lambda(G) \leq \delta(G)$, and if $\lambda(G) = \delta(G)$, then G is said to be maximally edge-connected. A classical result by Chartrand gives the sufficient condition $\delta(G) \geq \frac{n-1}{2}$ for a graph to be maximally edge-connected. We give lower bounds on the edge-connectivity of graphs not containing 4-cycles that imply that for graphs not containing a 4-cycle Chartrand's condition can be relaxed to $\delta(G) \geq \sqrt{\frac{n}{2}} + 1$, and if the graph also contains no 5-cycle, or if it has girth at least six, then this condition can be relaxed further, by a factor of approximately $\sqrt{2}$. We construct graphs to show that for an infinite number of values of n both sufficient conditions are best possible apart from a small additive constant.

Keywords: edge-connectivity, maximally edge-connected

AMS Subject classification: 05C40

1. Introduction

Let G be a finite graph. The minimum number of edges whose removal renders G disconnected is called the *edge-connectivity* of G and denoted by $\lambda(G)$. The *degree* of a vertex v, deg(v), is the number of vertices v is adjacent to in G, and $\delta(G)$ denotes the *minimum degree* of G, i.e., the smallest of all degrees of vertices of G.

It was first observed by Whitney [19] that $\lambda(G) \leq \delta(G)$. If for a graph G this inequality holds with equality, that is, if $\lambda(G) = \delta(G)$, then G is said to be maximally edgeconnected. The first sufficient condition for graphs to be maximally edge-connected is a classical result due to Chartrand [4], who showed that if a graph G on n vertices satisfies

$$\delta(G) \ge \frac{n-1}{2},\tag{1}$$

© 2019 Azarbaijan Shahid Madani University

then G is maximally edge-connected. Subsequently it has been shown that the degree condition (1) can be relaxed in the sense that if some vertices have degree less than $\frac{n-1}{2}$ but others have sufficiently large degrees to make up for the small degree vertices, then maximal edge-connectivity is still guaranteed. Lesniak [15] showed that if G satisfies deg(u) + deg(v) $\geq n - 1$ for every pair of non-adjacent vertices, then G is maximally edge-connected. Bollobás [2], Dankelmann and Volkmann [8] and Hellwig and Volkmann [13] pursued this idea further by giving degree sequence conditions for maximally edge-connected graphs. There are also many degree sequence conditions for maximally edge-connected digraphs, see, for example, [13] and [18]. Sufficient conditions for maximally edge-connected graphs in terms of the inverse degree were given in [6].

It has also be shown that (1) can be relaxed, sometimes considerably, if only graphs from various graph classes are considered. This approach was taken by Volkmann [17], who showed that (1) can be relaxed for *p*-partite graphs to

$$n(G) \le 2\left\lfloor \delta \frac{p-1}{p} \right\rfloor - 1.$$
⁽²⁾

In [7] it was shown that (2) guarantees maximal edge-connectivity not only for p-partite graphs, but for all graphs not containing a complete subgraph on p+1 vertices. Setting p = 2 in (2) yields the condition $\delta(G) \geq \frac{n+1}{4}$, which was proved in [16]. A generalisation of (2) for p = 2 to bipartite digraphs, in the vein of the above-mentioned result by Lesniak, was given by Balbuena and Carmona [1]. Condition (2) was also relaxed to degree sequence conditions for maximally edge-connected graphs without complete subgraphs on p + 1 vertices, see [9]. Hellwig and Volkmann [14] give an excellent survey of these and many other sufficient conditions for maximally edge-connected graphs and digraphs.

In this paper we follow the latter approach and consider C_4 -free graphs, that is, graphs not containing a 4-cycle. While lower bounds on the connectivity of C_4 -free graphs were studied in [5], no lower bounds on the edge-connectivity of such graphs appear to be known. We give a lower bound on the edge-connectivity of C_4 -free graphs in terms of order and minimum degree which implies that in graphs with no 4-cycle the condition $\delta(G) \geq \frac{n-1}{2}$ in (1) can be replaced by the much weaker condition $\delta(G) \geq \sqrt{\lfloor \frac{n}{2} \rfloor} + 1$ to guarantee that G is maximally edge-connected. We show that for graphs that are C_4 -free and C_5 -free, this condition can be improved to $\delta(G) \geq \frac{1}{2}\sqrt{n-1} + \frac{3}{2}$, and for graphs that are C_3 -free, C_4 -free and C_5 -free, i.e., for graphs of girth at least 6, this in turn can be improved slightly to $\delta(G) \geq \frac{1}{2}\sqrt{n-\frac{7}{4}} + \frac{3}{4}$. We construct graphs that show that for an infinite number of values of n these conditions are best possible apart from a small additive constant.

The notation we use is as follows. The vertex and edge set of a graph G are denoted by V(G) and E(G), respectively. We use n(G) for the order of G, i.e., the number of vertices of G. A subset $S \subseteq E(G)$ is an *edge-cut* of G if G - S, the graph obtained by deleting all edges of S from G, is disconnected. The *edge-connectivity* of G is defined as the minimal cardinality of an edge-cut of G and denoted by $\lambda(G)$. For each vertex $v \in V(G)$, the open neighbourhood N(v) of v is the set of all vertices adjacent to v, while N[v] = N(v) is the closed neighbourhood of v, and $\deg(v) = |N(v)|$ is the degree of v. We denote by $\delta(G)$ the minimum degree of G, i.e., the smallest of the degrees of vertices of G. The distance d(u, v) between two vertices of a graph G is the minimum number of edges on a (u, v)-path. The second neighbourhood of v, denoted by $N^2[v]$, is the set of vertices whose distance from v is not more than two. The girth of G is the length of a shortest cycle. For $n \in \mathbb{N}$ with $n \geq 3$ we denote the cycle on n vertices by C_n . We say that a graph is C_k -free if it does not contain C_4 as a subgraph.

2. Graphs containing no C_4

In our proofs we make use of the following result by Hamidoune [12]. If S is an edge-cut of G and G_1 a component of G - S, then we say that a vertex of G_1 is an *interior vertex* of G_1 if it is not incident with any edge of S.

Lemma 1. (Hamidoune [12]) Let G be a connected graph containing an edge-cut S with $|S| < \delta(G)$. Then every component of G - S contains an interior vertex.

Theorem 1. Let G be a C₄-free graph of order n and minimum degree δ . If G is not maximally edge-connected, then

$$\lambda(G) \ge \delta^2 - \delta + 1 + \epsilon_{\delta} - \lfloor \frac{n}{2} \rfloor,$$

where ϵ_{δ} is 0 if δ is even, and 1 if δ is odd.

Proof. Let $S \subseteq E(G)$ be a minimum edge-cut. Since G is not maximally edgeconnected, we have $|S| < \delta(G)$. Let G_1 and G_2 be the two components of G - S and let U and W be their respective vertex sets. Without loss of generality we may assume that $|U| \leq |W|$, so $|U| \leq \lfloor \frac{n}{2} \rfloor$. By Lemma 1, G_1 has an interior vertex $u \in U$. Let u_1, u_2, \ldots, u_d be its neighbours. Since G is C_4 -free, each u_i has at most one neighbour in N(u). If d is odd, then it follows by the handshake lemma that at most d - 1 of the u_i can have a neighbour in N(u), so there exists $j \in \{1, 2, \ldots, d\}$ such that u_j has no neighbour in N(u). Also, since G is C_4 -free, the sets $N(u_i) - N[u], i = 1, 2, \ldots, d$, are pairwise disjoint. Hence, by $d \geq \delta$,

$$|N^{2}[u]| \ge 1 + d + d(\delta - 2) + \epsilon_{d} \ge \delta^{2} - \delta + 1 + \epsilon_{\delta}.$$
(3)

Since $|U| \leq \lfloor \frac{n}{2} \rfloor$ it follows that

$$|N^{2}[u] \cap W| \ge |N^{2}[u]| - |U| \ge \delta^{2} - \delta + 1 + \epsilon_{\delta} - \left\lfloor \frac{n}{2} \right\rfloor.$$

Since u is an interior vertex of G_1 , the vertices of the set $N^2[u] \cap W$ are all at distance exactly two from u. Therefore, each vertex in $N^2[u] \cap W$ has a neighbour in N(u), and thus in U, to which it is joined by an edge in S. It follows that

$$|S| \ge |N^{2}[u] \cap W| \ge \delta^{2} - \delta + 1 + \epsilon_{\delta} - \left\lfloor \frac{n}{2} \right\rfloor,$$

and by $\lambda(G) = |S|$ the theorem follows.

Now $\delta^2 - \delta + 1 + \epsilon_{\delta} - \lfloor \frac{n}{2} \rfloor \ge \delta$ holds if and only if $(\delta - 1)^2 + \epsilon_{\delta} \ge \lfloor \frac{n}{2} \rfloor$. Hence we have the following corollaries.

Corollary 1. Let G be a C_4 -free graph of order n. If

$$\left(\delta(G)-1\right)^2+\epsilon_\delta \ge \left\lfloor\frac{n}{2}\right\rfloor,$$

then G is maximally edge-connected.

Corollary 2. Let G be a C_4 -free graph of order n. If

$$\delta(G) \ge \sqrt{\frac{n-\epsilon_n}{2}} + 1,$$

then G is maximally edge-connected.

In Example 1 we construct graphs which show that Corollary 2 is sharp apart from a small additive constant for infinitely many values of n. The construction makes use of a C_4 -free graph, the graph H_q in Example 1 below, first constructed by Erdös and Rényi [10] and independently Brown [3].

We need the following notation from linear algebra. If q is a prime power, then we denote the field of order q by GF(q), and the vector space of all 3×1 column vectors with entries in GF(q) by $GF(q)^3$. For $\underline{x} \in GF(q)^3$ we denote the transpose of \underline{x} by \underline{x}^t . If $U \subseteq GF(q)^3$, then the subspace generated by U is denoted by $\langle U \rangle$. Two vectors $\underline{x}, \underline{y} \in GF(q)^3$ are orthogonal if $\underline{x}^t \underline{y} = 0$ over GF(q), where \underline{x}^t is the transpose of \underline{x} , and $\underline{x}^t \underline{y}$ denotes the dot product of \underline{x} and \underline{y} . The orthogonal complement of U, i.e., the subspace of all vectors $\underline{x} \in GF(q)^3$ with $\underline{x}^t \underline{y} = 0$ for all $\underline{y} \in U$, is denoted by U^{\perp} . We write \underline{x}^{\perp} for $\{\underline{x}\}^{\perp}$ and $\langle \underline{x} \rangle$ for $\langle \{\underline{x}\} \rangle$. We make use of the fact from linear algebra that the orthogonal complement of a k-dimensional subspace of $GF(q)^3$ is a (3-k)-dimensional subspace of $GF(q)^3$.

Example 1. Let q be an odd prime power. Define the graph H_q as follows. The vertices of H_q are the one-dimensional subspaces of the vector space $GF(q)^3$. Since each one-dimensional subspace of $GF(q)^3$ contains q-1 non-zero vectors and since any two distinct one-dimensional subspaces share only the zero-vector, H_q has $\frac{q^3-1}{q-1} = q^2 + q + 1$

vertices. Two vertices $\langle \underline{x} \rangle$ and $\langle \underline{y} \rangle$ of H_q are adjacent if \underline{x} and \underline{y} , as vectors of $GF(q)^3$, are orthogonal. If $\langle \underline{x} \rangle$ is a one-dimensional subspace of $GF(q)^3$, then the orthogonal complement $\langle \underline{x} \rangle^{\perp}$ is a subspace of $GF(q)^3$ of dimension two containing $q^2 - 1$ non-zero vectors. Hence, if $\underline{x} \notin \underline{x}^{\perp}$, i.e., if $\underline{x}^t \underline{x} \neq 0$, then $\deg(\underline{x}) = \frac{q^2 - 1}{q - 1} = q + 1$, and if $\underline{x} \in \underline{x}^{\perp}$, i.e., if $\underline{x}^t \underline{x} = 0$, then $\deg(\underline{x}) = \frac{(q^2 - 1) - (q - 1)}{q - 1} = q$. One can show that $GF(q)^3$ always contains a self-orthogonal vector, hence $\delta(H_q) = q$. Now let G_q be the graph obtained from two disjoint copies of H_q by adding an edge joining two vertices of degree q + 1 in distinct copies of H_q . Clearly, G_q is C_4 -free, $n(G_q) = 2q^2 + 2q + 2$, $\delta(G)_q) = q$, and $\lambda(G_1) = 1$. Moreover, with $n = n(G_q)$,

$$\delta(G_q) = \sqrt{\frac{n}{2} - \frac{3}{4}} - \frac{1}{2},$$

so $\delta(G_q)$ differs from the term $\sqrt{n/2} + 1$ in Corollary 2 by less than 2. Hence Corollary 2 is sharp apart from a small additive constant.

3. Graphs containing neither C_4 nor C_5

We now show that Theorem 1 can be strengthened if G contains neither 4-cycles nor 5-cycles.

Theorem 2. Let G be a graph of order n and minimum degree $\delta \geq 3$ that contains neither C_4 nor C_5 as a subgraph. If G is not maximally edge-connected, then

$$\lambda(G) \ge 2\delta^2 - 5\delta + 5 + 2\epsilon_{\delta} - \left\lfloor \frac{n}{2} \right\rfloor$$

Proof. Let G_1 G_2 , U, W, u, u_1, \ldots, u_d and d be as in the proof of Theorem 1. We first show that there exists $i \in \{1, 2, \ldots, d\}$ such that u_i is an interior vertex of G_1 . Suppose to the contrary that each of u_1, u_2, \ldots, u_d is incident with an edge in S. Then $|S| \ge d \ge \delta$, a contradiction. Hence u has a neighbour, without loss of generality u_1 , that is also an interior vertex. We prove that

$$|N^{2}[u] \cup N^{2}[u_{1}]| \ge 2\delta^{2} - 5\delta + 5 + 2\epsilon_{\delta}.$$
(4)

We consider two cases, depending on whether u and u_1 have a common neighbour or not.

CASE 1: $N(u) \cap N(u_1) = \emptyset$. As in the proof of Theorem 1 we show that

$$|N^{2}[u]| \ge 1 + d + d(\delta - 2) + \epsilon_{d} = 1 + d(\delta - 1) + \epsilon_{d}.$$
(5)

Similarly, if d_1 is the degree of u_1 , we show that $|N^2[u_1]| \ge 1 + d_1(\delta - 1) + \epsilon_{d_1}$. We now bound $|N^2[u] \cup N^2[u_1]|$ from below using inclusion-exclusion. Since G contains no cycle of length five, there is no vertex in G that is at distance exactly two from both, u and u_1 . Hence the intersection $N^2[u] \cap N^2[u_1]$ is contained in, and in fact equal to, $N[u] \cup N[v]$, and so $|N^2[u] \cap N^2[u_1]| = d + d_1$. Therefore,

$$\begin{split} |N^{2}[u] \cup N^{2}[u_{1}]| &= |N^{2}[u]| + |N^{2}[u_{1}]| - |N^{2}[u] \cap N^{2}[u_{1}]| \\ &= |N^{2}[u]| + |N^{2}[u_{1}]| - |N[u] \cup N[u_{1}]| \\ &\geq 2 + (d + d_{1})(\delta - 1) + \epsilon_{d} + \epsilon_{d_{1}} - d - d_{1} \\ &= 2 + (d + d_{1})(\delta - 2) + \epsilon_{d} + \epsilon_{d_{1}} \\ &\geq 2(\delta - 1)^{2} + 2\epsilon_{\delta}, \end{split}$$

and (4) follows since $2(\delta - 1)^2 \ge 2\delta^2 - 5\delta + 5$. CASE 2: $N(u) \cap N(u_1) \neq \emptyset$.

Without loss of generality we may assume that u_2 is a common neighbour of u and u_1 . Since G contains no 4-cycle, u_2 is the only common neighbour of u and u_1 , and furthermore, u_2 has no neighbour in $(N(u) \cup N(u_1)) - (\{u, u_1\})$. Denote the degree of u_2 by d_2 . Since G contains no cycle of length five, every vertex of G that is at distance exactly two from both, u and u_1 , is adjacent to u_2 , so there are exactly $d_2 - 2$ such vertices. We now bound $|N^2[u]|$ from below. Vertices u_1 and u_2 have exactly $d_1 - 2$ and $d_2 - 2$ neighbours, respectively, at distance exactly two from u. As in the proof of Theorem 1, each of the vertices u_3, u_4, \ldots, u_d have at least $\delta - 2$ neighbours at distance exactly two from u, and if d is odd, then one of these d - 2 vertices has at least $\delta - 1$ neighbours at distance exactly two from u.

$$|N^{2}[u]| \ge 1 + d + (d_{1} - 2) + (d_{2} - 2) + (d - 2)(\delta - 2) + \epsilon_{d-2} = d_{1} + d_{2} - 1 + (d - 2)(\delta - 1) + \epsilon_{d},$$

and similarly,

$$N^{2}[u] \ge d + d_{2} - 1 + (d_{1} - 2)(\delta - 1) + \epsilon_{d_{1}}$$

We now bound $|N^2[u] \cup N^2[u_1]|$ from below using inclusion-exclusion. Since G contains no cycle of length five, the only vertices at distance exactly two from both, u and u_1 , are the $d_2 - 2$ vertices in $N(u_2) - \{u, u_1\}$. Since every vertex in $N^2[u] \cap N^2[u_1]$ is either a neighbour of u or u_1 , or has distance exactly two from both, u and u_1 , we have $|N^2[u] \cap N^2[u_1]| = d + d_1 + d_2 - 3$. By inclusion-exclusion we have

$$\begin{split} |N^{2}[u] \cup N^{2}[u_{1}]| &= |N^{2}[u]| + |N^{2}[u_{1}]| - |N^{2}[u] \cap N^{2}[u_{1}]| \\ &\geq \left[d_{1} + d_{2} - 1 + (d - 2)(\delta - 1) + \epsilon_{d}\right] \\ &+ \left[d + d_{2} - 1 + (d_{1} - 2)(\delta - 1) + \epsilon_{d_{1}}\right] - \left[d + d_{1} + d_{2} - 3\right] \\ &= (d + d_{1} - 4)(\delta - 1) + d_{2} + 1 + \epsilon_{d} + \epsilon_{d_{1}} \\ &\geq (2\delta - 4)(\delta - 1) + \delta + 1 + 2\epsilon_{\delta} \\ &= 2\delta^{2} - 5\delta + 5 + 2\epsilon_{\delta}, \end{split}$$

which is (4).

Since $|U| \leq \lfloor \frac{n}{2} \rfloor$, we have

$$|(N^{2}[u] \cup N^{2}[u_{1}]) \cap W| \ge |N^{2}[u] \cup N^{2}[u_{1}]| - |U| \ge 2\delta^{2} - 5\delta + 5 + 2\epsilon_{\delta} - \left\lfloor \frac{n}{2} \right\rfloor.$$

Since u and u_1 are interior vertices of G_1 , the vertices of the set $(N^2[u] \cup N^2[u_1]) \cap W$ are all at distance exactly two from u or u_1 . Therefore, each vertex in $(N^2[u] \cup N^2[u_1]) \cap W$ has a neighbour in $N(u) \cup N(u_1)$, and thus in U. It follows that

$$|S| \ge |(N^2[u] \cup N^2[u_1]) \cap W| \ge 2\delta^2 - 5\delta + 5 + 2\epsilon_\delta - \left\lfloor \frac{n}{2} \right\rfloor,$$

as desired.

Now $2\delta^2 - 5\delta + 5 + 2\epsilon_{\delta} - \lfloor \frac{n}{2} \rfloor \ge \delta$ holds if and only if $\delta^2 - 3\delta + \frac{5}{2} + \epsilon_{\delta} \ge \frac{1}{2} \lfloor \frac{n}{2} \rfloor$. Hence we have the following corollaries.

Corollary 3. Let G be a graph of order n and minimum degree δ that contains neither C_4 nor C_5 as a subgraph. If

$$\delta^2 - 3\delta + \frac{5}{2} + \epsilon_\delta \ge \left\lfloor \frac{n}{2} \right\rfloor,$$

then G is maximally edge-connected.

Corollary 4. Let G be a graph of order n and minimum degree δ that contains neither C_4 nor C_5 as a subgraph. If

$$\delta(G) \ge \frac{3}{2} + \frac{1}{2}\sqrt{n-1},$$

then G is maximally edge-connected.

The following example demonstrates that for an infinite number of values of n, Corollary 4 is sharp apart from a small additive constant. The construction is based on the well-known construction of a projective plane and its incidence graph (see, for example [11]), the graph H'_{a} below.

Example 2. Let q be a prime power. Define the graph H'_q as follows. Let A_q (B_q) be the set of all 1-dimensional (2-dimensional) subspaces of the vector space $GF(q)^3$. Let H'_q be the bipartite graph with partite sets A_q and B_q , where $a \in A_q$ and $b \in B_q$ are adjacent if a is a subspace of b in $GF(q)^3$. As in Example 1 we have $|A_q| = |B_q| = q^2 + q + 1$, so $n(H'_q) = 2(q^2 + q + 1)$. and that H'_q is (q+1)-regular since every two-dimensional subspace of $GF(1)^3$ contains exactly q+1 one-dimensional subspaces, and every one-dimensional subspace of $GF(1)^3$ is contained in exactly q+1 two-dimensional subspaces. H'_q does not contain a 4-cycle since any two vertices $a_1, a_2 \in A_q$ have exactly one common neighbour b, where b is the two-dimensional subspace $\langle a_1 \cup a_2 \rangle$ of $GF(q)^3$.

Now let G'_q be the graph obtained from two disjoint copies of H'_q by adding an edge joining two vertices in distinct copies of H'_q . Since H'_q is bipartite and C_4 -free, G'_q contains neither C_4 nor C_5 as a subgraph. We have $n(G'_q) = 4(q^2+q+1)$, $\delta(G'_q) = q+1$, and $\lambda(G'_q) = 1 < \delta(G'_q)$. Moreover,

$$\delta(G'_q) = q + 1 = \sqrt{\frac{n(G'_q) - 3}{4}} - \frac{1}{2}$$

which differs from the value $\frac{3}{2} + \frac{1}{2}\sqrt{n-1}$ by less than 5.

4. Graphs of girth at least 6

We now show that Theorems 1 and 2 can be strengthened further if G contains neither C_3 , nor C_4 , nor C_5 as a subgraph, i.e., if G has girth at least 6.

Theorem 3. Let G be a C_4 -free graph of order n, minimum degree δ and girth at least 6. If G is not maximally edge-connected, then

$$\lambda(G) \ge 2\delta^2 - 2\delta + 2 - \left\lfloor \frac{n}{2} \right\rfloor.$$

Proof. Let $G_1 G_2, U, W, u, u_1, \ldots, u_d$ and d be as in the proof of Theorem 1. As in the proof of Theorem 2 we may assume that u_1 is an interior vertex of G_1 . We now bound $|N^2[u] \cup N^2[u_1]|$ from below. Since G is C_3 -free, the neighbours of uform an independent set, so each u_i has at least $\delta - 1$ neighbours that are at distance two from u. Since G is C_4 -free the sets $N(u_i) - \{u\}$ are disjoint for $i = 1, 2, \ldots, d$. Hence

$$|N^{2}[u]| \ge 1 + d + d(\delta - 1) = d\delta + 1.$$
(6)

Similarly, if d_1 is the degree of u_1 , we show that $|N^2[u_1]| \ge d_1\delta + 1$. Since G contains no cycle of length five, there is no vertex in G that is at distance exactly two from both, u and u_1 . Hence the intersection $N^2[u] \cap N^2[u_1]$ is contained in, and in fact equal to, $N[u] \cup N[v]$. Hence, by inclusion-exclusion,

$$\begin{split} |N^{2}[u] \cup N^{2}[u_{1}]| &= |N^{2}[u]| + |N^{2}[u_{1}]| - |N^{2}[u] \cap N^{2}[u_{1}]| \\ &= |N^{2}[u]| + |N^{2}[u_{1}]| - |N[u] \cup N[u_{1}]| \\ &\geq (d\delta + 1) + (d_{1}\delta + 1) - d - d_{1} \\ &= (d + d_{1})(\delta - 1) + 2 \\ &\geq 2\delta(\delta - 1) + 2. \end{split}$$

Since $|U| \leq \lfloor \frac{n}{2} \rfloor$, we have

$$|(N^{2}[u] \cup N^{2}[u_{1}]) \cap W| \ge |N^{2}[u] \cup N^{2}[u_{1}]| - |U| \ge 2\delta^{2} - 2\delta + 2 - \left\lfloor \frac{n}{2} \right\rfloor$$

Since u and u_1 are interior vertices of G_1 , the vertices of the set $(N^2[u] \cup N^2[u_1]) \cap W$ are all at distance exactly two from u or u_1 . Therefore, each vertex in $(N^2[u] \cup N^2[u_1]) \cap W$ has a neighbour in $N(u) \cup N(u_1)$, and thus in U. It follows that

$$|S| \ge |(N^2[u] \cup N^2[u_1]) \cap W| \ge 2\delta^2 - 2\delta + 2 - \left\lfloor \frac{n}{2} \right\rfloor,$$

as desired.

Now $2\delta^2 - 2\delta + 2 - \lfloor \frac{n}{2} \rfloor \ge \delta$ holds if and only if $2\delta^2 - 3\delta + 2 \ge \lfloor \frac{n}{2} \rfloor$. Hence we have the following corollaries.

Corollary 5. Let G be a graph of order n, minimum degree δ and girth at least six. If

$$2\delta^2 - 3\delta + 2 \ge \lfloor \frac{n}{2} \rfloor,$$

then G is maximally edge-connected.

Corollary 6. Let G be a graph of order n, minimum degree δ and girth at least six. If

$$\delta(G) \ge \frac{1}{2}\sqrt{n-\epsilon_n - \frac{7}{4}} + \frac{3}{4},$$

then G is maximally edge-connected.

Again, Example 2 shows that Corollary 6 is sharp apart from a small additive constant for an infinite number of values of n and δ .

References

- C. Balbuena and A. Carmona, On the connectivity and superconnectivity of bipartite digraphs and graphs, Ars Combin. 61 (2001), 3–22.
- B. Bollobás, On graphs with equal edge connectivity and minimum degree, Discrete Math. 28 (1979), no. 3, 321–323.
- [3] W.G. Brown, On graphs that do not contain a thomsen graph, Canad. Math. Bulletin 9 (1966), no. 3, 281–285.
- [4] G. Chartrand, A graph-theoretic approach to a communications problem, SIAM J. Appl. Math. 14 (1966), no. 4, 778–781.
- [5] P. Dankelmann, A. Hellwig, and L. Volkmann, On the connectivity of diamondfree graphs, Discrete Appl. Math. 155 (2007), no. 16, 2111–2117.
- [6] _____, Inverse degree and edge-connectivity, Discrete Math. 309 (2009), no. 9, 2943–2947.
- [7] P. Dankelmann and L. Volkmann, New sufficient conditions for equality of minimum degree and edge-connectivity, Ars Combin. 40 (1995), 270–278.
- [8] _____, Degree sequence conditions for maximally edge-connected graphs and digraphs, J. Graph Theory 26 (1997), no. 1, 27–34.
- [9] _____, Degree sequence conditions for maximally edge-connected graphs depending on the clique number, Discrete Math. **211** (2000), no. 1-3, 217–223.
- [10] P. Erdös and A. Rényi, On a problem in the theory of graphs (hungarian), Magyar Tud. Akad. Mat. Kutató. Int. Közl. 7 (1962), 623–641.

- [11] C. Godsil and G. Royle, Algebraic graph theory, Springer, New York, 2001.
- [12] Y.O. Hamidoune, A property of a-fragments of a digraph, Discrete Math. 31 (1980), no. 1, 105–106.
- [13] A. Hellwig and L. Volkmann, *Maximally edge-connected digraphs*, Australas. J. Combin. **27** (2003), 23–32.
- [14] _____, Maximally edge-connected and vertex-connected graphs and digraphs: A survey, Discrete Math. 308 (2008), no. 15, 3265–3296.
- [15] L. Lesniak, Results on the edge-connectivity of graphs, Discrete Math. 8 (1974), no. 4, 351–354.
- [16] L. Volkmann, Bemerkungen zum p-fachen zusammenhang von graphen, An. Univ. Bucuresti Mat. 37 (1988), 75–79.
- [17] $_____$, Edge-connectivity in p-partite graphs, J. graph theory **13** (1989), no. 1, 1–6.
- [18] _____, Degree sequence conditions for maximally edge-connected oriented graphs, Applied Math. lett. **19** (2006), no. 11, 1255–1260.
- [19] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932), 150–168.