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Abstract: A set of vertices S in a connected graph G is a different-distance set if, for
any vertex w outside S, no two vertices in S have the same distance to w. The lower

and upper different-distance number of a graph are the order of a smallest, respectively
largest, maximal different-distance set. We prove that a different-distance set induces

either a special type of path or an independent set. We present properties of different-

distance sets, and consider the different-distance numbers of paths, cycles, Cartesian
products of bipartite graphs, and Cartesian products of complete graphs. We conclude

with some open problems and questions.

Keywords: different-distance set, different-distance number

AMS Subject classification: 52C20

1. Introduction

As early as 1975, Slater [5] introduced a location concept that has been the focus of

much research since then. Let S = {s1, s2, . . . , sk} be an ordered set of vertices in a

connected graph G with distance function d. The S-location of a vertex v in G is the

vector (d(v, s1), d(v, s2), . . . , d(v, sk)). Slater called the set S a locating set if, for any

two distinct vertices of G, their S-locations are distinct. The location number of G is

the order of a smallest locating set in G. In 1976 Harary and Melter independently



152 Different-distance sets in a graph

introduced the same concept, but in their terminology, the S-location of v is the

metric representation of v, a locating set is a resolving set, and the location number

is the metric dimension of G. Although it is less imaginative, the Harary-Melter

terminology has become the standard terminology. In this paper, we use Slater’s

terminology. To access the vast literature on the metric dimension of a graph, we just

give references to two survey papers, [1], and [2].

In this paper we study the sets S = {s1, s2, . . . , sk} having the property that, for

any vertex w not in S, the S-location consists of k different numbers, that is, no

two vertices in S have the same distance to w, for any w ∈ V − S. Equivalently, if

d(u, x) = d(v, x), for two distinct vertices u and v in S, then x must be in S as well.

We call such a set a different-distance set. Note that a different-distance set need not

be a locating set, and vice versa. For instance, take the graph consisting of a 6-cycle

C and a chord between two opposite vertices x and y on C. The S = {x, y} is a

different-distance set, but not a locating set. On the other hand, a set of two vertices

in a triangle forms a locating set, but is not a different-distance set. In this definition,

we exclude the empty set and the whole vertex set. One could say that any vertex

w outside a different-distance set can distinguish all vertices inside the set from each

other, since their distances to w are all different.

In a complete graph, trivially, the singletons are the only different-distance sets. In-

tuitively, one might expect that the larger a set is, the less likely it is that its ver-

tices will be distinguishable by all vertices outside the set. So it is natural to seek

the maximal difference-distance sets in a graph. We introduce the lower and up-

per different-distance numbers, being the orders of a smallest and largest maximal

different-distance set. These parameters may take values between 1 and n− 1, where

n is the order of the graph. We prove that a different-distance set is either an in-

dependent set or induces a subgraph that is a pendant path, or a so-called bridging

path. The first type of path extends the concept of pendant vertex (such as a leaf in a

tree), whereas the latter type of path extends the concept of a bridge. We determine

what kinds of sets are different-distance sets in a tree. Using these results, we deter-

mine the different-distance numbers of paths and cycles. We prove two crucial simple

lemmata: (i) a different-distance set does not contain two vertices of a triangle, (ii)

a different-distance set does not contain two vertices at distance 2 having at least

two common neighbors. These two lemmata are our basic tool for determining the

different-distance numbers of certain Cartesian products of graphs.

2. Different-Distance Sets

Let G = (V,E) be a connected, simple graph without loops, with vertex set V and

edge set E. The order of G is the number |V |. Let u and v be two vertices in V .

The degree degG(u) of u is the number of neighbors of u, that is, vertices adjacent

to u. The distance dG(u, v) between u and v is the length of a shortest u, v-path, or
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u, v-geodesic. The interval between u and v is the set

IG(u, v) = {w | d(u,w) + d(w, v) = d(u, v)}.

See [4] for an extensive study of the interval function IG of a graph G. When no

confusion arises, we will delete the subscript G in degG, dG, and IG. For a subset S

of V , we denote the subgraph induced by S by G[S]. Let G(u, v) denote the subgraph

of G induced by IG(u, v).

Let P = u0 → u1 → . . . → u2k be a path of even length. Then we call the vertex

uk the middle of the path P . Let d(u, v) be even, say d(u, v) = 2k, then the middle

M(u, v) of u and v is the subset of IG(u, v) consisting of the middles of the u, v-

geodesics, that is, the vertices x with d(u, x) = k = d(x, v). A subgraph H of G is

an isometric subgraph, if dH(u, v) = dG(u, v), for any two vertices of H, that is, H

inherits its distance function from G. Let xy be an edge. By abuse of language, we

will sometimes use the word edge also for the subgraph induced by xy, and also for

the set {x, y}.

Definition 1. A set S of vertices in a connected graph G is a different-distance set if
d(u,w) 6= d(v, w), for any vertex w in V − S, and for any two vertices u and v in S.

Note that this is equivalent to

u, v ∈ S, d(x, u) = d(x, v)⇒ x ∈ S.

The definition already gives an easy tool: if u and v are two vertices at even distance

in a different-distance set S, then M(u, v) ⊂ S. We call this the middle property of a

different-distance set.

The minimum and maximum orders of maximal different-distance sets S in G are

called the lower and upper difference-distance numbers of G, and are denoted dd(G)

and DD(G), respectively.

We assume that the entire vertex set S = V is not a different-distance set, since there

are no vertices in V − S = ∅ to demonstrate different distances to the vertices in S.

Similarly, we exclude the empty set ∅, because in this case nothing is to demonstrate.

On the other hand, we assume that, for any nontrivial connected graph G, any sin-

gleton set S = {u} is a different-distance set, since no vertex in V − S is equidistant

to two vertices in S. Thus, it follows, by definition, that for any connected graph G

of order n ≥ 2, we have

1 ≤ dd(G) ≤ DD(G) ≤ n− 1. (1)

It is easily seen that these bounds are sharp. For the lower bound the next two

examples serve the purpose.
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Observation 1. For any complete graph Kn, with n > 1, dd(Kn) = DD(Kn) = 1.

Observation 2. For the Petersen graph P , dd(P ) = DD(P ) = 1.

We return to the upper bound later.

Obviously, in a connected bipartite graph of order at least 3, there is no vertex equidis-

tant from two adjacent vertices. So we have also the following simple observation.

Observation 3. Let G be a connected bipartite graph of order at least 3. Then dd(G) ≥ 2.

Nothing can be said as yet about the upper different-distance number of a bipartite

graph.

Proposition 1. Let Km,n be a complete bipartite graph of order at least 3. Then
dd(Km,n) = DD(Km,n) = 2.

Proof. By Observation 3, it suffices to show that a different-distance set S cannot

contain more than two vertices. Assume the contrary. Then it will contain two distinct

vertices u and v in the same part of the bipartition. Since u and v are equidistant

from any vertex in V − S, the set S cannot be a different-distance set.

First we prove a couple of lemmata that will give us the structure of the subgraph

G[S], for any different-distance set S in a connected graph G.

Lemma 1. Let G be a connected graph, and let S be a different-distance set in G. Then
the degree in G[S] of any vertex in S is at most two.

Proof. Assume that G[S] contains a vertex u of degree at least 3, and let x, y, and z

be neighbors of u in S. Let w be any vertex outside S. Consider a vertex in {u, x, y, z}
closest to w.

If it is u, then either w is equidistant from u and at least one of x, y, z, or w is

equidistant from x, y, and z, which is impossible. So let, say, x be the vertex closest

to w. Now u is one step farther away from w than x. To avoid that w is equidistant

from x and one of y and z, it follows that y and z are at least one step farther away

from w than x. Hence w is equidistant from u and one of y and z, or w is equidistant

from y and z. This is also impossible. Hence, any vertex in G[S] has degree at most

2 in G[S].

Lemma 2. Let G be a connected graph, and let S be a different-distance set in G. Then
G[S] does not contain a cycle.
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Proof. Assume that G[S] contains a cycle C = c1 → c2 → . . . → ck → c1. Let w

be any vertex outside S. Recall that w is not equidistant from any two vertices on

C. Let x be the vertex on C closest to w, and let y and z be the neighbors of x on

C. Then w must be equidistant from y and z. Since this is impossible, G[S] cannot

contain a cycle.

With these two lemmata in hand, we can determine the structure of the subgraph

G[S], for any different-distance set S in G.

Theorem 1. Let G be a connected graph, and let S be a different-distance set in G. Then
G[S] is either a path or an independent set in G of order at least 2.

Proof. It follows from Lemmata 1 and 2 that the components of G[S] are paths.

Assume that G[S] is disconnected and there exists a component that is not a single

vertex. We choose an edge xy in G[S], and a vertex z in another component such that

the distance between z and x is as small as possible. Let P be a geodesic between

z and x. Then P has length at least 2, and no internal vertex of P is in S. So P

must have odd length 2k + 1, because, otherwise, the middle vertex of P would be

in S. Let w be the vertex of P with d(z, w) = k + 1 = d(w, x) + 1. Since w cannot

be equidistant from x and y, we have d(w, y) = k + 1, so that w is equidistant from

z and y. This is impossible. Hence, if G[S] is disconnected, then all components of

G[S] are single vertices.

Next we determine what kinds of paths can constitute a different-distance set. A path

of length 0 is just a single vertex, and as such it is always a different-distance set. A

path of length 1 is just an edge xy. The vertices x and y form a different-distance set

if and only if there is no vertex equidistant from x and y. This happens for instance

in bipartite graphs, for each edge. It becomes more interesting when the path has

length at least 2.

First we recall two well-known notions. A cut-vertex in a graph G is a vertex, the

deletion of which increases the number of components. A bridge is an edge, the

deletion of which increases the number of components. If G is connected to start

with, the result of the deletion is a disconnected graph. It is easy to see that the

two ends of a bridge form a different-distance set (unless G = K2). The following

definition can be viewed as a an extension of these notions of cut-vertex and bridge.

Loosely speaking, a bridging path is a path P that connects two different parts of the

graph in such a way that one can get from the one part to the other part only by

traversing P . First we give the definition, and then we explain why we have chosen

to formulate it in this way.

Definition 2. Let G be a connected graph. Let P be a path such that each of its internal
vertices has degree 2 in G. The path P is a bridging path if the deletion of P results in a
disconnected graph, and each edge of P is a bridge.
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Note that a bridging path of order 1 is just a cut-vertex. Note that a bridge in itself

need not be part of a bridging path: in K2 the edge is a bridge, but if we delete the

path containing this edge, then nothing is left, so this path is not ‘bridging’ anything.

Let P be an x, y-path of order at least 2 such that all its internal vertices have degree

2. The deletion of P might disconnect the graph without P being a bridging path.

For instance, take a 4-cycle C, let a, b be a pair of opposite vertices of C, and x, y the

other pair of opposite vertices. Now we insert an x, y-path P of positive length. Then

C minus the path P consists of two isolated vertices a and b, so is disconnected. But

we do not need to traverse P to get from a to b. To make the x, y-path P (with all

internal vertices of degree 2) into a bridging path, we need to add the property that

each edge on P is a bridge.

There is yet another type of path that can be involved in a different-distance set. It

is an extension of the notion of a pendant vertex or a leaf (a vertex of degree 1).

Definition 3. Let G be a connected graph. A pendant path in G is a path P such that
exactly one of its ends has degree 1, and all internal vertices have degree 2.

By definition, the end of P , that has degree at least 2, is attached to a part of the

graph distinct from P . Note that a pendant path is of order at least 2. Moreover, if

G contains a pendant path of order k, then it also contains a bridging path of order

k − 1, viz. the pendant path minus its vertex of degree 1. Clearly, a 2-connected

graph does not contain a pendant path or a bridging path. On the other hand, such

paths can be abundant in trees.

Lemma 3. Let G be a connected graph, and let P be a pendant path or bridging path of
order k. Then the vertices of P form a different-distance set of order k.

Proof. First let P be a pendant path. Let x be the end of P that is not of degree

1. Then any vertex not in P can reach each vertex of P only via x. It is easy to see

that therefore there is no vertex outside P equidistant to any two vertices of P .

Next let P be a bridging path. When we delete the vertices of P , then the remaining

graph G−P consists of two or more components. Take any vertex w not in P . Then it

lies in one of these components. This component together with P forms an isometric

subgraph of G with P as a pendant path. Clearly, no two vertices of P are equidistant

from w.

Now we determine what kinds of paths of length at least 2 can constitute different-

distance sets.

Theorem 2. Let G be a connected graph, and let S be a subset of the vertices of G with
|S| ≥ 3. Then S is a different-distance set such that G[S] is a path if and only if S is the set
of vertices of a bridging path or a pendant path.
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Proof. Let S be a different-distance set such that G[S] is a path P of length at least

2, with ends, say, x and y. Note that x and y cannot be adjacent. First we prove

that any internal vertex of P has degree 2 in G. Suppose to the contrary that u is an

internal vertex of P with degG(u) ≥ 3. Let v and w be the neighbors of u on P , and

let z be a neighbor of u not on P . Then z is equidistant from at least two of u, v, w.

Thus z must be in S, so that G[S] is not a path. Hence degG(u) = 2.

If one of the ends of P has degree 1, then, G being connected, there are neighbors of

the other end of P that are not in P . So P is a pendant path.

So let both ends x and y of P be vertices of degree at least 2. Hence P is not a

pendant path. Suppose that P is not a bridging path. If we delete any internal vertex

u from P , then x and y remain in the same component. So there is a path between x

and y in G− u. Since all internal vertices of P are of degree 2 in G, this path cannot

contain any internal vertex of P . Let Q be a shortest x, y-path in G − u. Then P

and Q have only x and y in common. Since x and y are not adjacent, Q has length

at least 2. Let z be an internal vertex of Q. Due to the minimality of the length of

Q, it follows that the subpath of Q between x and z is a shortest x, z-path. Similarly,

the subpath of Q between y and z is a shortest y, z-path. Let k be the length of Q.

If k is even, then the middle of Q is equidistant from x and y, so it must be in S,

contradicting the fact that G[S] = P . So k = 2` + 1, for some positive integer `.

Let z be the vertex on Q at distance ` + 1 from x and at distance ` from y. Then z

is equidistant from x and the neighbor y′ of y on P . Again this is an impossibility.

Thus we have shown that P is a bridging path.

The converse follows from Lemma 3.

Let G be a connected graph. The bridging-path number Bp(G) of G is the number

of vertices in a longest path in G that is either a bridging path or a pendant path.

Note that Bp(G) = 0 if and only if G is 2-connected. The previous theorem has the

following simple corollary. Recall that any single vertex is a different-distance set,

and that the two ends of a bridge also form a different-distance set.

Corollary 1. Let G be a connected graph. Then Bp(G) ≤ DD(G).

This corollary is especially interesting in the case of trees. Here, in general, cut-

vertices, bridges, bridging paths, and pendant paths are abundant. Of course the

question arises whether there are independent different-distance sets in a tree, and

if so, what kind of independent sets in a tree can be different-distance sets. Let W

be a set of vertices on a path P . We call W equally spaced on P , if we can write

W = {s1, s2, . . . , sk} such that s1 and sk are the ends of P , and if we go from s1
towards sk along P , then we encounter the vertices of W in the order according to

their labels, that is, first s1, then s2, then s3, and so forth, until we reach sk. Moreover

d(si, si+1) = d(si+1, si+2), for i = 1, 2, . . . , k − 2. We call this distance the distance

at which the vertices of W are spaced along the path P .

As preparation for the next theorem, we exhibit in Figure 1 a tree T with an indepen-

dent different-distance set of order 4, viz. the set of grey vertices. It is easy to verify
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that it is the only maximum different-distance set in T , so DD(T ) = 4. Since any

edge not incident with one of the grey vertices of degree 2 forms a maximal different-

distance set, we have dd(T ) = 2. The other two maximal different-distance sets are

the two bridging paths of length 2 (containing a grey vertex as its internal vertex).

Note that we can add any number of leaves at any vertex of T without changing the

maximum different-distance set of the four grey vertices.

 

Figure 1. A maximum independent different-distance set in a tree.

Theorem 3. Let T be a tree, and let S be an independent different-distance set of order
k in T . Then the vertices of S are equally spaced along a path P in T at an odd distance.
Moreover all vertices of S that are internal vertices of P have degree 2 in T .

Proof. A single vertex satisfies the requirements of being equally spaced on a path

at an odd distance. So, for k = 1, the conditions are trivially satisfied. If S consists

of two vertices, say x and y, then d(x, y) must be odd, for otherwise the middle of

the x, y-path would be in S as well. Again the conditions are trivially satisfied.

So assume that |S| ≥ 3. Let x and y be two vertices of S at minimum distance, and

let Pxy be the path connecting x and y. Because of the minimality of d(x, y), this

distance must be odd. Moreover, no other vertex of Pxy can be in S. These vertices

divide the tree into three parts: the subtree Tx consisting of the vertices that can

be reached from x without using any edge of Pxy, the subtree Ty consisting of the

vertices that can be reached from y without using any edge of Pxy, and the subtree

Txy consisting of the vertices that can be reached from x as well as y only by using

some edges of Pxy. We can view T as consisting of the subtree Tx on the left, the

subtree Ty on the right, and the subtree Txy in the middle.

First suppose that S contains a vertex in Txy distinct from x and y. Let z be such a

vertex with d(z, x) + d(z, y) as small as possible. Note that, due to the minimality of

d(x, y), we have d(z, x) ≥ d(x, y) as well as d(z, y) ≥ d(x, y). Moreover z cannot be

on the path Pxy. Since a tree is bipartite one of d(z, x) and d(z, y) must be even, say

d(z, x). But then the middle w of the z, x-path must be in S. Because no internal

vertex of Pxy is in S, it follows that w is not on Pxy. Hence, going from z to w in T , we

get closer to x as well as y, which means that d(w, x) < d(z, x) and d(w, y) < d(z, y).

This contradicts the minimality of d(z, x) + d(z, y). Hence we conclude that S does

not contain a third vertex in Txy.
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So all vertices of S lie in Tx or Ty. Without loss of generality, we may assume that S

contains a vertex of Tx besides x. Let z be such a vertex at minimum distance from

x. Since there is no vertex in S between z and x, the distance between z and x is

odd. Also we have d(z, x) ≥ d(x, y), because of the minimality of d(x, y). Now the

distance between z and y is even, so the middle w of the z, y-path is in S. Then w

lies on the z, x-path Pzx, and is closer to x than z. This is only possible if w = x.

So d(z, x) = d(x, y). Hence also z and x are vertices in S at minimum distance.

Therefore, the same arguments as above apply also on z and x. To make this more

precise, we divide Tx using z into two subtrees. Let Tzx be the subtree of Tx consisting

of x and the vertices that can be reached from x using some edges of Pzx, and let Tz

be the subtree of Tx that can be reached from z without using edges from Pzx. As

above S cannot contain a vertex in Tzx other than z and x. So if S contains another

vertex besides x, y, and z, then it lies in Tz or Ty.

Continuing this way, we conclude that indeed the vertices of S all lie on one path,

in such a way that S = {s1, s2, . . . , sk}, and d(si, si+1) = 2` + 1, for some integer `,

for i = 1, 2, . . . , k − 1. Let P be the path between s1 and sk. If si with 1 < i < k

would have another neighbor besides the two on P , then this neighbor would be

equidistant from si−1 and si+1. Since this is impossible, si must have degree 2 in T .

This concludes the proof.

We proceed with two basic lemmata that will turn out to be very useful in the next

section.

Lemma 4 (Triangle Lemma). Let G be a connected graph, and let S be a different-
distance set in G. Then S does not contain two vertices of a triangle in G.

Proof. Assume to the contrary that S contains two vertices u and v of a triangle on

u, v, w. Since w is equidistant from u and v, it follows that w is in S as well. Take any

other vertex x in G, and let u be a vertex in the triangle closest to x. Now either x is

equidistant from u and v or from u and w, or x is equidistant from v and w. In each

case x is in S. This implies that all vertices of G should be in S, a contradiction.

The Triangle Lemma suggests that the more triangles there are in a connected graph,

the lower its different-distance numbers will be. We will see instances of this intuition

in Section 4.

We call two vertices u and v of G an opposite pair if they are opposite vertices in a

4-cycle, that is, there are two vertices x and y such that u → x → v → y → u is a

4-cycle in G. Note that there are four possible situations: (i) the 4-cycle is induced,

(ii), xy is an edge, but uv is not, (iii) uv is an edge, but xy is not; (iv) the 4-cycle

induces a K4.

Lemma 5 (Opposite-Pair Lemma). Let G be a connected graph, and let S be a
different-distance set in G. Then S does not contain an opposite pair.
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Proof. Let S be a different-distance set, and let u and v be an opposite pair in a

4-cycle C with x and y being the other two vertices in C. In the situations (iii) and

(iv) above, u and v are part of a triangle, so, by the Triangle Lemma, they cannot be

both in S. In situation (ii), x and y are in the middle of u and v, so if u and v would

both be in S, then x and y would be in S as well. This is impossible by the Triangle

Lemma.

Finally, let C be an induced 4-cycle. Assume, to the contrary, that u and v are in

S. Then, necessarily, S also contains x and y, these vertices being in the middle of u

and v. Since, by Lemma 2, S does not contain a cycle, this is a contradiction.

The Opposite-Pair Lemma suggests that the more 4-cycles there are in a connected

graph, the lower its different-distance numbers will be. We will see instances of this

intuition in Section 4. First we apply the two previous lemmata to a simple case.

Theorem 4. Let G = Ka1,a2,...,an be an n-partite graph with n ≥ 3. Then dd(G) =
DD(G) = 1.

Proof. Note that n ≥ 3 is essential in the following arguments. Let S be a different-

distance set. Any two vertices in the same part of the n-partition form an opposite

pair. So S contains at most one vertex from each part. Any two vertices in different

parts are vertices of a triangle. So S contains no vertices in more than one part.

Hence S contains just one vertex.

Observations 1 and 2 and Theorem 4 suggest the following question.

Question 1. Can we characterize the connected graphs G with dd(G) = 1, or with
DD(G) = 1?

In Section 4.2 we will encounter another class of graphs G with DD(G) = 1. In the

next section we deal with the graphs attaining the upper bound of n− 1 in (1).

3. The Different-Distance Numbers of Paths and Cycles

By definition, the longest pendant path of a path is a subpath obtained by deleting

one of the two endpoints of the path. We denote the path on n vertices by Pn.

Theorem 5. For any connected graph G of order n, DD(G) = n − 1 if and only if
G = Pn.

Proof. Deleting one end of Pn results in a pendant path of order n− 1. Hence, by

Theorems 1 and 2, we have DD(Pn) = n− 1.

Assume therefore that G is a graph of order n for which DD(G) = n − 1. Let S be

a different-distance set of order n − 1, and let v be the vertex not in S. Then the
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distances of v to the vertices in S must all be different. Since G is connected, and

the maximum possible distance in a graph of order n is n − 1, the distances of v to

the vertices in S must take the values 1, 2, . . . , n − 1. Hence there is a vertex w at

distance n− 1 from v. So G is a path of order n.

The paths also provide an example that the gap between dd(G) and DD(G) can be

arbitrarily large.

Theorem 6. For a path Pn of order n,

dd(Pn) =

{
n− 1 if n− 1 is a power of 2

n−1
r

+ 1 otherwise,where r is the largest odd prime divisor of n− 1.

Proof. First let n− 1 = 2t, for some positive integer t. Let S be a different-distance

set. If S would contain both ends of Pn, then, by the middle property, all vertices of

Pn would necessarily be in S. So S does not contain both ends. Now, for S to be

maximal, it follows that G[S] has to be one of the pendant paths of order n− 1. So

we have dd(Pn) = DD(Pn) = n− 1.

Next let n − 1 not be a power of 2, and let r be the largest prime divisor of n − 1.

Again let S be a different-distance set. If S does not contain both ends of Pn, then,

for S to be maximal, it must be one of the pendant paths of order n−1. Assume that

S contains both ends of Pn. Then G[S] cannot be connected, for otherwise it would

be Pn itself. By Theorem 3, S consists of vertices equally spaced along Pn at an odd

distance. If this distance is t, then |S| = n−1
t + 1. If t is not prime, say t = a × b

with both a and b odd, then we can add vertices to S such that it becomes an equally

spaced set at distance a. So S is not maximal. Hence S is maximal if and only if it

is equally spaced at distance t with t a prime number. The smallest order for such

a maximal different-distance set is realized with the distance being the largest odd

prime divisor r of n− 1.

It follows from Theorem 5 that, for any positive integer k, there exists a graph G, for

which DD(G) = k. However, one may ask whether this also holds for 2-connected

graphs. To answer this question we determine the different-distance numbers of cycles.

First we observe that, since there are no pendant paths or bridging paths, the only

different-distance sets inducing a connected subgraph are those that induce a single

vertex or a P2. So any different-distance set of order at least 3 must be independent.

We use this observation below frequently.

Let C be a cycle, and let x and y be distinct vertices of C. Then there are two x, y-

paths on C that share only their endpoints x and y. We denote these paths as Pxy

and Qxy, such that the length of Pxy is at most that of Qxy. Then Pxy is a shortest

x, y-path. If Qxy has the same length, then it is also a shortest x, y-path. Otherwise

it is a longer path. If either of these two paths is of even length, then the middle of

that path is equidistant from x and y. We will use this observation in the proofs of

the following lemma and propositions.
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Lemma 6. Let S be an independent different-distance set in a cycle with |S| > 3. Then
the vertices of S are equally spaced along the cycle at an odd distance.

Proof. Let x and y be two vertices in S at minimum distance. Since S is indepen-

dent, x and y are non-adjacent. The minimality implies that d(x, y) is odd. Let z be

another vertex in S closest to x or y, say closest to x. Then d(z, x) is also odd. By

the minimality of d(x, y), we have d(z, x) ≥ d(x, y). Now the z, y-path containing x

is an even path. So its middle must lie in S. Since this path shares only z, x, and

y with S, its middle must be x, so that d(z, x) = d(x, y). If S contains yet another

vertex, then let w be a vertex that is closest to z or y, say to z. Applying the same

argument as above to the vertices w, z, and x instead of z, x, and y, it follows that

d(w, z) = d(z, x) = d(x, y). Continuing this way, we conclude that the vertices of S

are equally spaced along a path P at odd distance r = d(x, y). This path begins in a

vertex u of S and ends in a vertex v of S. Consider the other u, v-path Q on C. Note

that Q shares only u and v with S. Hence Q must have odd length, for otherwise,

the middle of Q should also be in S. If the length of Q would be larger than r, then

let u′ be the first vertex of S on P after u. Then Q together with u, u′-path of length

r would be an even path of length greater than 2r, and its middle would not be in S.

So also d(u, v) = r, and the vertices of S are equally spaced along C at odd distance

r.

Note that in the situation of Lemma 6, the odd distance r must be a divisor of the

order of the cycle, and the number of vertices in S is then n
r . We denote the cycle on

n vertices by Cn. For convenience, we split the results on dd(C) and DD(C) into a

couple of propositions, depending on the value of n

Proposition 2. If n is a power of 2, then dd(Cn) = DD(Cn) = 2.

Proof. Any different-distance set of order at least 3 is independent. By Lemma 6,

there are no such sets. Any two vertices at odd distance form a different-distance set,

so these are the maximal ones.

Proposition 3. If n is an odd prime, then dd(Cn) = DD(Cn) = 1.

Proof. By Lemma 6, there can be no different-distance set of order at least 3.

For any two vertices x and y, one of the connecting paths in the cycle is even. So

its middle is equidistant from x and y. Hence there are no different-distance sets of

order 2. Therefore any single vertex constitutes a maximal different-distance set.

Proposition 4. If n is even with an odd divisor, then dd(Cn) = 2 and DD(Cn) = n
r

,
with r being the smallest odd divisor of n.
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Proof. In an even cycle, every two adjacent vertices form a different-distance set.

Since such a set induces a connected subgraph, it must be maximal. So dd(Cn) = 2.

Let us determine DD(Cn). First consider the case where n = 2p, with p an odd prime

number. Since n is even, any two vertices at odd distance form a different-distance

set. The only way to space vertices equally at odd distance is to take two vertices at

distance p in the cycle. So DD(C2p) = 2 = n
p .

Next let n not be 2 times an odd prime. Observe that, for any odd divisor t of n, we

can find n
t vertices that are equally spaced along the cycle. These form a different-

distance set S. By Lemma 6, there are no other independent different-distance sets.

So, if we take r to be a smallest odd divisor of n, then we maximize the order of S,

giving us the value DD(Cn) = n
r .

Proposition 5. If n is odd but not prime, then dd(Cn) =
n
t

with t being a largest odd
divisor of n, and DD(Cn) =

n
r

with r being a smallest odd divisor of n.

Proof. In an odd cycle, for any two vertices u and v, there are two edge disjoint

paths on the cycle from u to v, one of these two paths must be of even length, and

the middle of this path is equidistant to both u and v. Therefore, no set of order 2

can be a different-distance set of an odd cycle.

Any equally spaced set of vertices at odd distance is of order at least 3, and is a

different-distance set. So the maximal ones are those of order n
p , where p is a prime

divisor of n. This gives us the values of the different-distance numbers.

4. Cartesian Products

First we present the basic facts and notation for the Cartesian product of graphs. For

an extensive discussion of this graph product, we refer the reader to [3].

Let G1 = (V1, E1) and G2 = (V2, E2) be two connected graphs. The Cartesian product

of these graphs is the graph G = G12G2 with vertex set V1×V2, where (u1, u2)(v1, v2)

is an edge if and only if either u1v1 is an edge in G1 and u2 = v2 or u1 = v1 and

u2v2 is an edge in G2. If G2 consists of a single vertex, then G12G2 is isomorphic to

G1. Similarly, G12G2 is isomorphic to G2 when G1 consists of a single vertex. In the

sequel, we will always assume that both G1 and G2 have order at least 2. An example

of the Cartesian product of two paths is the m×n grid: it is the graph Pm2Pn, with

m,n ≥ 2, where Pk is the path on k vertices, see Figure 2 for the case P52P3. We call

two vertices of degree 2 in the grid opposite corners if their distance is m + n. The

vertices (u, r) and (v, t) are opposite corners in Figure 2. Any geodesic between (u, r)

and (v, t) can be obtained by starting in (u, r), and then in each step either moving

to the right or moving upwards until (v, t) is reached. A boundary path between two

opposite corners of the grid consists of either a horizontal path followed by a vertical

path, or a vertical path followed by a horizontal path. Clearly, if two opposite corners

of the grid are at even distance, then their middle M((u, r)(v, t)) contains an opposite

pair. The middle of (u, r) and (v, t) in Figure 2 consists of the three grey vertices.
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Figure 2. The grid P52P3

Let u1 be a vertex in G1, and u2 be a vertex in G2.We call the subgraph induced by

the vertices in V1×{u2} a horizontal fiber in G, and denote it by G12u2. We call the

subgraph of G induced by the vertices {u1} × V2 a vertical fiber in G, and we denote

it by u12G2. Note that G12u2 is the unique horizontal fiber containing (u1, u2), and

u12G2 is the unique vertical fiber containing (u1, u2). Moreover, the horizontal fiber

G12u2 and the vertical fiber u12G2 intersect precisely in the single vertex (u1, u2).

Any two distinct horizontal fibers are disjoint. We call such fibers parallel horizontal

fibers. Similarly, any two distinct vertical fibers are disjoint, which are then called

parallel vertical fibers. For any two horizontal fibers G12u2 and G12v2, the distance

between the two fibers is just the distance between u2 and v2 in G2. The distance

between the two fibers equals the smallest distance between any vertex in the one

fiber at any vertex in the other fiber. Similarly, we can define the distance between

two vertical fibers. Two horizontal fibers G12u2 and G12v2 are adjacent fibers if their

distance is 1, or, equivalently, if u2 and v2 are adjacent. The adjacency of vertical

fibers is defined similarly.

Since the Cartesian product of two connected graphs is 2-connected, it does not

contain any bridging path or any pendant path. By Theorems 1 and 2, we have the

following observation.

Observation 4. Let G12G2 be the Cartesian product of two connected graphs G1 and
G2. Then any different-distance set S in G12G2 is either an edge or an independent set.

Let u = (u1, u2) and v = (v1, v2) be two vertices in G = G12G2. It is straightforward
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to check that the subgraph induced by the vertices in the interval I(u, v) is G(u, v) =

G1(u1, v1)2G2(u2, v2), see [3] for a proof. Note that, if u and v are in the same

horizontal fiber, then G(u, v) is isomorphic to G1(u1, v1). Similarly, if u and v are in

the same vertical fiber, then G(u, v) is isomorphic to G2(u2, v2). If u and v are in

different fibers, then u1 and v1 are distinct, as well as u2 and v2. So they are in parallel

horizontal fibers as well as in parallel vertical fibers. Let R1 be a u1, v1-geodesic in

G1 and let R2 be a u2, v2-geodesic in G2. Then the horizontal path R12u2 followed

by the vertical path v12R2 is a (u1, u2), (v1, v2)-geodesic in G(u, v). It is a boundary

path in the grid R12R2. This grid is an isometric subgraph of G(u, v), that is, the

distances in this grid are also the distances in G(u, v) as well as in G12G2. This

implies that the middle of any two vertices at even distance in distinct fibers contains

an opposite pair. This imposes quite some restrictions on different-distance sets in

Cartesian products.

Lemma 7. Let G1 and G2 be connected graphs of order at least 2, and let S be a
different-distance set in G12G2. Then S cannot contain two vertices at even distance in
different fibers.

Proof. Suppose, to the contrary, that u and v are two vertices in S in different fibers

with d(u, v) even. Our observations above produce an opposite pair in the middle of

u and v. So this opposite pair lies in S, which is impossible by the Opposite-Pair

Lemma.

A different-distance set in a Cartesian product may contain vertices at even distance,

as long as they are in the same fiber of the product. But also in this case there are

restrictions, as given in the following lemma.

Lemma 8. Let G1 and G2 be connected graphs of order at least 2, and let S be a different-
distance set in G12G2. If S lies in one fiber, then S cannot contain two vertices at even
distance.

Proof. Suppose to the contrary that S lies entirely in one fiber, and S contains two

vertices u and v with d(u, v) = 2k. Let x be a vertex in the middle of u and v, that

is, d(u, x) = k = d(x, v). Let z be a neighbor of x in an adjacent fiber. Then we have

d(z, u) = k + 1 = d(z, v). This implies that z is also in S.

This lemma is essentially a consequence of the following fact. Let G1 and G2 be two

connected graphs. Consider any fiber in G12G2, say the horizontal fiber F = G12z2.

Let u and v be two vertices in F at even distance, and let x be in the middle of u

and v. Clearly x lies in F , so x = (x1, z2), for some vertex x1 in G1. Now u and v

are equidistant from all vertices in the vertical fiber x12G2.
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4.1. The Cartesian Product of Bipartite Graphs

Note that the Cartesian product of two bipartite graphs is again bipartite.

Theorem 7. Let G1 and G2 be connected bipartite graphs of order at least 2. Then
dd(G12G2) = DD(G12G2) = 2.

Proof. By Observation 3, we know that dd(G12G2) ≥ 2. Assume, to the contrary,

that there is a different-distance set S with at least three vertices. Since the Cartesian

product of bipartite graphs is again bipartite, no three vertices can be pairwise at odd

distance. So S contains vertices at even distance. Let d be the distance function of

G12G2. Choose two vertices u and v in S with d(u, v) = 2k and k as small as possible.

Note that this means that k is odd. By Lemma 7, u and v must lie in the same fiber.

Without loss of generality, we may assume that this fiber is a horizontal fiber. Then

we have, say, u = (u1, u2) and v = (v1, u2) in the fiber F = G12u2.

Let x be a vertex in the middle of u and v. Then x is in F , say x = (x1, u2), with

x1 being a vertex in the middle of u1 and v1 in G1. Take any neighbor y2 of u2 in

G2. Then y = (x1, y2) is a neighbor of x in the vertical fiber x12G2. Due to the

properties of distances in Cartesian products, we have d(y, u) = 1 + d(x, u) = 1 + k =

1+d(x, v) = d(y, v). So y must be in S. Moreover, k being odd, it follows that d(y, u)

is even. On the other hand, u and y are in different fibers. By Lemma 7, this is

impossible. So S cannot contain more than two vertices.

Since the Cartesian product of bipartite graphs is again bipartite, we have the follow-

ing simple corollary.

Corollary 2. Let G1, G2, . . . , Gn be connected bipartite graphs of order at least 2. Then
DD(G12G22 . . .2Gn) = 2.

The simplest connected bipartite graph of order at least 2 is K2. The hypercube Qn

is the Cartesian product of n copies of K2. For n = 1, we have Q1 = K2. So we also

have the following theorem.

Theorem 8.

dd(Qn) = DD(Qn) =

{
1 if n = 1
2 if n > 1.

The n-dimensional grid is the product of n paths, all of length at least 1, with n ≥ 2.

Corollary 3. Let G be an n-dimensional grid. Then dd(G) = DD(G) = 2.

As we observed in Section 2, any two vertices at odd distance in a bipartite graph

form a different-distance set. So these are precisely the maximal ones in the above

examples of Cartesian products of bipartite graphs.
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4.2. The Cartesian Product of Complete Graphs

Let q1, q2, . . . , qn be integers, all at least 2. The Hamming graph Hq1,q2,...,qn has as

vertex set the set of integer vectors (a1, a2, . . . , an) with 0 ≤ ai < qi, for i = 1, 2, . . . , n.

Two vertices are adjacent if, as vectors, they differ in exactly one place (coordinate).

We call qi the order of the i-th coordinate. The definition of a Hamming graph

can also be phrased in terms of products: it is the Cartesian product of complete

graphs, viz. Hq1,q2,...,qn = Kq12Kq22 . . .2Kqn . Hamming graphs were introduced

in [4] as a generalization of hypercubes. The hypercube Qn is the Hamming graph

with q1 = q2 = . . . = qn = 2. If n = 1, then we get the complete graph Kq1 ,

which has different-distance number 1 (unless it is K1, which, by definition, has no

different-distance set). So, in the sequel we take n ≥ 2.

The aim of this section is to determine the different-distance sets of a Hamming graph.

A feature of a Hamming graph H is that, for two vertices u and v of H, the distance

d(u, v) between u and v is precisely the number of places (coordinates) in which their

two vectors differ. This is the well-known Hamming distance between the two vectors.

We would like to draw attention to the fact that a Hamming graph has many nice

properties and symmetries. For example, if we prove something using two vertices,

say at distance k, then we can choose these, without loss of generality, to be the

all-zero vector and the vector with a 1 in the first k places and a 0 elsewhere. We use

this below.

Lemma 9. Let H be a Hamming graph, and let S be a different-distance set in H. Then
S does not contain a pair of vertices at even distance.

Proof. Let x and y be two vertices at even distance, say d(x, y) = 2k, for some

k ≥ 1. Without loss of generality we may take x = (0, . . . , 0, 0, . . . , 0) and y =

(1, . . . , 1, 0, . . . , 0), where x is the all-zero vector and y has a 1 in the first 2k places

and a 0 elsewhere. Consider the vertex z = (1, . . . , 1, 0, . . . , 0) with a 1 in the first

k places and a 0 elsewhere. Then d(z, x) = d(z, y) = k. Next consider the vertex

z′ = (0, 1, . . . , 1, 1, 0, . . . 0), with a 0 in the first place, a 1 in the places 1 up to k + 1

and a 0 elsewhere. Also for this vertex we have d(z′, x) = d(z′, y) = k. So z and z′

are in the middle of x and y, whence they should both be in S. On the other hand,

z and z′ are an opposite pair, so they cannot both be in S. Hence we conclude that

x and y cannot be both in S.

Theorem 9. Let H be a Hamming graph, and let S be a different-distance set containing
two vertices u and v at odd distance. Then S = {u, v}, and all coordinates in which u and
v differ, have order 2.

Proof. By Observation 4, either uv is an edge and S = {u, v}, or S is independent.

Suppose that uv is an edge. By the Triangle Lemma, uv is not in a triangle, so the

coordinate in which u and v differ is of order 2, and we are done.
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Next we assume that S is independent, whence u and v are not adjacent. So let

d(u, v) = 2k+1, with k ≥ 1. Without loss of generality, we may take u = (0, 0, . . . , 0),

and v = (1, . . . , 1, 0, . . . , 0) with a 1 in the first 2k + 1 places and a 0 elsewhere.

Assume that q1 ≥ 3. Let v1 = (2, 1, . . . , 1, 0, . . . , 0), with a 1 in the places 2 up to k+1.

Then we have d(v1, u) = k + 1 = d(v1, v). So v1 is in S. Due to Lemma 9, k + 1 must

be odd, say k = 2k1. Thus we have found a vertex v1 in S with d(u, v1) = 2k1 + 1,

where k1 = 1
2k. Moreover, u and v1 differ in the first coordinate. Hence we can repeat

this argument to find a vertex v2 in S with d(u, v2) = 2k2 + 1, where k2 = 1
2k1, such

that u and v2 differ in the first coordinate. We can repeat this indefinitely, which is,

of course, impossible. So the conclusion is that q1 = 2.

A similar argument shows that qi = 2, for 1 ≤ i ≤ 2k + 1.

Next we show that |S| = 2. Assume, to the contrary, that S contains a vertex w

distinct from u and v, with d(w, u) = 2` + 1. Note that all coordinates, where v and

w differ from u, have order 2. So w has a 1 in 2`+1 places, and a 0 elsewhere. Without

loss of generality, we may assume that w = (1, . . . , 1, 0, . . . , 0, 1, . . . , 1, 0, . . . , 0), with

a 1 in the first t places, a 0 in the next 2k + 1 − t places, a 1 in the next 2` + 1 − t

places, and a 0 in the remaining places. We list the three vertices below.

u = (

t︷ ︸︸ ︷
0, . . . , 0,

2k+1−t︷ ︸︸ ︷
0, . . . , 0,

2`+1−t︷ ︸︸ ︷
0, . . . , 0, 0, . . . , 0),

v = (

t︷ ︸︸ ︷
1, . . . , 1,

2k+1−t︷ ︸︸ ︷
1, . . . , 1,

2`+1−t︷ ︸︸ ︷
0, . . . , 0, 0, . . . , 0),

w = (

t︷ ︸︸ ︷
1, . . . , 1,

2k+1−t︷ ︸︸ ︷
0, . . . , 0,

2`+1−t︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0).

We have d(w, v) = (2k+ 1− t) + (2`+ 1− t) = 2`+ 2k+ 2− 2t, which is even. This is

impossible. This contradiction shows that S = {u, v}, which completes the proof.

The last part of the proof, where we show that |S| = 2, can also be given in a different

way. Let H = Hq1,q2,...,qn be a Hamming graph, in which the first m coordinates have

order at least 3, and qi = 2, for m + 1 ≤ i ≤ n. Then we can also write H as the

Cartesian product Hq1,...,qm2Qn−m. Due to Lemma 9, any two vertices in S have

odd distance. Due to the first part of the proof, the vertices in S must lie in the same

vertical fiber x2Qn−m, with x a vertex in Hq1,...,qm . Since this fiber is a bipartite

graph, there can be at most two vertices in S.

This theorem enables us to determine the different-distance numbers of any Hamming

graph.

Theorem 10. Let H = Hq1,q2,...,qn be a Hamming graph with all coordinate orders at
least 3. Then dd(H) = DD(H) = 1.

Proof. Let S be a different-distance set of H. By Lemma 9 and Theorem 9, the set

S cannot contain two distinct vertices. So |S| = 1.
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Theorem 11. Let H = Hq1,q2,...,qn be a Hamming graph, in which at least one coordinate
has order 2. Then dd(H) = DD(H) = 2, and any pair of vertices at odd distance differing
only in coordinates of order 2 is a different-distance set.

Proof. Let u and v be vertices with d(u, v) = 2k + 1, for some k ≥ 0, such that u

and v differ only in coordinates of order 2. Without loss of generality we may assume

that u = (0, 0, . . . , 0) is the all-zero vector, and that v = (1, . . . , 1, 0, . . . , 0), with a 1

in the first 2k + 1 places. Note that the first 2k + 1 coordinates all have order 2.

Let x be any other vertex. In any of the first 2k + 1 places, x has either a 0 or a 1.

In these first 2k + 1 places, let x have a 0 in t places and a 1 in 2k + 1− t places. Let

x have r non-zero’s in the remaining places. Then we have d(x, u) = 2k + 1 − t + r

and d(x, v) = t + r. Clearly we have 2k + 1 − t 6= t. So x has different distances to

u and v. Therefore S = {u, v} is a different-distance set, and by Theorem 9, it is

a maximum different-distance set. Moreover, due to Theorem 9, there are no other

non-trivial different-distance sets in H.

Theorem 8 on hypercubes is also a simple corollary of the previous theorem.

4.3. Cartesian Products with a Different-Distance Set of Order k

Since Cartesian products contain many induced 4-cycles, the different-distance num-

bers will be low compared to the order of the graph. The first question that arises is:

given any positive integer k, is there a Cartesian product that has a different-distance

set of order k? We present a simple construction that gives an affirmative answer to

this question.

Let G be a connected graph. Let S be a difference-distance set in G. We call S a

strong different-distance set if, in addition, no vertex in S is equidistant to any two

vertices in S.

Theorem 12. Let G and H be connected graphs of order at least 2, and let S be a strong
different-distance set in G. Then S×{x} is a strong different-distance set in G2H, for any
vertex x in H.

Proof. Note that S′ = S × {x} is just a copy of the set S in the horizontal fiber

F = G2x. No vertex in F is equidistant to two vertices in S′. Let z be any vertex

in another fiber. Let D be the vertical fiber containing z, and let y be the common

vertex of D and F . Then d(z, w) = d(z, y) + d(y, w), for any vertex w in F . Now y

is not equidistant to any two vertices in S′. So z cannot be equidistant from any two

vertices in S′.

Next we construct a graph that has a strong different-distance set of order k, for any

k ≥ 1. The case k = 3 is depicted in Figure 3. Let P = u1 → u2 → . . .→ u2k−1 → u2k

be a path of length 2k−1. We construct the graph Rk by adding the vertex vi adjacent

to u2i−1 and u2i , for i = 1, 2, . . . , k. Let S = {v1, v2, . . . , vk}. It is straightforward to

check that all distances in S are odd, and that they are pairwise distinct. Moreover,
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Figure 3. DD(R32K2) ≥ 3.

no vertex uj is equidistant from two vertices in S. So S is a strong different-distance

set in Rk. By Theorem 12, we have DD(Rk2H) ≥ k, for any graph H of order at

least 2.

The strongness of the different-distance set is a necessary condition in Theorem 12.

This is shown by the following example. Take the path Pn with different-distance set

S = {s1, s2, . . . , sk} of order at least 3, equally spaced at odd distance r. Take the

Cartesian product Pn2K2, with K2 being the edge xy. Then S2x is not a different

distance set in Pn2K2. For, (s2, y) in the fiber Pn2y is adjacent to (s2, x) in the set

S × {x}. Clearly, (s2, y) is equidistant from (s1, x) and (s3, x) in S × {x}. We can

say even more, see the next theorem. Loosely speaking it says that the vertices of a

different-distance set lying in a fiber is a strong different-distance set in that fiber.

Theorem 13. Let G and H be connected graphs, and let S be a different-distance set in
G2H. Let y be a vertex of H, and let Sy = {(w1, y), (w2, y), . . . , (w`, y))} be the set of the
vertices of S lying in the fiber G2y. Then S′y = {w1, w2, . . . , w`} is a strong different-distance
set in G.

Proof. Let z be any neighbor of y in H. Then (wi, z) is a neighbor of (wi, y) that

lies in the fiber G2z adjacent to the fiber G2z. Since S is independent, (wi, z) is not

in S. Hence it is not equidistant from any two vertices in Sy. Since the distance from

(wi, y) to a vertex in G2y is one less than the distance from (wi, z) to that vertex,

it follows that also (wi, y) is not equidistant from any two vertices in Sy. So Sy is

a strong different-distant set in G2y, whence S′y is a strong different-distant set in

G.

Of course, the same assertion holds when we consider the vertices of S lying in a

vertical fiber.
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5. Concluding Remarks and Open Problems

In this paper we introduce the concept of a different-distance set S in a connected

graph G. This gives rise to two parameters, the lower and upper different-distance

numbers dd(G) and DD(G). We establish the structure of the subgraph G[S] induced

by S: it is either an independent set or an edge or a bridging path or a pendant path.

In a tree the independent sets consist of vertices equally spaced along a path at an odd

distance. This also holds for cycles. Thus the different-distance numbers of paths and

cycles can be easily computed. Finally, we use the Triangle Lemma and the Opposite

Pair Lemma to determine the different-distance numbers of the Cartesian product of

two bipartite graphs, and the Cartesian products of complete graphs. The hypercubes

are the graphs that belong to both these classes.

Some open questions and problems come to mind. We mention the following ones.

1. For which graphs G, do we have dd(G) = DD(G) = 1?

2. For which graphs G, do we have dd(G) = DD(G) = 2?

3. For which graphs are the maximal different-distance sets precisely those that

consist of the ends of an edge?

4. What are the different-distance numbers of trees? Are there simple bounds?

5. What is the complexity of determining the different-distance numbers of a tree,

or of an arbitrary connected graph?

6. What are the different-distance numbers of the products of cycles, where at

least one of the cycles is odd?

7. Let S be an independent different distance set in a 2-connected graph G of order

n. What can be said about the ratio |S|n ?
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