

On trees with equal Roman domination and outer-independent Roman domination number

S. Nazari-Moghaddam, S.M. Sheikholeslami*

Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran {s.nazari;s.m.sheikholeslami}@azaruniv.ac.ir

Received: 2 August 2018; Accepted: 9 April 2019 Published Online: 12 April 2019

In honor of Lutz Volkmann on the occasion of his seventy-fifth birthday.

Abstract: A Roman dominating function (RDF) on a graph G is a function $f : V(G) \to \{0, 1, 2\}$ satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. A Roman dominating function f is called an outer-independent Roman dominating function (OIRDF) on G if the set $\{v \in V \mid f(v) = 0\}$ is independent. The (outer-independent) Roman domination number $\gamma_R(G)$ ($\gamma_{oiR}(G)$) is the minimum weight of an RDF (OIRDF) on G. Clearly for any graph G, $\gamma_R(G) \leq \gamma_{oiR}(G)$. In this paper, we provide a constructive characterization of trees T with $\gamma_R(T) = \gamma_{oiR}(T)$.

Keywords: Roman domination, outer-independent Roman domination, tree

AMS Subject classification: 05C69

1. Introduction

Throughout this paper, G is a simple graph with vertex set V(G) and edge set E(G)(briefly V, E). The order |V| of G is denoted by n = n(G). For every vertex $v \in V(G)$, the open neighborhood of v is the set $N_G(v) = N(v) = \{u \in V(G) \mid uv \in E(G)\}$ and its closed neighborhood is the set $N_G[v] = N[v] = N(v) \cup \{v\}$. The degree of a vertex $v \in V$ is deg(v) = |N(v)|. A leaf of G is a vertex with degree one in G, a support vertex is a vertex adjacent to a leaf, a strong support vertex is a support vertex adjacent to at least two leaves, an end support vertex is a support vertex whose all neighbors with exception at most one are leaves, and a weak support vertex is a support vertex with exactly one leaf neighbor. For every vertex $v \in V(G)$, the set of all leaves adjacent to

^{*} Corresponding Author

v is denoted by L_v . A double star $DS_{p,q}$ is a tree containing exactly two non-pendant vertices which one is adjacent to p leaves and the other is adjacent to q leaves. We denote by P_n the path on n vertices. The distance $d_G(u, v)$ between two vertices uand v in a connected graph G is the length of a shortest u-v path in G. The diameter of a graph G, denoted by diam(G), is the greatest distance between two vertices of G. For a vertex v in a rooted tree T, let C(v) denote the set of children of v, D(v)denotes the set of descendants of v and $D[v] = D(v) \cup \{v\}$. Also, the depth of v, depth(v), is the largest distance from v to a vertex in D(v). The maximal subtree at v is the subtree of T induced by D[v], and is denoted by T_v . A proper induced subgraph H of a graph G is called a pendant subgraph if there is exactly one edge between V(H) and V(G) - V(H).

A function $f: V(G) \to \{0, 1, 2\}$ is called a *Roman dominating function* (RDF) on G if every vertex $u \in V$ for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF is the value $f(V(G)) = \sum_{u \in V(G)} f(u)$. The *Roman domination number* $\gamma_R(G)$ is the minimum weight of an RDF on G. Roman domination was introduced by Cockayne et al. in [8] and was inspired by the work of ReVelle and Rosing [10] and Stewart [12]. It is worth mentioning that since 2004, more than hundred papers have been published on this topic, where several new variations were introduced: weak Roman domination [9], Roman $\{2\}$ -domination [7], maximal Roman domination [1], mixed Roman domination [3], double Roman domination [6], independent Roman domination [5], signed Roman domination [4, 11], signed total Roman domination [13, 14] and recently outer-independent Roman domination introduced by [2].

For a Roman dominating function f, let $V_i = \{v \in V \mid f(v) = i\}$ for i = 0, 1, 2. Since these three sets determine f, we can equivalently write $f = (V_0, V_1, V_2)$ (or $f = (V_0^f, V_1^f, V_2^f)$ to refer f). We note that $\omega(f) = |V_1| + 2|V_2|$.

A function $f: V(G) \to \{0, 1, 2\}$ is an outer-independent Roman dominating function (OIRDF) on G if f is an RDF and the set $\{v \in V \mid f(v) = 0\}$ is an independent set. The outer-independent Roman domination number $\gamma_{oiR}(G)$ is the minimum weight of an OIRDF on G. The concept of outer-independent Roman domination in graphs was introduced by Ahangar et al. in [2]. Since each outer-independent Roman dominating function is a Roman dominating function, we have the following observation.

Observation 1. For every graph G, $\gamma_{oiR}(T) \ge \gamma_R(T)$.

In this paper, we provide a constructive characterization of trees T with $\gamma_R(T) = \gamma_{oiR}(T)$.

We make use of the following observations in this paper.

Observation 2. Let H be a subgraph of a graph G. If $\gamma_{oiR}(H) = \gamma_R(H)$, $\gamma_{oiR}(G) \leq \gamma_{oiR}(H) + s$ and $\gamma_R(G) \geq \gamma_R(H) + s$ for some non-negative integer s, then $\gamma_R(G) = \gamma_{oiR}(G)$, $\gamma_{oiR}(G) = \gamma_{oiR}(H) + s$ and $\gamma_R(G) = \gamma_R(H) + s$.

Proof. We deduce from the assumptions and Observation 1 that

$$\gamma_{oiR}(G) \ge \gamma_R(G) \ge \gamma_R(H) + s = \gamma_{oiR}(H) + s \ge \gamma_{oiR}(G).$$

Hence, all inequalities occurring in above chain, become equalities and so $\gamma_R(G) = \gamma_{oiR}(G)$, $\gamma_{oiR}(G) = \gamma_{oiR}(H) + s$ and $\gamma_R(G) = \gamma_R(H) + s$.

Observation 3. Let H be a subgraph of a graph G. If $\gamma_R(G) = \gamma_{oiR}(G)$, $\gamma_R(G) \leq \gamma_R(H) + s$ and $\gamma_{oiR}(G) \geq \gamma_{oiR}(H) + s$ for some non-negative integer s, then $\gamma_R(H) = \gamma_{oiR}(H)$, $\gamma_{oiR}(G) = \gamma_{oiR}(H) + s$ and $\gamma_R(G) = \gamma_R(H) + s$.

Proof. By Observation 1 and the assumptions, we have

$$\gamma_{oiR}(G) = \gamma_R(G) \le \gamma_R(H) + s \le \gamma_{oiR}(H) + s \le \gamma_{oiR}(G).$$

Thus, all inequalities occurring in above chain, become equalities and so $\gamma_R(H) = \gamma_{oiR}(H), \gamma_{oiR}(G) = \gamma_{oiR}(H) + s$ and $\gamma_R(G) = \gamma_R(H) + s$.

2. A characterization of trees T with $\gamma_R(T) = \gamma_{oiR}(T)$

In this section we give a constructive characterization of all trees T satisfying $\gamma_R(T) = \gamma_{oiR}(T)$. We start with a definition.

Definition 1. For a graph G and each vertex $v \in V(G)$, we say v has property P in G if there exists a $\gamma_{oiR}(G)$ -function f such that $f(v) \neq 0$. Define

$$W_G = \{ v \mid v \text{ has property } P \text{ in } G \}.$$

Proposition 1. Let G be a graph and v be a strong support vertex in G. Then there exists a $\gamma_{oiR}(G)$ -function (resp. $\gamma_R(G)$ -function) f such that f(v) = 2.

Proof. Suppose $w_1, w_2 \in L_v$ and let f be a $\gamma_{oiR}(G)$ -function. If f(v) = 2, then we are done. Let $f(v) \leq 1$. If f(v) = 1, then we must have $f(w_1) = f(w_2) = 1$ and the function $g: V(G) \to \{0, 1, 2\}$ defined by $g(w_1) = g(w_2) = 0$, g(v) = 2 and g(u) = f(u) otherwise, is an OIRDF of G of weight less than $\gamma_{oiR}(G)$ which is a contradiction. Hence, we assume f(v) = 0. Since f is an OIRDF of G, we have $f(x) \geq 1$ for each $x \in N(v)$. Now the function g defined above, is a $\gamma_{oiR}(G)$ -function with g(v) = 2, as desired.

Using a similar argument, we can see that there exists a $\gamma_R(G)$ -function f such that f(v) = 2.

Corollary 1. Any strong support vertex of a graph G, has property P in G.

Figure 1. The graph F_1 used in Operation \mathcal{O}_7

Figure 2. The graph F_2 used in Operation \mathcal{O}_8

In order to presenting our constructive characterization, we define a family of trees as follows. Let \mathcal{T} be the family of trees T that can be obtained from a sequence T_1, T_2, \ldots, T_k of trees for some $k \ge 1$, where $T_1 \in \{P_2, P_3, P_4\}$ and $T = T_k$. If $i \ge 2$, T_{i+1} can be obtained from T_i by one of the following operations.

- **Operation** \mathcal{O}_1 : If $x \in V(T_i)$ is a strong support vertex, then \mathcal{O}_1 adds a pendant edge xy to obtain T_{i+1} .
- **Operation** \mathcal{O}_2 : If $x \in V(T_i)$ is a strong support vertex or is adjacent to the center of a pendant star $K_{1,r}$ $(r \geq 1)$, then \mathcal{O}_2 adds a star $K_{1,2}$ and joins x to the center of $K_{1,2}$ to obtain T_{i+1} .
- **Operation** \mathcal{O}_3 : If $x \in W_{T_i}$, then \mathcal{O}_3 adds a star $K_{1,r}$ (r = 2, 3) and joins x to a leaf of $K_{1,r}$ to obtain T_{i+1} .
- **Operation** \mathcal{O}_4 : If $x \in V(T_i)$ satisfies in one of the following statement:
 - 1. x is a strong support vertex,
 - 2. x is adjacent to the center of a pendant star $K_{1,r}$ $(r \ge 1)$,
 - 3. x is adjacent to a support vertex of a pendant path P_4 ,
 - 4. x is adjacent to the center of a pendant path P_5 ,

then \mathcal{O}_4 adds a path $y_1y_2y_3y_4y_5$ or a path $y_1y_2y_3y_4$ and joins x to y_3 to obtain T_{i+1} .

Operation \mathcal{O}_5 : If $x \in W_{T_i}$, then \mathcal{O}_5 adds a double star $DS_{2,1}$ and joins x to the support vertex of degree 2 in $DS_{2,1}$ to obtain T_{i+1} .

Operation \mathcal{O}_6 : If $x \in V(T_i)$ satisfies in one of the following statement:

- 1. x is a strong support vertex,
- 2. x is a support vertex and there is a path xx_2x_1 such that $deg(x_1) = 1$ and $deg(x_2) = 2$,
- 3. there are two paths xx_2x_1 and xz_2z_1 such that $\deg(x_1) = \deg(z_1) = 1$ and $\deg(x_2) = \deg(z_2) = 2$,

then \mathcal{O}_6 adds a path y_1y_2 and joins x to y_1 to obtain T_{i+1} .

- **Operation** \mathcal{O}_7 : If $x \in W_{T_i}$, then \mathcal{O}_7 adds the graph F_1 illustrated in Figure 1 and joins x to y to obtain T_{i+1} .
- **Operation** \mathcal{O}_8 : If $x \in W_{T_i}$, then \mathcal{O}_8 adds the graph F_2 illustrated Figure 2 and joins x to y to obtain T_{i+1} .
- **Operation** \mathcal{O}_9 : If $x \in W_{T_i}$, then \mathcal{O}_9 adds the graph F_3 illustrated in Figure 3 and the edge xy to obtain T_{i+1} .
- **Operation** \mathcal{O}_{10} : If $x \in W_{T_i}$, then \mathcal{O}_{10} adds the graph F_4 illustrated Figure 4 and the edge xy to obtain T_{i+1} .

The proof of the first lemma is trivial by Proposition 1 and Observation 2 and therefore omitted.

Lemma 1. If T_i is a tree with $\gamma_R(T_i) = \gamma_{oiR}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_1 , then $\gamma_R(T_{i+1}) = \gamma_{oiR}(T_{i+1})$.

Lemma 2. If T_i is a tree with $\gamma_R(T_i) = \gamma_{oiR}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_2 , then $\gamma_R(T_{i+1}) = \gamma_{oiR}(T_{i+1})$.

Proof. Let the Operation \mathcal{O}_2 add a star $K_{1,2}$ centered at y and join x to y. Clearly, any outer-independent Roman dominating function of T_i , can be extended to an outer-independent Roman dominating function of T_{i+1} by assigning weight 2 to y and 0 to the vertices in L_y yielding $\gamma_{oiR}(T_{i+1}) \leq \gamma_{oiR}(T_i) + 2$.

Now let f be a $\gamma_R(T_{i+1})$ -function such that f(y) + f(x) is as large as possible. Obviously f(y) = 2. If $f(x) \ge 1$, then the function f, restricted to T_i is an RDF of T_i and so $\gamma_R(T_{i+1}) \ge 2 + \gamma_R(T_i)$. Let f(x) = 0. Then x is not a strong support vertex and so x is adjacent to the center, say w, of a pendant star $K_{1,r}$ $(r \ge 1)$. We may assume without loss of generality that f(w) = 2. As above, the function f, restricted to T_i is an RDF of T_i and so $\gamma_R(T_{i+1}) \ge 2 + \gamma_R(T_i)$. Now the result follows by Observation 2.

Lemma 3. If T_i is a tree with $\gamma_R(T_i) = \gamma_{oiR}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_3 , then $\gamma_R(T_{i+1}) = \gamma_{oiR}(T_{i+1})$.

Proof. Let \mathcal{O}_3 add a star $K_{1,r}$ (r = 2, 3) centered at z and an edge xy where y is a leaf of $K_{1,r}$. It is easy to see that $\gamma_R(T_{i+1}) \geq \gamma_R(T_i) + 2$. On the other hand, since $x \in W(T_i)$, there exists a $\gamma_{oiR}(T_i)$ -function f with $f(x) \geq 1$. Then f can be extended to an outer-independent Roman dominating function of T_{i+1} by assigning weight 2 to z and 0 to the neighbors of z implying that $\gamma_{oiR}(T_{i+1}) \leq \gamma_{oiR}(T_i) + 2$. Now the result follows by Observation 2.

Figure 3. The graph F_3 used in Operation \mathcal{O}_9

Lemma 4. If T_i is a tree with $\gamma_R(T_i) = \gamma_{oiR}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_4 , then $\gamma_R(T_{i+1}) = \gamma_{oiR}(T_{i+1})$.

Proof. Let \mathcal{O}_4 add a path $y_1y_2y_3y_4y_5$ (resp. $y_1y_2y_3y_4$) and join x to y_3 . Clearly, any outer-independent Roman domination function of T_i can be extended to an outer-independent Roman dominating function of T_{i+1} by assigning the value 2 to y_3 , 1 to y_1, y_5 and 0 to y_2, y_4 (resp. the value 2 to y_3 , 1 to y_1 and 0 to y_2, y_4) and so $\gamma_{oiR}(T_{i+1}) \leq \gamma_{oiR}(T_i) + 4$ (resp. $\gamma_{oiR}(T_{i+1}) \leq \gamma_{oiR}(T_i) + 3$).

Assume now that f is a $\gamma_R(T_{i+1})$ -function such that f(N[x]) is as large as possible. Obviously, $f(y_3) = 2$. Since, x is a strong support vertex or is adjacent to the center of a pendant star $K_{1,r}$ $(r \ge 1)$ or is adjacent to a support vertex of a pendant path P_4 or is adjacent to the center of a pendant path P_5 , by the choice of f we have f(y) = 2 for some $y \in N[x] - \{y_3\}$. Hence, the function f, restricted to T_i is a Roman dominating function of T_i and we have $\gamma_R(T_{i+1}) \ge 4 + \gamma_R(T_i)$ (resp. $\gamma_R(T_{i+1}) \ge \gamma_R(T_i) + 3$). Now the result follows by Observation 2.

Lemma 5. If T_i is a tree with $\gamma_R(T_i) = \gamma_{oiR}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_5 , then $\gamma_R(T_{i+1}) = \gamma_{oiR}(T_{i+1})$.

Proof. Let \mathcal{O}_5 add a double star $DS_{2,1}$ with the support vertices a, b and join x to a where deg(a) = 2. Since, $x \in W_{T_i}$, there exists a $\gamma_{oiR}(T_i)$ -function f such that $f(x) \geq 1$. Then f can be extended to an outer-independent Roman dominating function of T_{i+1} by assigning weight 2 to b, 1 to the leaf adjacent to a and 0 to the vertices in $L_b \cup \{a\}$ yielding $\gamma_{oiR}(T_{i+1}) \leq \gamma_{oiR}(T_i) + 3$.

Figure 4. The graph F_4 used in Operation \mathcal{O}_{10}

Assume that w is the leaf adjacent to a and g is a $\gamma_R(T_{i+1})$ -function such that g(b) + g(w) is as large as possible. Obviously, we have g(b) = 2 and g(w) = 1. Then the function g, restricted to T_i is a Roman dominating function of T_i and we have $\gamma_R(T_{i+1}) \ge 3 + \gamma_R(T_i)$. Now the result follows by Observation 2.

Lemma 6. If T_i is a tree with $\gamma_R(T_i) = \gamma_{oiR}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_6 , then $\gamma_R(T_{i+1}) = \gamma_{oiR}(T_{i+1})$.

Proof. Let \mathcal{O}_6 add a path y_1y_2 and the edge xy_1 . Suppose that f is a $\gamma_{oiR}(T_i)$ -function such that f(x) is as large as possible. Then f(x) = 2 and f can be extended to an outer-independent Roman dominating function of T_{i+1} by assigning a 1 to y_2 and a 0 to y_1 and this implies that $\gamma_{oiR}(T_{i+1}) \leq \gamma_{oiR}(T_i) + 1$.

On the other hand, if g is a $\gamma_R(T_{i+1})$ -function, then g(x) = 2 and $g(y_2) = 1$, and the function g, restricted to T_i is a Roman dominating function of T_i yielding $\gamma_R(T_{i+1}) \ge 1 + \gamma_R(T_i)$. As in the above lemmas, we obtain $\gamma_{oiR}(T_{i+1}) = \gamma_R(T_{i+1})$.

Lemma 7. If T_i is a tree with $\gamma_R(T_i) = \gamma_{oiR}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_7 , then $\gamma_R(T_{i+1}) = \gamma_{oiR}(T_{i+1})$.

Proof. Let \mathcal{O}_7 add the graph F_1 and the edge xy. Since, $x \in W_{T_i}$, there exists a $\gamma_{oiR}(T_i)$ -function f such that $f(x) \geq 1$. Then f can be extended to an outerindependent Roman dominating function of T_{i+1} by assigning a 2 to y_3 , a 1 to y_1, y_5 and a 0 to the vertices $N(y_3)$, and so $\gamma_{oiR}(T_{i+1}) \leq \gamma_{oiR}(T_i) + 4$.

On the other hand, let g be a $\gamma_R(T_{i+1})$ -function such that $g(y_3)$ is as large as possible. Clearly, $g(y_3) = 2$, $g(y_1) = g(y_5) = 1$ and g(y) = 0. Hence, g restricted to T_i is an RDF of T_i implying that $\gamma_R(T_{i+1}) \ge 4 + \gamma_R(T_i)$. Now the result follows by Observation 2.

Lemma 8. If T_i is a tree with $\gamma_R(T_i) = \gamma_{oiR}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_8 , then $\gamma_R(T_{i+1}) = \gamma_{oiR}(T_{i+1})$.

Proof. Let \mathcal{O}_8 add the graph F_2 and joins x to y. Since, $x \in W_{T_i}$, there exists a $\gamma_{oiR}(T_i)$ -function f such that $f(x) \ge 1$ and f can be extended to an outer-independent Roman dominating function of T_{i+1} by assigning a 2 to y_3 , a 1 to y_1, y_5, z and a 0 to y, y_2, y_4 . Thus $\gamma_{oiR}(T_{i+1}) \le \gamma_{oiR}(T_i) + 5$.

Now let g be a $\gamma_R(T_{i+1})$ -function such that $g(y_3) + g(z)$ is as large as possible. Then we must have $g(y_3) = 2, g(z) = g(y_1) = g(y_5) = 1$ and g(y) = 0. Hence, the function g, restricted to T_i is an Roman dominating function of T_i and so $\gamma_R(T_{i+1}) \ge 5 + \gamma_R(T_i)$. Now the result follows by Observation 2.

Lemma 9. If T_i is a tree with $\gamma_R(T_i) = \gamma_{oiR}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_9 , then $\gamma_R(T_{i+1}) = \gamma_{oiR}(T_{i+1})$.

Proof. Let \mathcal{O}_9 add a graph F_3 and the edge xy. Since $x \in W_{T_i}$, there exists a $\gamma_{oiR}(T_i)$ -function f such that $f(x) \geq 1$ and f can be extended to an outer-independent Roman dominating function of T_{i+1} by assigning a 2 to y_3 , 1 to y_1 and 0 to the vertices in $N(y_3)$. Hence, $\gamma_{oiR}(T_{i+1}) \leq \gamma_{oiR}(T_i) + 3$.

Now let g be a $\gamma_R(T_{i+1})$ -function such that $g(y_3)$ is as large as possible. Clearly, $g(y_3) = 2$, $g(y_1) = 1$ and g(y) = 0. Then the function g, restricted to T_i is an RDF of T_i yielding $\gamma_R(T_{i+1}) \ge 3 + \gamma_R(T_i)$. Now the result follows by Observation 2.

The proof of the next lemma is similar to the proof of Lemma 9 and therefore it is omitted.

Lemma 10. If T_i is a tree with $\gamma_R(T_i) = \gamma_{oiR}(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_{10} , then $\gamma_R(T_{i+1}) = \gamma_{oiR}(T_{i+1})$.

Theorem 4. If $T \in \mathcal{T}$, then $\gamma_R(T) = \gamma_{oiR}(T)$.

Proof. If $T \in \{P_2, P_3, P_4\}$, then obviously $\gamma_R(T) = \gamma_{oiR}(T)$. Suppose now that $T \in \mathcal{T}$. Then there exists a sequence of trees T_1, T_2, \ldots, T_k $(k \ge 1)$ such that $T_1 \in \{P_2, P_3, P_4\}$, $T = T_k$ and if $k \ge 2$, then T_{i+1} can be obtained from T_i by one of the Operations $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_{10}$ for $i = 1, 2, \ldots, k-1$. We apply induction on the number of operations used to construct T. If k = 1, the result is trivial. Assume the result holds for each tree $T \in \mathcal{T}$ which can be obtained from a sequence of operations of length k - 1 and let $T' = T_{k-1}$. By the induction hypothesis, we have $\gamma_R(T') = \gamma_{oiR}(T')$. Since $T = T_k$ is obtained by one of the Operations $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_{10}$ from T', we conclude from the above Lemmas that $\gamma_R(T) = \gamma_{oiR}(T)$.

Now we are ready to prove our main result.

Theorem 5. Let T be a non-trivial tree. Then $\gamma_R(T) = \gamma_{oiR}(T)$ if and only if $T \in \mathcal{T}$.

Proof. According to Theorem 4, we need only to prove necessity. Let T be a tree of order $n \geq 3$ with $\gamma_R(T) = \gamma_{oiR}(T)$. The proof is by induction on n. If $n \leq 3$, then clearly $T \in \mathcal{T}$. Let $n \geq 4$ and let the statement hold for all trees of order less than n. Assume that T is a tree of order n with $\gamma_R(T) = \gamma_{oiR}(T)$. If $\operatorname{diam}(T) \leq 3$, then $T = P_4$ or T is a star or double star. If $T = P_4$, then obviously $T \in \mathcal{T}$, if T is a star, then T can be obtained from P_3 by repeated application of operation \mathcal{O}_1 , and if T is a double star different from P_4 , then T can be obtained from P_3 by applying operation \mathcal{O}_2 once and operation \mathcal{O}_1 repeatedly, and this implies that $T \in \mathcal{T}$. Hence let $\operatorname{diam}(T) \geq 4$.

Let $v_1v_2...v_k$ $(k \ge 5)$ be a diametral path in T such that $\deg_T(v_2)$ is as large as possible and root T at v_k . If $\deg_T(v_2) \ge 4$, then clearly $\gamma_R(T-v_1) = \gamma_{oiR}(T-v_1)$. It follows from the induction hypothesis that $T - v_1 \in \mathcal{T}$ and hence T can be obtained from $T - v_1$ by Operation \mathcal{O}_1 implying that $T \in \mathcal{T}$. Assume that $\deg_T(v_2) \le 3$.

First let $\deg_T(v_3) = 2$. Suppose that $T' = T - T_{v_3}$. Clearly, any Roman dominating function of T' can be extended to a Roman dominating function of T by assigning a 2 to v_2 and a 0 to the vertices in $N_T(v_2)$ yielding

$$\gamma_R(T) \le \gamma_R(T') + 2. \tag{1}$$

Similarly, any outer-independent Roman dominating function of T' can be extended to an outer-independent Roman dominating function of T by assigning a 1 to v_3 , a 2 to v_2 and a 0 to the vertices in L_{v_2} yielding $\gamma_{oiR}(T) \leq \gamma_{oiR}(T') + 3$. On the other hand, assume that f is a $\gamma_{oiR}(T)$ -function. Clearly $f(N[v_2]) \geq 2$. If $f(v_3) \leq 1$, then the function f restricted to T' is an OIRDF of T' that implies $\gamma_{oiR}(T) \geq \gamma_{oiR}(T') + 2$. If $f(v_3) = 2$, then $f(L_{v_2}) \geq 1$, and the function $g : V(T') \rightarrow \{0, 1, 2\}$ defined by $g(v_4) = \min\{f(v_4) + 1, 2\}$ and g(x) = f(x) otherwise is an OIRDF of T' of weight at most $\gamma_{oiR}(T) - 2$ yielding $\gamma_{oiR}(T) \geq \gamma_{oiR}(T') + 2$. Thus $\gamma_{oiR}(T) - 3 \leq \gamma_{oiR}(T') \leq \gamma_{oiR}(T) - 2$. If $\gamma_{oiR}(T') = \gamma_{oiR}(T) - 3$, then

$$\gamma_{oiR}(T') = \gamma_{oiR}(T) - 3 = \gamma_R(T) - 3 \le \gamma_R(T') - 1$$

which is a contradiction by Observation 1. Hence,

$$\gamma_{oiR}(T') = \gamma_{oiR}(T) - 2. \tag{2}$$

By (1), (2) and Observation 3, we obtain $\gamma_R(T') = \gamma_{oiR}(T')$. By the induction hypothesis we have $T' \in \mathcal{T}$. Now we show that $v_4 \in W_{T'}$. Let h be a $\gamma_{oiR}(T)$ -function such that $h(v_4)$ is as large as possible. Clearly $h(N[v_2]) \ge 2$. Since $\gamma_R(T) = \gamma_{oiR}(T)$, h is also a $\gamma_R(T)$ -function. If $h(v_4) \ge 1$, then h restricted to T' is a $\gamma_{oiR}(T')$ -function and we are done. Assume that $h(v_4) = 0$. Since h is an OIRDF of T, we must have $h(v_3) \ge 1$. If $h(v_3) = 1$, then to Roman dominate the vertices of v_1, v_2 , we must have $h(N[v_2] - \{v_3\}) \ge 2$. But then the function $h_1 : V(T) \to \{0, 1, 2\}$ defined by $h_1(v_2) = 2, h_1(x) = 0$ for $x \in N(v_2)$ and $h_1(x) = h(x)$ otherwise, is an RDF of T of weight less than $\omega(h)$ which is a contradiction. Assume that $h(v_3) = 2$. To Roman dominate v_1 , we must have $f(v_1) + f(v_2) \ge 1$. Now the function $h_2 : V(T) \to \{0, 1, 2\}$ defined by $h_2(v_4) = \min\{2, h(v_4) + 1\}$, $h_2(v_2) = 2, h_2(x) = 0$ for $x \in N(v_2)$ and $h_2(x) = h(x)$ otherwise, is an OIRDF of T of weight $\omega(h)$ contradicting the choice of h. Thus $v_4 \in W_{T'}$. Now T can be obtained from T' by Operation \mathcal{O}_3 and so $T \in \mathcal{T}$. Now, let deg_T(v_3) ≥ 3 . We consider the following cases.

Case 1. $\deg_T(v_2) = 3.$

We distinguish the following subcases.

Subcase 1.1 v_3 has two children with depth 0 or v_3 has one child with depth 1 other than v_2 .

Let $T' = T - T_{v_2}$. Clearly, any Roman dominating function of T' can be extended to a Roman dominating function of T by assigning a 2 to v_2 and 0 to the vertices in L_{v_2} yielding

$$\gamma_R(T) \le \gamma_R(T') + 2. \tag{3}$$

On the other hand, let f be a $\gamma_{oiR}(T)$ -function such that $f(v_2) + f(v_3)$ is as large as possible. Clearly, $f(v_2) = 2$. If $f(v_3) \ge 1$, then the function f, restricted to T' is an outer-independent Roman dominating function of T' which implies that $\gamma_{oiR}(T') \le \gamma_{oiR}(T) - 2$. Assume that $f(v_3) = 0$. We deduce from the assumption that v_3 is not a strong support vertex, and thus v_3 has one child with depth 1, say u, different from v_2 . Since f is an OIRDF of T, we have $f(u) \ge 1$. To Roman dominate the leaves adjacent to u, we must have $f(u) + f(L(u)) \ge 2$. Without loss of generality, we may assume that f(u) = 2. Now the function f, restricted to T' is an outer-independent Roman dominating function of T' which implies that $\gamma_{oiR}(T') \le \gamma_{oiR}(T) - 2$. Thus

$$\gamma_{oiR}(T') \le \gamma_{oiR}(T) - 2 \tag{4}$$

We conclude from (3), (4), Observation 3 and the induction hypothesis that $T' \in \mathcal{T}$. Now T can be obtained from T' by Operation \mathcal{O}_2 and so $T \in \mathcal{T}$.

Subcase 1.2 $\deg_T(v_3) = 3$ and v_3 has one child with depth 0. Assume that $T' = T - T_{v_3}$ and $L(v_3) = \{u\}$. Clearly, any Roman dominating function of T' can be extended to a Roman dominating function of T by assigning weight 2 to v_2 , 1 to u and 0 to the vertices in $N_T(v_2)$ which implies that

$$\gamma_R(T) \le \gamma_R(T') + 3. \tag{5}$$

Consider now a $\gamma_{oiR}(T)$ -function f such that $f(v_2) + f(u)$ is as large as possible. Then we must have $f(v_2) = 2$, f(u) = 1 and f(x) = 0 for $x \in N(v_2)$. Then the function f, restricted to T' is an outer-independent Roman dominating function of T' which implies that

$$\gamma_{oiR}(T') \le \gamma_{oiR}(T) - 3. \tag{6}$$

It follows from (3), (4) and Observation 3 that $\gamma_{oiR}(T') = \gamma_R(T')$ and by the induction hypothesis we have $T' \in \mathcal{T}$. Since $\gamma_{oiR}(T') = \gamma_R(T')$, the function f restricted to T' is a $\gamma_{oiR}(T')$ -function. Since f is an OIRDF of T and $f(v_3) = 0$, we deduce that $f(v_4) \geq 1$ and so $v_4 \in W_{T'}$. Now T can be obtained from T' by Operation \mathcal{O}_5 yielding $T \in \mathcal{T}$.

Case 2. $\deg_T(v_2) = 2.$

First let $\deg_T(v_3) \geq 4$. Assume that $T' = T - \{v_1, v_2\}$. By the choice of diametrical path, v_3 is a strong support vertex or is a weak support vertex and there is a path xx_2x_1 such that $\deg(x_1) = 1$ and $\deg(x_2) = 2$ or there are two paths xx_2x_1 and xz_2z_1 such that $\deg(x_1) = \deg(z_1) = 1$ and $\deg(x_2) = \deg(z_2) = 2$. If f is a $\gamma_{oiR}(T)$ -function, then f is a $\gamma_R(T)$ -function (since $\gamma_{oiR}(T) = \gamma_R(T)$) and we must have $f(v_3) = 2$ and $f(v_1) = 1$. Thus the function f restricted to T' is an OIRDF of T' and so $\gamma_{oiR}(T) \geq \gamma_{oiR}(T') + 1$. On the other hand, if g is a $\gamma_R(T')$ -function such that $g(v_3)$ is as large as possible, then clearly $g(v_3) = 2$ and g can be extended to an RDF of T by assigning a 1 to v_1 and a 0 to v_2 yielding $\gamma_R(T) \leq \gamma_R(T') + 1$. We conclude from Observation 3 that $\gamma_{oiR}(T') = \gamma_R(T')$ and by the induction hypothesis we have $T' \in \mathcal{T}$. Now T can be obtained from T' by Operation \mathcal{O}_6 and so $T \in \mathcal{T}$.

Now, let $\deg_T(v_3) = 3$. Then T_{v_3} is a pendant path P_4 or a pendant path P_5 in T. If $\operatorname{diam}(T) = 4$, then T can be obtained from P_4 by Operation \mathcal{O}_6 or from P_2 by Operations $\mathcal{O}_3, \mathcal{O}_6$ and so $T \in \mathcal{T}$. Suppose that $\operatorname{diam}(T) \geq 5$. We distinguish the following subcases.

Subcase 2.1. v_3 is a support vertex and $\deg_T(v_4) = 2$.

Let u be the leaf adjacent to v_3 and let $T' = T - T_{v_4}$. Clearly, any Roman dominating function of T' can be extended to a Roman dominating function of T by assigning a 2 to v_3 , 1 to v_1 and 0 to v_2, v_4, u which implies that $\gamma_R(T) \leq \gamma_R(T') + 3$. On the other hand, let f be a $\gamma_{oiR}(T)$ -function such that $f(v_3)$ is as large as possible. Then we must have $f(v_3) = 2$, $f(v_1) = 1$ and $f(v_2) = f(u) = 0$. Now the function $g: V(T') \rightarrow$ $\{0, 1, 2\}$ defined by $g(v_5) = \min\{2, f(v_5) + f(v_4)\}$ and g(x) = f(x) otherwise, is an OIRDF of T' of weight $\gamma_{oiR}(T) - 3$ and this implies that $\gamma_{oiR}(T') \leq \gamma_{oiR}(T) - 3$. It follows that Observation 3 that $\gamma_{oiR}(T') = \gamma_R(T')$ and so g is a $\gamma_R(T')$ -function yielding $v_5 \in W_{T'}$. By the induction hypothesis, we obtain $T' \in \mathcal{T}$. Now T can be obtained from T' by Operation \mathcal{O}_9 and so $T \in \mathcal{T}$.

Subcase 2.2. v_3 is a support vertex and v_4 has a child with depth 2.

Let u be the leaf adjacent to v_3 and let $v_4y_3y_2y_1$ be a path in T such that $y_3 \notin \{v_3, v_5\}$. By the choice of diametrical path we have $\deg(y_2) = 1$. Considering above arguments, we may assume that $T_{y_3} = P_4$ or $T_{y_3} = P_5$ since otherwise we can rename y_i as v_i and are in the case that $\deg_T(v_3) = 2$ which we have considered already. Let $T' = T - T_{v_3}$. As in the Subcase 2.1, we have $\gamma_R(T) \leq \gamma_R(T') + 3$. Now let fbe a $\gamma_{oiR}(T)$ -function such that $f(y_3)$ is as large as possible. Clearly, $f(y_3) = 2$ and $f(u) + f(v_1) + f(v_2) + f(v_3) \geq 3$. Hence the function f restricted to T' is an OIRDF of T' of weight at most $\gamma_{oiR}(T) - 3$ implying that $\gamma_{oiR}(T) \geq \gamma_{oiR}(T') + 3$. It follows that Observation 3 and the induction hypothesis that $T' \in \mathcal{T}$. Since T can be obtained from T' by Operation \mathcal{O}_4 , we have $T \in \mathcal{T}$. **Subcase 2.3.** v_3 is a support vertex and v_4 has a child with depth 1.

Let u be the leaf adjacent to v_3 and let $v_4y_2y_1$ be a path in T such that $y_2 \neq v_5$. Let $T' = T - T_{v_3}$. As in the Subcase 2.1, we have $\gamma_R(T) \leq \gamma_R(T') + 3$. Now let f be a $\gamma_{oiR}(T)$ -function such that $f(v_3) + f(y_2)$ is as large as possible. Then clearly, $f(v_3) = 2$, $f(u) + f(v_1) + f(v_2) + f(v_3) \geq 3$ and either $f(v_4) \geq 1$ or $f(v_4) = 0$ and $f(y_2) = 2$. Hence, the function f restricted to T' is an OIRDF of T' of weight at most $\gamma_{oiR}(T) - 3$ yielding $\gamma_{oiR}(T) \geq \gamma_{oiR}(T') + 3$. By Observation 3 and the induction hypothesis, we have $T' \in \mathcal{T}$. Since T can be obtained from T' by Operation \mathcal{O}_4 , we have $T \in \mathcal{T}$.

Subcase 2.4. v_3 is a support vertex and v_4 is a strong support vertex.

Let u be the leaf adjacent to v_3 and let $T' = T - T_{v_3}$. As in the Subcase 2.1, we have $\gamma_R(T) \leq \gamma_R(T') + 3$. Consider now a $\gamma_{oiR}(T)$ -function f such that $f(v_4) = 2$ to according Proposition 1. Clearly, $f(u) + f(v_1) + f(v_2) + f(v_3) \geq 3$ and the function f restricted to T' is an OIRDF of T' of weight at most $\gamma_{oiR}(T) - 3$ yielding $\gamma_{oiR}(T) \geq \gamma_{oiR}(T') + 3$. By Observation 3 and the induction hypothesis, we have $T' \in \mathcal{T}$. Now, T can be obtained from T' by Operation \mathcal{O}_4 , we have $T \in \mathcal{T}$.

Subcase 2.5. v_3 is a support vertex, $\deg_T(v_4) = 3$ and v_4 has a child with depth 0. Let z be the leaf adjacent to v_4 . If $\operatorname{diam}(T) = 4$, then T can be obtained from P_3 by Operation \mathcal{O}_4 and so $T \in \mathcal{T}$. Let $\operatorname{diam}(T) \geq 5$ and let $T' = T - T_{v_4}$. Clearly, any $\gamma_R(T')$ -function can be extended to an RDF of T by assigning a 2 to v_3 , a 1 to v_1, z and a 0 to u, v_2, v_4 and so

$$\gamma_R(T) \le \gamma_R(T') + 4. \tag{7}$$

Let f be a $\gamma_{oiR}(T)$ -function such that $f(v_3) + f(z)$ is as large as possible. Clearly, $f(v_3) = 2$, $f(V(T_{v_3})) \ge 3$ and $f(V(T_{v_4})) \ge 4$. We claim that $f(v_4) = 0$. Suppose, to the contrary, that $f(v_4) \ge 1$. Since $\gamma_R(T) = \gamma_{oiR}(T)$, f is also a $\gamma_R(T)$ -function. This implies that $f(v_4) = 2$, otherwise we must have f(z) = 1 and the function $h: V(T) \to \{0, 1, 2\}$ defined by $h(v_4) = 0$, and h(t) = f(t) otherwise, is an RDF of T of weight less that $\omega(f) = \gamma_R(T)$ which is a contradiction. Now the function $g: V(T) \to \{0, 1, 2\}$ defined by $g(v_4) = 0, g(z) = 1, g(v_5) = \min\{2, f(v_5) + 1\}$ and g(x) = f(x) otherwise, is a $\gamma_{oiR}(T)$ -function contradicting the choice of f. Thus $f(v_4) = 0$ and so $f(v_5) \ge 1$ because f is an OIRDF of T. Then the function f restricted to T' is an OIRDF of T' and so

$$\gamma_{oiR}(T) \ge \gamma_{oiR}(T') + 4. \tag{8}$$

We deduce from (7), (8) and Observation 3 that $\gamma_{oiR}(T') = \gamma_R(T')$ and so f restricted to T' is a $\gamma_{oiR}(T')$ -function implying that $v_5 \in W_{T'}$. By the induction hypothesis, we have $T' \in \mathcal{T}$ and since T can be obtained from T' by Operation \mathcal{O}_{10} , we have $T \in \mathcal{T}$. **Subcase 2.6.** There is a pendant path $v_3y_2y_1$ such that $y_2 \notin \{v_2, v_4\}$, and $\deg_T(v_4) = 2$.

Then $T_{v_3} = P_5$. If diam(T) = 4, then T can be obtained from P_5 by Operation \mathcal{O}_6 and so $T \in \mathcal{T}$. Suppose diam $(T) \geq 5$ and let $T' = T - T_{v_4}$. Clearly, any Roman dominating function of T' can be extended to a Roman dominating function of T by assigning a 2 to v_3 , 1 to v_1, y_1 and 0 to v_2, y_2, v_4 which implies that

$$\gamma_R(T) \le \gamma_R(T') + 4. \tag{9}$$

Consider now a $\gamma_{oiR}(T)$ -function f such that $f(v_3)$ is as large as possible. Then we must have $f(v_3) = 2$, $f(v_1) = f(y_1) = 1$ and $f(v_2) = f(y_2) = 0$. Now the function $g: V(T') \rightarrow \{0, 1, 2\}$ defined by $g(v_5) = \min\{2, f(v_5) + f(v_4)\}$ and g(x) = f(x) otherwise, is an OIRDF of T' of weight $\gamma_{oiR}(T) - 4$ yielding

$$\gamma_{oiR}(T') \le \gamma_{oiR}(T) - 4. \tag{10}$$

By inequalities (9), (10) and Observation 3, we have $\gamma_{oiR}(T') = \gamma_R(T')$ and so g is a $\gamma_R(T')$ -function. Since f is an OIRDF of T, we must have $f(v_4) + f(v_5) \ge 1$ and so $g(v_5) = \min\{2, f(v_5) + f(v_4)\} \ge 1$ yielding $v_5 \in W_{T'}$. By the induction hypothesis, we obtain $T' \in \mathcal{T}$. Since T can be obtained from T' by Operation \mathcal{O}_7 , we have $T \in \mathcal{T}$. **Subcase 2.7.** There is a pendant path $v_3y_2y_1$ such that $y_2 \notin \{v_2, v_4\}$, and v_4 has a

child with depth 2. Let $v_4 z_3 z_2 z_1$ be a path in T such t

Let $v_4z_3z_2z_1$ be a path in T such that $z_3 \notin \{v_3, v_5\}$. By the choice of diametrical path we have $\deg(z_2) = 1$. If $\deg(z_3) = 2$, then T can be obtained from $T - T_{z_3}$ by Operation \mathcal{O}_3 (see the third paragraph of the proof), if $\deg(z_3) \ge 4$, then T can be obtained from $T - \{z_1, z_2\}$ by Operation \mathcal{O}_6 (see the first paragraph of Case 2) and if $\deg(v_3) = 3$ and z_3 is a support vertex, then T can be obtained from $T - T_{z_3}$ by Operation \mathcal{O}_4 (see Subcase 2.2). Henceforth, we may assume that $T_{y_3} = P_5$. Let $T' = T - T_{v_3}$. Clearly, any Roman dominating function of T' can be extended to a Roman dominating function of T by assigning a 2 to v_3 , 1 to v_1, y_1 and 0 to v_2, y_2 and so

$$\gamma_R(T) \le \gamma_R(T') + 4. \tag{11}$$

Consider now a $\gamma_{oiR}(T)$ -function f such that $f(v_3) + f(z_3)$ is as large as possible. Then we must have $f(v_3) = f(z_3) = 2$, $f(v_1) = f(y_1) = 1$ and $f(v_2) = f(y_2) = 0$, and f restricted to T' is an OIRDF of T' of weight $\gamma_{oiR}(T) - 4$ and so

$$\gamma_{oiR}(T) \ge \gamma_{oiR}(T') + 4. \tag{12}$$

By inequalities (11), (12), Observation 3 and the induction hypothesis $T' \in \mathcal{T}$. Since T can be obtained from T' by Operation \mathcal{O}_4 , we have $T \in \mathcal{T}$.

Subcase 2.8. There is a pendant path $v_3y_2y_1$ such that $y_2 \notin \{v_2, v_4\}$, and v_4 has a child z_2 with depth 1.

Let $v_4 z_2 z_1$ be a path in T. Assume that $T' = T - T_{v_3}$. As in the Subcase 2.7, we can see that $\gamma_R(T) \leq \gamma_R(T') + 4$. Now let f be a $\gamma_{oiR}(T)$ -function such that $f(v_3) + f(z_2)$ is as large as possible. Then clearly, $f(v_3) = 2$, $f(y_2) + f(y_1) + f(v_1) + f(v_2) + f(v_3) \geq 4$ and either $f(v_4) \geq 1$ or $f(v_4) = 0$ and $f(z_2) = 2$. Hence, the function f restricted to

T' is an OIRDF of T' of weight at most $\gamma_{oiR}(T) - 4$ yielding $\gamma_{oiR}(T) \ge \gamma_{oiR}(T') + 4$. By Observation 3 and the induction hypothesis, we obtain $T' \in \mathcal{T}$ and since T can be obtained from T' by Operation \mathcal{O}_4 , we have $T \in \mathcal{T}$.

Subcase 2.9. There is a pendant path $v_3y_2y_1$ such that $y_2 \notin \{v_2, v_4\}$, and v_4 is a strong support vertex.

Let $T' = T - T_{v_3}$. As in the subcase 2.4, we can see that $T' \in \mathcal{T}$, and since T can be obtained from T' by Operation \mathcal{O}_4 , we have $T \in \mathcal{T}$.

Subcase 2.10. There is a pendant path $v_3y_2y_1$ such that $y_2 \notin \{v_2, v_4\}$, $\deg_T(v_4) = 3$ and v_4 has a child with depth one.

Let z be the child of v_4 with depth one and let $T' = T - T_{v_4}$. Clearly, any $\gamma_R(T')$ function can be extended to an RDF of T by assigning a 2 to v_3 , a 1 to v_1, y_1, z_3 and a 0 to y_2, v_2, v_4 and so $\gamma_R(T) \leq \gamma_R(T') + 5$. Consider now a $\gamma_{oiR}(T)$ -function f such that $f(v_3) + f(z)$ is as large as possible. Clearly, $f(v_3) = 2$, $f(V(T_{v_3})) \ge 4$ and $f(V(T_{v_4})) \geq 5$. We claim that $f(v_4) = 0$. Suppose, to the contrary, that $f(v_4) \geq 1$. Since $\gamma_R(T) = \gamma_{oiR}(T)$, f is also a $\gamma_R(T)$ -function. This implies that $f(v_4) = 2$, otherwise we must have f(z) = 1 and the function $h: V(T) \to \{0, 1, 2\}$ defined by $h(v_4) = 0$, and h(t) = f(t) otherwise, is an RDF of T of weight less that $\omega(f) = \gamma_R(T)$ which is a contradiction. Define $g: V(T) \to \{0, 1, 2\}$ by $g(v_4) =$ $0, g(z) = 1, g(v_5) = \min\{2, f(v_5) + 1\}$ and g(x) = f(x) otherwise. Clearly, g is a $\gamma_{oiR}(T)$ -function contradicting the choice of f. Thus $f(v_4) = 0$ and so $f(v_5) \geq 1$ because f is an OIRDF of T. Now the function f restricted to T' is an OIRDF of T' and so $\gamma_{oiR}(T) \geq \gamma_{oiR}(T') + 5$. We deduce from Observation 3 that $\gamma_{oiR}(T') = \gamma_R(T')$ and hence f restricted to T' is a $\gamma_{oiR}(T')$ -function with $f(v_5) \geq 1$ implying that $v_5 \in W_{T'}$. On the other hand, by the induction hypothesis, we have $T' \in \mathcal{T}$ and since T can be obtained from T' by Operation \mathcal{O}_8 , we have $T \in \mathcal{T}$. This completes the proof.

References

- H. Abdollahzadeh Ahangar, A. Bahremandpour, S.M. Sheikholeslami, N.D. Soner, Z. Tahmasbzadehbaee, and L. Volkmann, *Maximal Roman domination* numbers in graphs, Util. Math. **103** (2017), 245–258.
- [2] H. Abdollahzadeh Ahangar, M. Chellali, and V. Samodivkin, *Outer independent Roman dominating functions in graphs*, Int. J. Computer Math. 94 (2017), no. 12, 2547–2557.
- [3] H. Abdollahzadeh Ahangar, T.W. Haynes, and J.C. Valenzuela-Tripodoro, Mixed Roman domination in graphs, Bull. Malays. Math. Sci. Soc. 40 (2017), no. 4, 1443–1454.
- [4] H. Abdollahzadeh Ahangar, M.A. Henning, C. Löwenstein, Y. Zhao, and V. Samodivkin, *Signed Roman domination in graphs*, J. Comb. Optim. **27** (2014), no. 2, 241–255.

- [5] M. Adabi, E. Ebrahimi Targhi, N. Jafari Rad, and M. Saied Moradi, Properties of independent Roman domination in graphs, Australas. J. Combin. 52 (2012), 11–18.
- [6] R.A. Beeler, T.W. Haynes, and S.T. Hedetniemi, *Double Roman domination*, Discrete Appl. Math. **211** (2016), 23–29.
- [7] M. Chellali, T.W. Haynes, S.T. Hedetniemi, and A.A. McRae, Roman {2}domination, Discrete Appl. Math. 204 (2016), 22–28.
- [8] E.J. Cockayne, P.A. Dreyer Jr, S.M. Hedetniemi, and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), no. 1-3, 11–22.
- M.A. Henning and S.T. Hedetniemi, Defending the Roman empirea new strategy, Discrete Math. 266 (2003), no. 1-3, 239–251.
- [10] C.S. ReVelle and K.E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000), no. 7, 585–594.
- [11] S.M. Sheikholeslami and L. Volkmann, Signed Roman domination in digraphs, J. Comb. Optim. **30** (2015), no. 3, 456–467.
- [12] I. Stewart, *Defend the Roman empire!*, Sci. Amer. **281** (1999), no. 6, 136–138.
- [13] L. Volkmann, Signed total Roman domination in graphs, J. Comb. Optim. 32 (2016), no. 3, 855–871.
- [14] _____, Signed total Roman domination in digraphs, Discus. Math. Graph Theory 37 (2017), no. 1, 261–272.