On trees with equal Roman domination and outer-independent Roman domination number

S. Nazari-Moghaddam, S.M. Sheikholeslami*
Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran \{s.nazari;s.m.sheikholeslami\}@azaruniv.ac.ir

Received: 2 August 2018; Accepted: 9 April 2019
Published Online: 12 April 2019
In honor of Lutz Volkmann on the occasion of his seventy-fifth birthday.

Abstract

A Roman dominating function (RDF) on a graph G is a function f : $V(G) \rightarrow\{0,1,2\}$ satisfying the condition that every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. A Roman dominating function f is called an outer-independent Roman dominating function (OIRDF) on G if the set $\{v \in$ $V \mid f(v)=0\}$ is independent. The (outer-independent) Roman domination number $\gamma_{R}(G)\left(\gamma_{o i R}(G)\right)$ is the minimum weight of an RDF (OIRDF) on G. Clearly for any graph $G, \gamma_{R}(G) \leq \gamma_{o i R}(G)$. In this paper, we provide a constructive characterization of trees T with $\gamma_{R}(T)=\gamma_{o i R}(T)$.

Keywords: Roman domination, outer-independent Roman domination, tree
AMS Subject classification: 05C69

1. Introduction

Throughout this paper, G is a simple graph with vertex set $V(G)$ and edge set $E(G)$ (briefly $V, E)$. The order $|V|$ of G is denoted by $n=n(G)$. For every vertex $v \in V(G)$, the open neighborhood of v is the set $N_{G}(v)=N(v)=\{u \in V(G) \mid u v \in E(G)\}$ and its closed neighborhood is the set $N_{G}[v]=N[v]=N(v) \cup\{v\}$. The degree of a vertex $v \in V$ is $\operatorname{deg}(v)=|N(v)|$. A leaf of G is a vertex with degree one in G, a support vertex is a vertex adjacent to a leaf, a strong support vertex is a support vertex adjacent to at least two leaves, an end support vertex is a support vertex whose all neighbors with exception at most one are leaves, and a weak support vertex is a support vertex with exactly one leaf neighbor. For every vertex $v \in V(G)$, the set of all leaves adjacent to

[^0]v is denoted by L_{v}. A double star $D S_{p, q}$ is a tree containing exactly two non-pendant vertices which one is adjacent to p leaves and the other is adjacent to q leaves. We denote by P_{n} the path on n vertices. The distance $d_{G}(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. The diameter of a graph G, denoted by $\operatorname{diam}(G)$, is the greatest distance between two vertices of G. For a vertex v in a rooted tree T, let $C(v)$ denote the set of children of $v, D(v)$ denotes the set of descendants of v and $D[v]=D(v) \cup\{v\}$. Also, the depth of v, $\operatorname{depth}(v)$, is the largest distance from v to a vertex in $D(v)$. The maximal subtree at v is the subtree of T induced by $D[v]$, and is denoted by T_{v}. A proper induced subgraph H of a graph G is called a pendant subgraph if there is exactly one edge between $V(H)$ and $V(G)-V(H)$.
A function $f: V(G) \rightarrow\{0,1,2\}$ is called a Roman dominating function (RDF) on G if every vertex $u \in V$ for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of an RDF is the value $f(V(G))=\sum_{u \in V(G)} f(u)$. The Roman domination number $\gamma_{R}(G)$ is the minimum weight of an RDF on G. Roman domination was introduced by Cockayne et al. in [8] and was inspired by the work of ReVelle and Rosing [10] and Stewart [12]. It is worth mentioning that since 2004, more than hundred papers have been published on this topic, where several new variations were introduced: weak Roman domination [9], Roman \{2\}-domination [7], maximal Roman domination [1], mixed Roman domination [3], double Roman domination [6], independent Roman domination [5], signed Roman domination [4, 11], signed total Roman domination $[13,14]$ and recently outer-independent Roman domination introduced by [2].
For a Roman dominating function f, let $V_{i}=\{v \in V \mid f(v)=i\}$ for $i=0,1,2$. Since these three sets determine f, we can equivalently write $f=\left(V_{0}, V_{1}, V_{2}\right)$ (or $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ to refer $\left.f\right)$. We note that $\omega(f)=\left|V_{1}\right|+2\left|V_{2}\right|$.
A function $f: V(G) \rightarrow\{0,1,2\}$ is an outer-independent Roman dominating function (OIRDF) on G if f is an RDF and the set $\{v \in V \mid f(v)=0\}$ is an independent set. The outer-independent Roman domination number $\gamma_{o i R}(G)$ is the minimum weight of an OIRDF on G. The concept of outer-independent Roman domination in graphs was introduced by Ahangar et al. in [2]. Since each outer-independent Roman dominating function is a Roman dominating function, we have the following observation.

Observation 1. For every graph $G, \gamma_{o i R}(T) \geq \gamma_{R}(T)$.

In this paper, we provide a constructive characterization of trees T with $\gamma_{R}(T)=$ $\gamma_{o i R}(T)$.
We make use of the following observations in this paper.
Observation 2. Let H be a subgraph of a graph G. If $\gamma_{o i R}(H)=\gamma_{R}(H), \gamma_{o i R}(G) \leq$ $\gamma_{o i R}(H)+s$ and $\gamma_{R}(G) \geq \gamma_{R}(H)+s$ for some non-negative integer s, then $\gamma_{R}(G)=\gamma_{o i R}(G)$, $\gamma_{o i R}(G)=\gamma_{o i R}(H)+s$ and $\gamma_{R}(G)=\gamma_{R}(H)+s$.

Proof. We deduce from the assumptions and Observation 1 that

$$
\gamma_{o i R}(G) \geq \gamma_{R}(G) \geq \gamma_{R}(H)+s=\gamma_{o i R}(H)+s \geq \gamma_{o i R}(G)
$$

Hence, all inequalities occurring in above chain, become equalities and so $\gamma_{R}(G)=$ $\gamma_{o i R}(G), \gamma_{o i R}(G)=\gamma_{o i R}(H)+s$ and $\gamma_{R}(G)=\gamma_{R}(H)+s$.

Observation 3. Let H be a subgraph of a graph G. If $\gamma_{R}(G)=\gamma_{o i R}(G), \gamma_{R}(G) \leq$ $\gamma_{R}(H)+s$ and $\gamma_{o i R}(G) \geq \gamma_{o i R}(H)+s$ for some non-negative integer s, then $\gamma_{R}(H)=$ $\gamma_{o i R}(H), \gamma_{o i R}(G)=\gamma_{o i R}(H)+s$ and $\gamma_{R}(G)=\gamma_{R}(H)+s$.

Proof. By Observation 1 and the assumptions, we have

$$
\gamma_{o i R}(G)=\gamma_{R}(G) \leq \gamma_{R}(H)+s \leq \gamma_{o i R}(H)+s \leq \gamma_{o i R}(G)
$$

Thus, all inequalities occurring in above chain, become equalities and so $\gamma_{R}(H)=$ $\gamma_{o i R}(H), \gamma_{o i R}(G)=\gamma_{o i R}(H)+s$ and $\gamma_{R}(G)=\gamma_{R}(H)+s$.

2. A characterization of trees T with $\gamma_{R}(T)=\gamma_{o i R}(T)$

In this section we give a constructive characterization of all trees T satisfying $\gamma_{R}(T)=$ $\gamma_{o i R}(T)$. We start with a definition.

Definition 1. For a graph G and each vertex $v \in V(G)$, we say v has property P in G if there exists a $\gamma_{o i R}(G)$-function f such that $f(v) \neq 0$. Define

$$
W_{G}=\{v \mid v \text { has property } P \text { in } G\} .
$$

Proposition 1. Let G be a graph and v be a strong support vertex in G. Then there exists a $\gamma_{o i R}(G)$-function (resp. $\gamma_{R}(G)$-function) f such that $f(v)=2$.

Proof. Suppose $w_{1}, w_{2} \in L_{v}$ and let f be a $\gamma_{o i R}(G)$-function. If $f(v)=2$, then we are done. Let $f(v) \leq 1$. If $f(v)=1$, then we must have $f\left(w_{1}\right)=f\left(w_{2}\right)=1$ and the function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g\left(w_{1}\right)=g\left(w_{2}\right)=0, g(v)=2$ and $g(u)=f(u)$ otherwise, is an OIRDF of G of weight less than $\gamma_{o i R}(G)$ which is a contradiction. Hence, we assume $f(v)=0$. Since f is an OIRDF of G, we have $f(x) \geq 1$ for each $x \in N(v)$. Now the function g defined above, is a $\gamma_{o i R}(G)$-function with $g(v)=2$, as desired.
Using a similar argument, we can see that there exists a $\gamma_{R}(G)$-function f such that $f(v)=2$.

Corollary 1. Any strong support vertex of a graph G, has property P in G.

Figure 1. The graph F_{1} used in Operation \mathcal{O}_{7}

Figure 2. The graph F_{2} used in Operation \mathcal{O}_{8}

In order to presenting our constructive characterization, we define a family of trees as follows. Let \mathcal{T} be the family of trees T that can be obtained from a sequence $T_{1}, T_{2}, \ldots, T_{k}$ of trees for some $k \geq 1$, where $T_{1} \in\left\{P_{2}, P_{3}, P_{4}\right\}$ and $T=T_{k}$. If $i \geq 2$, T_{i+1} can be obtained from T_{i} by one of the following operations.

Operation \mathcal{O}_{1} : If $x \in V\left(T_{i}\right)$ is a strong support vertex, then \mathcal{O}_{1} adds a pendant edge $x y$ to obtain T_{i+1}.

Operation \mathcal{O}_{2} : If $x \in V\left(T_{i}\right)$ is a strong support vertex or is adjacent to the center of a pendant star $K_{1, r}(r \geq 1)$, then \mathcal{O}_{2} adds a star $K_{1,2}$ and joins x to the center of $K_{1,2}$ to obtain T_{i+1}.

Operation \mathcal{O}_{3} : If $x \in W_{T_{i}}$, then \mathcal{O}_{3} adds a star $K_{1, r}(r=2,3)$ and joins x to a leaf of $K_{1, r}$ to obtain T_{i+1}.

Operation \mathcal{O}_{4} : If $x \in V\left(T_{i}\right)$ satisfies in one of the following statement:

1. x is a strong support vertex,
2. x is adjacent to the center of a pendant star $K_{1, r}(r \geq 1)$,
3. x is adjacent to a support vertex of a pendant path P_{4},
4. x is adjacent to the center of a pendant path P_{5},
then \mathcal{O}_{4} adds a path $y_{1} y_{2} y_{3} y_{4} y_{5}$ or a path $y_{1} y_{2} y_{3} y_{4}$ and joins x to y_{3} to obtain T_{i+1}.

Operation \mathcal{O}_{5} : If $x \in W_{T_{i}}$, then \mathcal{O}_{5} adds a double star $D S_{2,1}$ and joins x to the support vertex of degree 2 in $D S_{2,1}$ to obtain T_{i+1}.

Operation \mathcal{O}_{6} : If $x \in V\left(T_{i}\right)$ satisfies in one of the following statement:

1. x is a strong support vertex,
2. x is a support vertex and there is a path $x x_{2} x_{1}$ such that $\operatorname{deg}\left(x_{1}\right)=1$ and $\operatorname{deg}\left(x_{2}\right)=2$,
3. there are two paths $x x_{2} x_{1}$ and $x z_{2} z_{1}$ such that $\operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(z_{1}\right)=1$ and $\operatorname{deg}\left(x_{2}\right)=\operatorname{deg}\left(z_{2}\right)=2$,
then \mathcal{O}_{6} adds a path $y_{1} y_{2}$ and joins x to y_{1} to obtain T_{i+1}.
Operation \mathcal{O}_{7} : If $x \in W_{T_{i}}$, then \mathcal{O}_{7} adds the graph F_{1} illustrated in Figure 1 and joins x to y to obtain T_{i+1}.

Operation \mathcal{O}_{8} : If $x \in W_{T_{i}}$, then \mathcal{O}_{8} adds the graph F_{2} illustrated Figure 2 and joins x to y to obtain T_{i+1}.

Operation \mathcal{O}_{9} : If $x \in W_{T_{i}}$, then \mathcal{O}_{9} adds the graph F_{3} illustrated in Figure 3 and the edge $x y$ to obtain T_{i+1}.

Operation \mathcal{O}_{10} : If $x \in W_{T_{i}}$, then \mathcal{O}_{10} adds the graph F_{4} illustrated Figure 4 and the edge $x y$ to obtain T_{i+1}.

The proof of the first lemma is trivial by Proposition 1 and Observation 2 and therefore omitted.

Lemma 1. If T_{i} is a tree with $\gamma_{R}\left(T_{i}\right)=\gamma_{o i R}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{1}, then $\gamma_{R}\left(T_{i+1}\right)=\gamma_{o i R}\left(T_{i+1}\right)$.

Lemma 2. If T_{i} is a tree with $\gamma_{R}\left(T_{i}\right)=\gamma_{o i R}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{2}, then $\gamma_{R}\left(T_{i+1}\right)=\gamma_{o i R}\left(T_{i+1}\right)$.

Proof. Let the Operation \mathcal{O}_{2} add a star $K_{1,2}$ centered at y and join x to y. Clearly, any outer-independent Roman dominating function of T_{i}, can be extended to an outerindependent Roman dominating function of T_{i+1} by assigning weight 2 to y and 0 to the vertices in L_{y} yielding $\gamma_{o i R}\left(T_{i+1}\right) \leq \gamma_{o i R}\left(T_{i}\right)+2$.
Now let f be a $\gamma_{R}\left(T_{i+1}\right)$-function such that $f(y)+f(x)$ is as large as possible. Obviously $f(y)=2$. If $f(x) \geq 1$, then the function f, restricted to T_{i} is an RDF of T_{i} and so $\gamma_{R}\left(T_{i+1}\right) \geq 2+\gamma_{R}\left(T_{i}\right)$. Let $f(x)=0$. Then x is not a strong support vertex and so x is adjacent to the center, say w, of a pendant star $K_{1, r}(r \geq 1)$. We may assume without loss of generality that $f(w)=2$. As above, the function f, restricted to T_{i} is an RDF of T_{i} and so $\gamma_{R}\left(T_{i+1}\right) \geq 2+\gamma_{R}\left(T_{i}\right)$. Now the result follows by Observation 2.

Lemma 3. If T_{i} is a tree with $\gamma_{R}\left(T_{i}\right)=\gamma_{o i R}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{3}, then $\gamma_{R}\left(T_{i+1}\right)=\gamma_{o i R}\left(T_{i+1}\right)$.

Proof. Let \mathcal{O}_{3} add a star $K_{1, r}(r=2,3)$ centered at z and an edge $x y$ where y is a leaf of $K_{1, r}$. It is easy to see that $\gamma_{R}\left(T_{i+1}\right) \geq \gamma_{R}\left(T_{i}\right)+2$. On the other hand, since $x \in W\left(T_{i}\right)$, there exists a $\gamma_{o i R}\left(T_{i}\right)$-function f with $f(x) \geq 1$. Then f can be extended to an outer-independent Roman dominating function of T_{i+1} by assigning weight 2 to z and 0 to the neighbors of z implying that $\gamma_{o i R}\left(T_{i+1}\right) \leq \gamma_{o i R}\left(T_{i}\right)+2$. Now the result follows by Observation 2.

Figure 3. The graph F_{3} used in Operation \mathcal{O}_{9}

Lemma 4. If T_{i} is a tree with $\gamma_{R}\left(T_{i}\right)=\gamma_{o i R}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{4}, then $\gamma_{R}\left(T_{i+1}\right)=\gamma_{o i R}\left(T_{i+1}\right)$.

Proof. Let \mathcal{O}_{4} add a path $y_{1} y_{2} y_{3} y_{4} y_{5}$ (resp. $y_{1} y_{2} y_{3} y_{4}$) and join x to y_{3}. Clearly, any outer-independent Roman domination function of T_{i} can be extended to an outerindependent Roman dominating function of T_{i+1} by assigning the value 2 to $y_{3}, 1$ to y_{1}, y_{5} and 0 to y_{2}, y_{4} (resp. the value 2 to $y_{3}, 1$ to y_{1} and 0 to y_{2}, y_{4}) and so $\gamma_{o i R}\left(T_{i+1}\right) \leq \gamma_{o i R}\left(T_{i}\right)+4\left(\right.$ resp. $\left.\gamma_{o i R}\left(T_{i+1}\right) \leq \gamma_{o i R}\left(T_{i}\right)+3\right)$.
Assume now that f is a $\gamma_{R}\left(T_{i+1}\right)$-function such that $f(N[x])$ is as large as possible. Obviously, $f\left(y_{3}\right)=2$. Since, x is a strong support vertex or is adjacent to the center of a pendant star $K_{1, r}(r \geq 1)$ or is adjacent to a support vertex of a pendant path P_{4} or is adjacent to the center of a pendant path P_{5}, by the choice of f we have $f(y)=2$ for some $y \in N[x]-\left\{y_{3}\right\}$. Hence, the function f, restricted to T_{i} is a Roman dominating function of T_{i} and we have $\gamma_{R}\left(T_{i+1}\right) \geq 4+\gamma_{R}\left(T_{i}\right)$ (resp. $\gamma_{R}\left(T_{i+1}\right) \geq \gamma_{R}\left(T_{i}\right)+3$). Now the result follows by Observation 2.

Lemma 5. If T_{i} is a tree with $\gamma_{R}\left(T_{i}\right)=\gamma_{o i R}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{5}, then $\gamma_{R}\left(T_{i+1}\right)=\gamma_{o i R}\left(T_{i+1}\right)$.

Proof. Let \mathcal{O}_{5} add a double star $D S_{2,1}$ with the support vertices a, b and join x to a where $\operatorname{deg}(a)=2$. Since, $x \in W_{T_{i}}$, there exists a $\gamma_{o i R}\left(T_{i}\right)$-function f such that $f(x) \geq 1$. Then f can be extended to an outer-independent Roman dominating function of T_{i+1} by assigning weight 2 to $b, 1$ to the leaf adjacent to a and 0 to the vertices in $L_{b} \cup\{a\}$ yielding $\gamma_{o i R}\left(T_{i+1}\right) \leq \gamma_{o i R}\left(T_{i}\right)+3$.

Figure 4. The graph F_{4} used in Operation \mathcal{O}_{10}

Assume that w is the leaf adjacent to a and g is a $\gamma_{R}\left(T_{i+1}\right)$-function such that $g(b)+$ $g(w)$ is as large as possible. Obviously, we have $g(b)=2$ and $g(w)=1$. Then the function g, restricted to T_{i} is a Roman dominating function of T_{i} and we have $\gamma_{R}\left(T_{i+1}\right) \geq 3+\gamma_{R}\left(T_{i}\right)$. Now the result follows by Observation 2.

Lemma 6. If T_{i} is a tree with $\gamma_{R}\left(T_{i}\right)=\gamma_{o i R}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{6}, then $\gamma_{R}\left(T_{i+1}\right)=\gamma_{o i R}\left(T_{i+1}\right)$.

Proof. Let \mathcal{O}_{6} add a path $y_{1} y_{2}$ and the edge $x y_{1}$. Suppose that f is a $\gamma_{o i R}\left(T_{i}\right)$ function such that $f(x)$ is as large as possible. Then $f(x)=2$ and f can be extended to an outer-independent Roman dominating function of T_{i+1} by assigning a 1 to y_{2} and a 0 to y_{1} and this implies that $\gamma_{o i R}\left(T_{i+1}\right) \leq \gamma_{o i R}\left(T_{i}\right)+1$.
On the other hand, if g is a $\gamma_{R}\left(T_{i+1}\right)$-function, then $g(x)=2$ and $g\left(y_{2}\right)=1$, and the function g, restricted to T_{i} is a Roman dominating function of T_{i} yielding $\gamma_{R}\left(T_{i+1}\right) \geq$ $1+\gamma_{R}\left(T_{i}\right)$. As in the above lemmas, we obtain $\gamma_{o i R}\left(T_{i+1}\right)=\gamma_{R}\left(T_{i+1}\right)$.

Lemma 7. If T_{i} is a tree with $\gamma_{R}\left(T_{i}\right)=\gamma_{o i R}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{7}, then $\gamma_{R}\left(T_{i+1}\right)=\gamma_{o i R}\left(T_{i+1}\right)$.

Proof. Let \mathcal{O}_{7} add the graph F_{1} and the edge $x y$. Since, $x \in W_{T_{i}}$, there exists a $\gamma_{o i R}\left(T_{i}\right)$-function f such that $f(x) \geq 1$. Then f can be extended to an outerindependent Roman dominating function of T_{i+1} by assigning a 2 to y_{3}, a 1 to y_{1}, y_{5} and a 0 to the vertices $N\left(y_{3}\right)$, and so $\gamma_{o i R}\left(T_{i+1}\right) \leq \gamma_{o i R}\left(T_{i}\right)+4$.
On the other hand, let g be a $\gamma_{R}\left(T_{i+1}\right)$-function such that $g\left(y_{3}\right)$ is as large as possible. Clearly, $g\left(y_{3}\right)=2, g\left(y_{1}\right)=g\left(y_{5}\right)=1$ and $g(y)=0$. Hence, g restricted to T_{i} is an RDF of T_{i} implying that $\gamma_{R}\left(T_{i+1}\right) \geq 4+\gamma_{R}\left(T_{i}\right)$. Now the result follows by Observation 2.

Lemma 8. If T_{i} is a tree with $\gamma_{R}\left(T_{i}\right)=\gamma_{o i R}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{8}, then $\gamma_{R}\left(T_{i+1}\right)=\gamma_{o i R}\left(T_{i+1}\right)$.

Proof. Let \mathcal{O}_{8} add the graph F_{2} and joins x to y. Since, $x \in W_{T_{i}}$, there exists a $\gamma_{o i R}\left(T_{i}\right)$-function f such that $f(x) \geq 1$ and f can be extended to an outer-independent Roman dominating function of T_{i+1} by assigning a 2 to y_{3}, a 1 to y_{1}, y_{5}, z and a 0 to y, y_{2}, y_{4}. Thus $\gamma_{o i R}\left(T_{i+1}\right) \leq \gamma_{o i R}\left(T_{i}\right)+5$.
Now let g be a $\gamma_{R}\left(T_{i+1}\right)$-function such that $g\left(y_{3}\right)+g(z)$ is as large as possible. Then we must have $g\left(y_{3}\right)=2, g(z)=g\left(y_{1}\right)=g\left(y_{5}\right)=1$ and $g(y)=0$. Hence, the function g, restricted to T_{i} is an Roman dominating function of T_{i} and so $\gamma_{R}\left(T_{i+1}\right) \geq 5+\gamma_{R}\left(T_{i}\right)$. Now the result follows by Observation 2.

Lemma 9. If T_{i} is a tree with $\gamma_{R}\left(T_{i}\right)=\gamma_{o i R}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{9}, then $\gamma_{R}\left(T_{i+1}\right)=\gamma_{o i R}\left(T_{i+1}\right)$.

Proof. Let \mathcal{O}_{9} add a graph F_{3} and the edge $x y$. Since $x \in W_{T_{i}}$, there exists a $\gamma_{o i R}\left(T_{i}\right)$-function f such that $f(x) \geq 1$ and f can be extended to an outer-independent Roman dominating function of T_{i+1} by assigning a 2 to $y_{3}, 1$ to y_{1} and 0 to the vertices in $N\left(y_{3}\right)$. Hence, $\gamma_{o i R}\left(T_{i+1}\right) \leq \gamma_{o i R}\left(T_{i}\right)+3$.
Now let g be a $\gamma_{R}\left(T_{i+1}\right)$-function such that $g\left(y_{3}\right)$ is as large as possible. Clearly, $g\left(y_{3}\right)=2, g\left(y_{1}\right)=1$ and $g(y)=0$. Then the function g, restricted to T_{i} is an RDF of T_{i} yielding $\gamma_{R}\left(T_{i+1}\right) \geq 3+\gamma_{R}\left(T_{i}\right)$. Now the result follows by Observation 2.

The proof of the next lemma is similar to the proof of Lemma 9 and therefore it is omitted.

Lemma 10. If T_{i} is a tree with $\gamma_{R}\left(T_{i}\right)=\gamma_{o i R}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{10}, then $\gamma_{R}\left(T_{i+1}\right)=\gamma_{o i R}\left(T_{i+1}\right)$.

Theorem 4. If $T \in \mathcal{T}$, then $\gamma_{R}(T)=\gamma_{o i R}(T)$.

Proof. If $T \in\left\{P_{2}, P_{3}, P_{4}\right\}$, then obviously $\gamma_{R}(T)=\gamma_{o i R}(T)$. Suppose now that $T \in \mathcal{T}$. Then there exists a sequence of trees $T_{1}, T_{2}, \ldots, T_{k}(k \geq 1)$ such that $T_{1} \in$ $\left\{P_{2}, P_{3}, P_{4}\right\}, T=T_{k}$ and if $k \geq 2$, then T_{i+1} can be obtained from T_{i} by one of the Operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{10}$ for $i=1,2, \ldots, k-1$. We apply induction on the number of operations used to construct T. If $k=1$, the result is trivial. Assume the result holds for each tree $T \in \mathcal{T}$ which can be obtained from a sequence of operations of length $k-1$ and let $T^{\prime}=T_{k-1}$. By the induction hypothesis, we have $\gamma_{R}\left(T^{\prime}\right)=\gamma_{o i R}\left(T^{\prime}\right)$. Since $T=T_{k}$ is obtained by one of the Operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{10}$ from T^{\prime}, we conclude from the above Lemmas that $\gamma_{R}(T)=\gamma_{o i R}(T)$.

Now we are ready to prove our main result.
Theorem 5. Let T be a non-trivial tree. Then $\gamma_{R}(T)=\gamma_{o i R}(T)$ if and only if $T \in \mathcal{T}$.

Proof. According to Theorem 4, we need only to prove necessity. Let T be a tree of order $n \geq 3$ with $\gamma_{R}(T)=\gamma_{o i R}(T)$. The proof is by induction on n. If $n \leq 3$, then clearly $T \in \mathcal{T}$. Let $n \geq 4$ and let the statement hold for all trees of order less than n. Assume that T is a tree of order n with $\gamma_{R}(T)=\gamma_{o i R}(T)$. If $\operatorname{diam}(T) \leq 3$, then $T=P_{4}$ or T is a star or double star. If $T=P_{4}$, then obviously $T \in \mathcal{T}$, if T is a star, then T can be obtained from P_{3} by repeated application of operation \mathcal{O}_{1}, and if T is a double star different from P_{4}, then T can be obtained from P_{3} by applying operation \mathcal{O}_{2} once and operation \mathcal{O}_{1} repeatedly, and this implies that $T \in \mathcal{T}$. Hence let $\operatorname{diam}(T) \geq 4$.
Let $v_{1} v_{2} \ldots v_{k}(k \geq 5)$ be a diametral path in T such that $\operatorname{deg}_{T}\left(v_{2}\right)$ is as large as possible and root T at v_{k}. If $\operatorname{deg}_{T}\left(v_{2}\right) \geq 4$, then clearly $\gamma_{R}\left(T-v_{1}\right)=\gamma_{o i R}\left(T-v_{1}\right)$. It follows from the induction hypothesis that $T-v_{1} \in \mathcal{T}$ and hence T can be obtained from $T-v_{1}$ by Operation \mathcal{O}_{1} implying that $T \in \mathcal{T}$. Assume that $\operatorname{deg}_{T}\left(v_{2}\right) \leq 3$.
First let $\operatorname{deg}_{T}\left(v_{3}\right)=2$. Suppose that $T^{\prime}=T-T_{v_{3}}$. Clearly, any Roman dominating function of T^{\prime} can be extended to a Roman dominating function of T by assigning a 2 to v_{2} and a 0 to the vertices in $N_{T}\left(v_{2}\right)$ yielding

$$
\begin{equation*}
\gamma_{R}(T) \leq \gamma_{R}\left(T^{\prime}\right)+2 \tag{1}
\end{equation*}
$$

Similarly, any outer-independent Roman dominating function of T^{\prime} can be extended to an outer-independent Roman dominating function of T by assigning a 1 to v_{3}, a 2 to v_{2} and a 0 to the vertices in $L_{v_{2}}$ yielding $\gamma_{o i R}(T) \leq \gamma_{o i R}\left(T^{\prime}\right)+3$. On the other hand, assume that f is a $\gamma_{o i R}(T)$-function. Clearly $f\left(N\left[v_{2}\right]\right) \geq 2$. If $f\left(v_{3}\right) \leq 1$, then the function f restricted to T^{\prime} is an OIRDF of T^{\prime} that implies $\gamma_{o i R}(T) \geq \gamma_{o i R}\left(T^{\prime}\right)+2$. If $f\left(v_{3}\right)=2$, then $f\left(L_{v_{2}}\right) \geq 1$, and the function $g: V\left(T^{\prime}\right) \rightarrow\{0,1,2\}$ defined by $g\left(v_{4}\right)=\min \left\{f\left(v_{4}\right)+1,2\right\}$ and $g(x)=f(x)$ otherwise is an OIRDF of T^{\prime} of weight at most $\gamma_{o i R}(T)-2$ yielding $\gamma_{o i R}(T) \geq \gamma_{o i R}\left(T^{\prime}\right)+2$. Thus $\gamma_{o i R}(T)-3 \leq \gamma_{o i R}\left(T^{\prime}\right) \leq$ $\gamma_{o i R}(T)-2$. If $\gamma_{o i R}\left(T^{\prime}\right)=\gamma_{o i R}(T)-3$, then

$$
\gamma_{o i R}\left(T^{\prime}\right)=\gamma_{o i R}(T)-3=\gamma_{R}(T)-3 \leq \gamma_{R}\left(T^{\prime}\right)-1
$$

which is a contradiction by Observation 1. Hence,

$$
\begin{equation*}
\gamma_{o i R}\left(T^{\prime}\right)=\gamma_{o i R}(T)-2 \tag{2}
\end{equation*}
$$

By (1), (2) and Observation 3, we obtain $\gamma_{R}\left(T^{\prime}\right)=\gamma_{o i R}\left(T^{\prime}\right)$. By the induction hypothesis we have $T^{\prime} \in \mathcal{T}$. Now we show that $v_{4} \in W_{T^{\prime}}$. Let h be a $\gamma_{o i R}(T)$-function such that $h\left(v_{4}\right)$ is as large as possible. Clearly $h\left(N\left[v_{2}\right]\right) \geq 2$. Since $\gamma_{R}(T)=\gamma_{o i R}(T)$, h is also a $\gamma_{R}(T)$-function. If $h\left(v_{4}\right) \geq 1$, then h restricted to T^{\prime} is a $\gamma_{o i R}\left(T^{\prime}\right)$-function and we are done. Assume that $h\left(v_{4}\right)=0$. Since h is an OIRDF of T, we must have $h\left(v_{3}\right) \geq 1$. If $h\left(v_{3}\right)=1$, then to Roman dominate the vertices of v_{1}, v_{2}, we must have $h\left(N\left[v_{2}\right]-\left\{v_{3}\right\}\right) \geq 2$. But then the function $h_{1}: V(T) \rightarrow\{0,1,2\}$ defined by $h_{1}\left(v_{2}\right)=2, h_{1}(x)=0$ for $x \in N\left(v_{2}\right)$ and $h_{1}(x)=h(x)$ otherwise, is an RDF of T of
weight less than $\omega(h)$ which is a contradiction. Assume that $h\left(v_{3}\right)=2$. To Roman dominate v_{1}, we must have $f\left(v_{1}\right)+f\left(v_{2}\right) \geq 1$. Now the function $h_{2}: V(T) \rightarrow\{0,1,2\}$ defined by $h_{2}\left(v_{4}\right)=\min \left\{2, h\left(v_{4}\right)+1\right\}, h_{2}\left(v_{2}\right)=2, h_{2}(x)=0$ for $x \in N\left(v_{2}\right)$ and $h_{2}(x)=h(x)$ otherwise, is an OIRDF of T of weight $\omega(h)$ contradicting the choice of h. Thus $v_{4} \in W_{T^{\prime}}$. Now T can be obtained from T^{\prime} by Operation \mathcal{O}_{3} and so $T \in \mathcal{T}$. Now, let $\operatorname{deg}_{T}\left(v_{3}\right) \geq 3$. We consider the following cases.
Case 1. $\operatorname{deg}_{T}\left(v_{2}\right)=3$.
We distinguish the following subcases.
Subcase $1.1 v_{3}$ has two children with depth 0 or v_{3} has one child with depth 1 other than v_{2}.
Let $T^{\prime}=T-T_{v_{2}}$. Clearly, any Roman dominating function of T^{\prime} can be extended to a Roman dominating function of T by assigning a 2 to v_{2} and 0 to the vertices in $L_{v_{2}}$ yielding

$$
\begin{equation*}
\gamma_{R}(T) \leq \gamma_{R}\left(T^{\prime}\right)+2 \tag{3}
\end{equation*}
$$

On the other hand, let f be a $\gamma_{o i R}(T)$-function such that $f\left(v_{2}\right)+f\left(v_{3}\right)$ is as large as possible. Clearly, $f\left(v_{2}\right)=2$. If $f\left(v_{3}\right) \geq 1$, then the function f, restricted to T^{\prime} is an outer-independent Roman dominating function of T^{\prime} which implies that $\gamma_{o i R}\left(T^{\prime}\right) \leq \gamma_{o i R}(T)-2$. Assume that $f\left(v_{3}\right)=0$. We deduce from the assumption that v_{3} is not a strong support vertex, and thus v_{3} has one child with depth 1 , say u, different from v_{2}. Since f is an OIRDF of T, we have $f(u) \geq 1$. To Roman dominate the leaves adjacent to u, we must have $f(u)+f(L(u)) \geq 2$. Without loss of generality, we may assume that $f(u)=2$. Now the function f, restricted to T^{\prime} is an outer-independent Roman dominating function of T^{\prime} which implies that $\gamma_{o i R}\left(T^{\prime}\right) \leq \gamma_{o i R}(T)-2$. Thus

$$
\begin{equation*}
\gamma_{o i R}\left(T^{\prime}\right) \leq \gamma_{o i R}(T)-2 \tag{4}
\end{equation*}
$$

We conclude from (3), (4), Observation 3 and the induction hypothesis that $T^{\prime} \in \mathcal{T}$. Now T can be obtained from T^{\prime} by Operation \mathcal{O}_{2} and so $T \in \mathcal{T}$.
Subcase $1.2 \operatorname{deg}_{T}\left(v_{3}\right)=3$ and v_{3} has one child with depth 0 .
Assume that $T^{\prime}=T-T_{v_{3}}$ and $L\left(v_{3}\right)=\{u\}$. Clearly, any Roman dominating function of T^{\prime} can be extended to a Roman dominating function of T by assigning weight 2 to $v_{2}, 1$ to u and 0 to the vertices in $N_{T}\left(v_{2}\right)$ which implies that

$$
\begin{equation*}
\gamma_{R}(T) \leq \gamma_{R}\left(T^{\prime}\right)+3 \tag{5}
\end{equation*}
$$

Consider now a $\gamma_{o i R}(T)$-function f such that $f\left(v_{2}\right)+f(u)$ is as large as possible. Then we must have $f\left(v_{2}\right)=2, f(u)=1$ and $f(x)=0$ for $x \in N\left(v_{2}\right)$. Then the function f, restricted to T^{\prime} is an outer-independent Roman dominating function of T^{\prime} which implies that

$$
\begin{equation*}
\gamma_{o i R}\left(T^{\prime}\right) \leq \gamma_{o i R}(T)-3 \tag{6}
\end{equation*}
$$

It follows from (3), (4) and Observation 3 that $\gamma_{o i R}\left(T^{\prime}\right)=\gamma_{R}\left(T^{\prime}\right)$ and by the induction hypothesis we have $T^{\prime} \in \mathcal{T}$. Since $\gamma_{o i R}\left(T^{\prime}\right)=\gamma_{R}\left(T^{\prime}\right)$, the function f restricted to T^{\prime} is a $\gamma_{o i R}\left(T^{\prime}\right)$-function. Since f is an OIRDF of T and $f\left(v_{3}\right)=0$, we deduce that $f\left(v_{4}\right) \geq 1$ and so $v_{4} \in W_{T^{\prime}}$. Now T can be obtained from T^{\prime} by Operation \mathcal{O}_{5} yielding $T \in \mathcal{T}$.
Case 2. $\operatorname{deg}_{T}\left(v_{2}\right)=2$.
First let $\operatorname{deg}_{T}\left(v_{3}\right) \geq 4$. Assume that $T^{\prime}=T-\left\{v_{1}, v_{2}\right\}$. By the choice of diametrical path, v_{3} is a strong support vertex or is a weak support vertex and there is a path $x x_{2} x_{1}$ such that $\operatorname{deg}\left(x_{1}\right)=1$ and $\operatorname{deg}\left(x_{2}\right)=2$ or there are two paths $x x_{2} x_{1}$ and $x z_{2} z_{1}$ such that $\operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(z_{1}\right)=1$ and $\operatorname{deg}\left(x_{2}\right)=\operatorname{deg}\left(z_{2}\right)=2$. If f is a $\gamma_{o i R}(T)$ function, then f is a $\gamma_{R}(T)$-function (since $\gamma_{o i R}(T)=\gamma_{R}(T)$) and we must have $f\left(v_{3}\right)=2$ and $f\left(v_{1}\right)=1$. Thus the function f restricted to T^{\prime} is an OIRDF of T^{\prime} and so $\gamma_{o i R}(T) \geq \gamma_{o i R}\left(T^{\prime}\right)+1$. On the other hand, if g is a $\gamma_{R}\left(T^{\prime}\right)$-function such that $g\left(v_{3}\right)$ is as large as possible, then clearly $g\left(v_{3}\right)=2$ and g can be extended to an RDF of T by assigning a 1 to v_{1} and a 0 to v_{2} yielding $\gamma_{R}(T) \leq \gamma_{R}\left(T^{\prime}\right)+1$. We conclude from Observation 3 that $\gamma_{o i R}\left(T^{\prime}\right)=\gamma_{R}\left(T^{\prime}\right)$ and by the induction hypothesis we have $T^{\prime} \in \mathcal{T}$. Now T can be obtained from T^{\prime} by Operation \mathcal{O}_{6} and so $T \in \mathcal{T}$.
Now, let $\operatorname{deg}_{T}\left(v_{3}\right)=3$. Then $T_{v_{3}}$ is a pendant path P_{4} or a pendant path P_{5} in T. If $\operatorname{diam}(T)=4$, then T can be obtained from P_{4} by Operation \mathcal{O}_{6} or from P_{2} by Operations $\mathcal{O}_{3}, \mathcal{O}_{6}$ and so $T \in \mathcal{T}$. Suppose that $\operatorname{diam}(T) \geq 5$. We distinguish the following subcases.
Subcase 2.1. v_{3} is a support vertex and $\operatorname{deg}_{T}\left(v_{4}\right)=2$.
Let u be the leaf adjacent to v_{3} and let $T^{\prime}=T-T_{v_{4}}$. Clearly, any Roman dominating function of T^{\prime} can be extended to a Roman dominating function of T by assigning a 2 to $v_{3}, 1$ to v_{1} and 0 to v_{2}, v_{4}, u which implies that $\gamma_{R}(T) \leq \gamma_{R}\left(T^{\prime}\right)+3$. On the other hand, let f be a $\gamma_{o i R}(T)$-function such that $f\left(v_{3}\right)$ is as large as possible. Then we must have $f\left(v_{3}\right)=2, f\left(v_{1}\right)=1$ and $f\left(v_{2}\right)=f(u)=0$. Now the function $g: V\left(T^{\prime}\right) \rightarrow$ $\{0,1,2\}$ defined by $g\left(v_{5}\right)=\min \left\{2, f\left(v_{5}\right)+f\left(v_{4}\right)\right\}$ and $g(x)=f(x)$ otherwise, is an OIRDF of T^{\prime} of weight $\gamma_{o i R}(T)-3$ and this implies that $\gamma_{o i R}\left(T^{\prime}\right) \leq \gamma_{o i R}(T)-3$. It follows that Observation 3 that $\gamma_{o i R}\left(T^{\prime}\right)=\gamma_{R}\left(T^{\prime}\right)$ and so g is a $\gamma_{R}\left(T^{\prime}\right)$-function yielding $v_{5} \in W_{T^{\prime}}$. By the induction hypothesis, we obtain $T^{\prime} \in \mathcal{T}$. Now T can be obtained from T^{\prime} by Operation \mathcal{O}_{9} and so $T \in \mathcal{T}$.

Subcase 2.2. $\quad v_{3}$ is a support vertex and v_{4} has a child with depth 2 .
Let u be the leaf adjacent to v_{3} and let $v_{4} y_{3} y_{2} y_{1}$ be a path in T such that $y_{3} \notin\left\{v_{3}, v_{5}\right\}$. By the choice of diametrical path we have $\operatorname{deg}\left(y_{2}\right)=1$. Considering above arguments, we may assume that $T_{y_{3}}=P_{4}$ or $T_{y_{3}}=P_{5}$ since otherwise we can rename y_{i} as v_{i} and are in the case that $\operatorname{deg}_{T}\left(v_{3}\right)=2$ which we have considered already. Let $T^{\prime}=T-T_{v_{3}}$. As in the Subcase 2.1, we have $\gamma_{R}(T) \leq \gamma_{R}\left(T^{\prime}\right)+3$. Now let f be a $\gamma_{o i R}(T)$-function such that $f\left(y_{3}\right)$ is as large as possible. Clearly, $f\left(y_{3}\right)=2$ and $f(u)+f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{3}\right) \geq 3$. Hence the function f restricted to T^{\prime} is an OIRDF of T^{\prime} of weight at most $\gamma_{o i R}(T)-3$ implying that $\gamma_{o i R}(T) \geq \gamma_{o i R}\left(T^{\prime}\right)+3$. It follows that Observation 3 and the induction hypothesis that $T^{\prime} \in \mathcal{T}$. Since T can be obtained from T^{\prime} by Operation \mathcal{O}_{4}, we have $T \in \mathcal{T}$.

Subcase 2.3. $\quad v_{3}$ is a support vertex and v_{4} has a child with depth 1 .
Let u be the leaf adjacent to v_{3} and let $v_{4} y_{2} y_{1}$ be a path in T such that $y_{2} \neq v_{5}$. Let $T^{\prime}=T-T_{v_{3}}$. As in the Subcase 2.1, we have $\gamma_{R}(T) \leq \gamma_{R}\left(T^{\prime}\right)+3$. Now let f be a $\gamma_{o i R}(T)$-function such that $f\left(v_{3}\right)+f\left(y_{2}\right)$ is as large as possible. Then clearly, $f\left(v_{3}\right)=2, f(u)+f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{3}\right) \geq 3$ and either $f\left(v_{4}\right) \geq 1$ or $f\left(v_{4}\right)=0$ and $f\left(y_{2}\right)=2$. Hence, the function f restricted to T^{\prime} is an OIRDF of T^{\prime} of weight at most $\gamma_{o i R}(T)-3$ yielding $\gamma_{o i R}(T) \geq \gamma_{o i R}\left(T^{\prime}\right)+3$. By Observation 3 and the induction hypothesis, we have $T^{\prime} \in \mathcal{T}$. Since T can be obtained from T^{\prime} by Operation \mathcal{O}_{4}, we have $T \in \mathcal{T}$.

Subcase 2.4. v_{3} is a support vertex and v_{4} is a strong support vertex.
Let u be the leaf adjacent to v_{3} and let $T^{\prime}=T-T_{v_{3}}$. As in the Subcase 2.1, we have $\gamma_{R}(T) \leq \gamma_{R}\left(T^{\prime}\right)+3$. Consider now a $\gamma_{o i R}(T)$-function f such that $f\left(v_{4}\right)=2$ to according Proposition 1. Clearly, $f(u)+f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{3}\right) \geq 3$ and the function f restricted to T^{\prime} is an OIRDF of T^{\prime} of weight at most $\gamma_{o i R}(T)-3$ yielding $\gamma_{o i R}(T) \geq$ $\gamma_{o i R}\left(T^{\prime}\right)+3$. By Observation 3 and the induction hypothesis, we have $T^{\prime} \in \mathcal{T}$. Now, T can be obtained from T^{\prime} by Operation \mathcal{O}_{4}, we have $T \in \mathcal{T}$.
Subcase 2.5. $\quad v_{3}$ is a support vertex, $\operatorname{deg}_{T}\left(v_{4}\right)=3$ and v_{4} has a child with depth 0 . Let z be the leaf adjacent to v_{4}. If $\operatorname{diam}(T)=4$, then T can be obtained from P_{3} by Operation \mathcal{O}_{4} and so $T \in \mathcal{T}$. Let $\operatorname{diam}(T) \geq 5$ and let $T^{\prime}=T-T_{v_{4}}$. Clearly, any $\gamma_{R}\left(T^{\prime}\right)$-function can be extended to an RDF of T by assigning a 2 to v_{3}, a 1 to v_{1}, z and a 0 to u, v_{2}, v_{4} and so

$$
\begin{equation*}
\gamma_{R}(T) \leq \gamma_{R}\left(T^{\prime}\right)+4 \tag{7}
\end{equation*}
$$

Let f be a $\gamma_{o i R}(T)$-function such that $f\left(v_{3}\right)+f(z)$ is as large as possible. Clearly, $f\left(v_{3}\right)=2, f\left(V\left(T_{v_{3}}\right)\right) \geq 3$ and $f\left(V\left(T_{v_{4}}\right)\right) \geq 4$. We claim that $f\left(v_{4}\right)=0$. Suppose, to the contrary, that $f\left(v_{4}\right) \geq 1$. Since $\gamma_{R}(T)=\gamma_{o i R}(T), f$ is also a $\gamma_{R}(T)$-function. This implies that $f\left(v_{4}\right)=2$, otherwise we must have $f(z)=1$ and the function $h: V(T) \rightarrow\{0,1,2\}$ defined by $h\left(v_{4}\right)=0$, and $h(t)=f(t)$ otherwise, is an RDF of T of weight less that $\omega(f)=\gamma_{R}(T)$ which is a contradiction. Now the function $g: V(T) \rightarrow\{0,1,2\}$ defined by $g\left(v_{4}\right)=0, g(z)=1, g\left(v_{5}\right)=\min \left\{2, f\left(v_{5}\right)+1\right\}$ and $g(x)=f(x)$ otherwise, is a $\gamma_{o i R}(T)$-function contradicting the choice of f. Thus $f\left(v_{4}\right)=0$ and so $f\left(v_{5}\right) \geq 1$ because f is an OIRDF of T. Then the function f restricted to T^{\prime} is an OIRDF of T^{\prime} and so

$$
\begin{equation*}
\gamma_{o i R}(T) \geq \gamma_{o i R}\left(T^{\prime}\right)+4 \tag{8}
\end{equation*}
$$

We deduce from (7), (8) and Observation 3 that $\gamma_{o i R}\left(T^{\prime}\right)=\gamma_{R}\left(T^{\prime}\right)$ and so f restricted to T^{\prime} is a $\gamma_{o i R}\left(T^{\prime}\right)$-function implying that $v_{5} \in W_{T^{\prime}}$. By the induction hypothesis, we have $T^{\prime} \in \mathcal{T}$ and since T can be obtained from T^{\prime} by Operation \mathcal{O}_{10}, we have $T \in \mathcal{T}$.
Subcase 2.6. There is a pendant path $v_{3} y_{2} y_{1}$ such that $y_{2} \notin\left\{v_{2}, v_{4}\right\}$, and $\operatorname{deg}_{T}\left(v_{4}\right)=2$.
Then $T_{v_{3}}=P_{5}$. If $\operatorname{diam}(T)=4$, then T can be obtained from P_{5} by Operation \mathcal{O}_{6} and so $T \in \mathcal{T}$. Suppose $\operatorname{diam}(T) \geq 5$ and let $T^{\prime}=T-T_{v_{4}}$. Clearly, any Roman
dominating function of T^{\prime} can be extended to a Roman dominating function of T by assigning a 2 to $v_{3}, 1$ to v_{1}, y_{1} and 0 to v_{2}, y_{2}, v_{4} which implies that

$$
\begin{equation*}
\gamma_{R}(T) \leq \gamma_{R}\left(T^{\prime}\right)+4 \tag{9}
\end{equation*}
$$

Consider now a $\gamma_{o i R}(T)$-function f such that $f\left(v_{3}\right)$ is as large as possible. Then we must have $f\left(v_{3}\right)=2, f\left(v_{1}\right)=f\left(y_{1}\right)=1$ and $f\left(v_{2}\right)=f\left(y_{2}\right)=0$. Now the function $g: V\left(T^{\prime}\right) \rightarrow\{0,1,2\}$ defined by $g\left(v_{5}\right)=\min \left\{2, f\left(v_{5}\right)+f\left(v_{4}\right)\right\}$ and $g(x)=f(x)$ otherwise, is an OIRDF of T^{\prime} of weight $\gamma_{o i R}(T)-4$ yielding

$$
\begin{equation*}
\gamma_{o i R}\left(T^{\prime}\right) \leq \gamma_{o i R}(T)-4 \tag{10}
\end{equation*}
$$

By inequalities (9), (10) and Observation 3, we have $\gamma_{o i R}\left(T^{\prime}\right)=\gamma_{R}\left(T^{\prime}\right)$ and so g is a $\gamma_{R}\left(T^{\prime}\right)$-function. Since f is an OIRDF of T, we must have $f\left(v_{4}\right)+f\left(v_{5}\right) \geq 1$ and so $g\left(v_{5}\right)=\min \left\{2, f\left(v_{5}\right)+f\left(v_{4}\right)\right\} \geq 1$ yielding $v_{5} \in W_{T^{\prime}}$. By the induction hypothesis, we obtain $T^{\prime} \in \mathcal{T}$. Since T can be obtained from T^{\prime} by Operation \mathcal{O}_{7}, we have $T \in \mathcal{T}$.
Subcase 2.7. There is a pendant path $v_{3} y_{2} y_{1}$ such that $y_{2} \notin\left\{v_{2}, v_{4}\right\}$, and v_{4} has a child with depth 2 .
Let $v_{4} z_{3} z_{2} z_{1}$ be a path in T such that $z_{3} \notin\left\{v_{3}, v_{5}\right\}$. By the choice of diametrical path we have $\operatorname{deg}\left(z_{2}\right)=1$. If $\operatorname{deg}\left(z_{3}\right)=2$, then T can be obtained from $T-T_{z_{3}}$ by Operation \mathcal{O}_{3} (see the third paragraph of the proof), if $\operatorname{deg}\left(z_{3}\right) \geq 4$, then T can be obtained from $T-\left\{z_{1}, z_{2}\right\}$ by Operation \mathcal{O}_{6} (see the first paragraph of Case 2) and if $\operatorname{deg}\left(v_{3}\right)=3$ and z_{3} is a support vertex, then T can be obtained from $T-T_{z_{3}}$ by Operation \mathcal{O}_{4} (see Subcase 2.2). Henceforth, we may assume that $T_{y_{3}}=P_{5}$. Let $T^{\prime}=T-T_{v_{3}}$. Clearly, any Roman dominating function of T^{\prime} can be extended to a Roman dominating function of T by assigning a 2 to $v_{3}, 1$ to v_{1}, y_{1} and 0 to v_{2}, y_{2} and so

$$
\begin{equation*}
\gamma_{R}(T) \leq \gamma_{R}\left(T^{\prime}\right)+4 \tag{11}
\end{equation*}
$$

Consider now a $\gamma_{o i R}(T)$-function f such that $f\left(v_{3}\right)+f\left(z_{3}\right)$ is as large as possible. Then we must have $f\left(v_{3}\right)=f\left(z_{3}\right)=2, f\left(v_{1}\right)=f\left(y_{1}\right)=1$ and $f\left(v_{2}\right)=f\left(y_{2}\right)=0$, and f restricted to T^{\prime} is an OIRDF of T^{\prime} of weight $\gamma_{o i R}(T)-4$ and so

$$
\begin{equation*}
\gamma_{o i R}(T) \geq \gamma_{o i R}\left(T^{\prime}\right)+4 \tag{12}
\end{equation*}
$$

By inequalities (11), (12), Observation 3 and the induction hypothesis $T^{\prime} \in \mathcal{T}$. Since T can be obtained from T^{\prime} by Operation \mathcal{O}_{4}, we have $T \in \mathcal{T}$.
Subcase 2.8. There is a pendant path $v_{3} y_{2} y_{1}$ such that $y_{2} \notin\left\{v_{2}, v_{4}\right\}$, and v_{4} has a child z_{2} with depth 1 .
Let $v_{4} z_{2} z_{1}$ be a path in T. Assume that $T^{\prime}=T-T_{v_{3}}$. As in the Subcase 2.7, we can see that $\gamma_{R}(T) \leq \gamma_{R}\left(T^{\prime}\right)+4$. Now let f be a $\gamma_{o i R}(T)$-function such that $f\left(v_{3}\right)+f\left(z_{2}\right)$ is as large as possible. Then clearly, $f\left(v_{3}\right)=2, f\left(y_{2}\right)+f\left(y_{1}\right)+f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{3}\right) \geq 4$ and either $f\left(v_{4}\right) \geq 1$ or $f\left(v_{4}\right)=0$ and $f\left(z_{2}\right)=2$. Hence, the function f restricted to
T^{\prime} is an OIRDF of T^{\prime} of weight at most $\gamma_{o i R}(T)-4$ yielding $\gamma_{o i R}(T) \geq \gamma_{o i R}\left(T^{\prime}\right)+4$. By Observation 3 and the induction hypothesis, we obtain $T^{\prime} \in \mathcal{T}$ and since T can be obtained from T^{\prime} by Operation \mathcal{O}_{4}, we have $T \in \mathcal{T}$.
Subcase 2.9. There is a pendant path $v_{3} y_{2} y_{1}$ such that $y_{2} \notin\left\{v_{2}, v_{4}\right\}$, and v_{4} is a strong support vertex.
Let $T^{\prime}=T-T_{v_{3}}$. As in the subcase 2.4, we can see that $T^{\prime} \in \mathcal{T}$, and since T can be obtained from T^{\prime} by Operation \mathcal{O}_{4}, we have $T \in \mathcal{T}$.
Subcase 2.10. There is a pendant path $v_{3} y_{2} y_{1}$ such that $y_{2} \notin\left\{v_{2}, v_{4}\right\}, \operatorname{deg}_{T}\left(v_{4}\right)=3$ and v_{4} has a child with depth one.
Let z be the child of v_{4} with depth one and let $T^{\prime}=T-T_{v_{4}}$. Clearly, any $\gamma_{R}\left(T^{\prime}\right)$ function can be extended to an RDF of T by assigning a 2 to v_{3}, a 1 to v_{1}, y_{1}, z and a 0 to y_{2}, v_{2}, v_{4} and so $\gamma_{R}(T) \leq \gamma_{R}\left(T^{\prime}\right)+5$. Consider now a $\gamma_{o i R}(T)$-function f such that $f\left(v_{3}\right)+f(z)$ is as large as possible. Clearly, $f\left(v_{3}\right)=2, f\left(V\left(T_{v_{3}}\right)\right) \geq 4$ and $f\left(V\left(T_{v_{4}}\right)\right) \geq 5$. We claim that $f\left(v_{4}\right)=0$. Suppose, to the contrary, that $f\left(v_{4}\right) \geq 1$. Since $\gamma_{R}(T)=\gamma_{o i R}(T), f$ is also a $\gamma_{R}(T)$-function. This implies that $f\left(v_{4}\right)=2$, otherwise we must have $f(z)=1$ and the function $h: V(T) \rightarrow\{0,1,2\}$ defined by $h\left(v_{4}\right)=0$, and $h(t)=f(t)$ otherwise, is an RDF of T of weight less that $\omega(f)=\gamma_{R}(T)$ which is a contradiction. Define $g: V(T) \rightarrow\{0,1,2\}$ by $g\left(v_{4}\right)=$ $0, g(z)=1, g\left(v_{5}\right)=\min \left\{2, f\left(v_{5}\right)+1\right\}$ and $g(x)=f(x)$ otherwise. Clearly, g is a $\gamma_{o i R}(T)$-function contradicting the choice of f. Thus $f\left(v_{4}\right)=0$ and so $f\left(v_{5}\right) \geq 1$ because f is an OIRDF of T. Now the function f restricted to T^{\prime} is an OIRDF of T^{\prime} and so $\gamma_{o i R}(T) \geq \gamma_{o i R}\left(T^{\prime}\right)+5$. We deduce from Observation 3 that $\gamma_{o i R}\left(T^{\prime}\right)=\gamma_{R}\left(T^{\prime}\right)$ and hence f restricted to T^{\prime} is a $\gamma_{o i R}\left(T^{\prime}\right)$-function with $f\left(v_{5}\right) \geq 1$ implying that $v_{5} \in W_{T^{\prime}}$. On the other hand, by the induction hypothesis, we have $T^{\prime} \in \mathcal{T}$ and since T can be obtained from T^{\prime} by Operation \mathcal{O}_{8}, we have $T \in \mathcal{T}$. This completes the proof.

References

[1] H. Abdollahzadeh Ahangar, A. Bahremandpour, S.M. Sheikholeslami, N.D. Soner, Z. Tahmasbzadehbaee, and L. Volkmann, Maximal Roman domination numbers in graphs, Util. Math. 103 (2017), 245-258.
[2] H. Abdollahzadeh Ahangar, M. Chellali, and V. Samodivkin, Outer independent Roman dominating functions in graphs, Int. J. Computer Math. 94 (2017), no. 12, 2547-2557.
[3] H. Abdollahzadeh Ahangar, T.W. Haynes, and J.C. Valenzuela-Tripodoro, Mixed Roman domination in graphs, Bull. Malays. Math. Sci. Soc. 40 (2017), no. 4, 1443-1454.
[4] H. Abdollahzadeh Ahangar, M.A. Henning, C. Löwenstein, Y. Zhao, and V. Samodivkin, Signed Roman domination in graphs, J. Comb. Optim. 27 (2014), no. 2, 241-255.
[5] M. Adabi, E. Ebrahimi Targhi, N. Jafari Rad, and M. Saied Moradi, Properties of independent Roman domination in graphs, Australas. J. Combin. 52 (2012), 11-18.
[6] R.A. Beeler, T.W. Haynes, and S.T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016), 23-29.
[7] M. Chellali, T.W. Haynes, S.T. Hedetniemi, and A.A. McRae, Roman \{2\}domination, Discrete Appl. Math. 204 (2016), 22-28.
[8] E.J. Cockayne, P.A. Dreyer Jr, S.M. Hedetniemi, and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), no. 1-3, 11-22.
[9] M.A. Henning and S.T. Hedetniemi, Defending the Roman empirea new strategy, Discrete Math. 266 (2003), no. 1-3, 239-251.
[10] C.S. ReVelle and K.E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000), no. 7, 585-594.
[11] S.M. Sheikholeslami and L. Volkmann, Signed Roman domination in digraphs, J. Comb. Optim. 30 (2015), no. 3, 456-467.
[12] I. Stewart, Defend the Roman empire!, Sci. Amer. 281 (1999), no. 6, 136-138.
[13] L. Volkmann, Signed total Roman domination in graphs, J. Comb. Optim. 32 (2016), no. 3, 855-871.
[14] _ Signed total Roman domination in digraphs, Discus. Math. Graph Theory 37 (2017), no. 1, 261-272.

[^0]: * Corresponding Author

