
CCO
Commun. Comb. Optim.

c© 2019 Azarbaijan Shahid Madani University

Communications in Combinatorics and Optimization

Vol. 4 No. 2, 2019 pp.185-199

DOI: 10.22049/CCO.2019.26333.1097

On trees with equal Roman domination and

outer-independent Roman domination number

S. Nazari-Moghaddam, S.M. Sheikholeslami∗

Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, I.R. Iran
{s.nazari;s.m.sheikholeslami}@azaruniv.ac.ir

Received: 2 August 2018; Accepted: 9 April 2019
Published Online: 12 April 2019

In honor of Lutz Volkmann on the occasion of his seventy-fifth birthday.

Abstract: A Roman dominating function (RDF) on a graph G is a function f :

V (G) → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is

adjacent to at least one vertex v for which f(v) = 2. A Roman dominating function f is
called an outer-independent Roman dominating function (OIRDF) on G if the set {v ∈
V | f(v) = 0} is independent. The (outer-independent) Roman domination number

γR(G) (γoiR(G)) is the minimum weight of an RDF (OIRDF) on G. Clearly for any
graph G, γR(G) ≤ γoiR(G). In this paper, we provide a constructive characterization

of trees T with γR(T ) = γoiR(T ).
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1. Introduction

Throughout this paper, G is a simple graph with vertex set V (G) and edge set E(G)

(briefly V,E). The order |V | of G is denoted by n = n(G). For every vertex v ∈ V (G),

the open neighborhood of v is the set NG(v) = N(v) = {u ∈ V (G) | uv ∈ E(G)} and

its closed neighborhood is the set NG[v] = N [v] = N(v) ∪ {v}. The degree of a vertex

v ∈ V is deg(v) = |N(v)|. A leaf of G is a vertex with degree one in G, a support vertex

is a vertex adjacent to a leaf, a strong support vertex is a support vertex adjacent to

at least two leaves, an end support vertex is a support vertex whose all neighbors with

exception at most one are leaves, and a weak support vertex is a support vertex with

exactly one leaf neighbor. For every vertex v ∈ V (G), the set of all leaves adjacent to
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v is denoted by Lv. A double star DSp,q is a tree containing exactly two non-pendant

vertices which one is adjacent to p leaves and the other is adjacent to q leaves. We

denote by Pn the path on n vertices. The distance dG(u, v) between two vertices u

and v in a connected graph G is the length of a shortest u−v path in G. The diameter

of a graph G, denoted by diam(G), is the greatest distance between two vertices of

G. For a vertex v in a rooted tree T , let C(v) denote the set of children of v, D(v)

denotes the set of descendants of v and D[v] = D(v) ∪ {v}. Also, the depth of v,

depth(v), is the largest distance from v to a vertex in D(v). The maximal subtree

at v is the subtree of T induced by D[v], and is denoted by Tv. A proper induced

subgraph H of a graph G is called a pendant subgraph if there is exactly one edge

between V (H) and V (G)− V (H).

A function f : V (G) → {0, 1, 2} is called a Roman dominating function (RDF) on

G if every vertex u ∈ V for which f(u) = 0 is adjacent to at least one vertex v for

which f(v) = 2. The weight of an RDF is the value f(V (G)) =
∑

u∈V (G) f(u). The

Roman domination number γR(G) is the minimum weight of an RDF on G. Roman

domination was introduced by Cockayne et al. in [8] and was inspired by the work of

ReVelle and Rosing [10] and Stewart [12]. It is worth mentioning that since 2004, more

than hundred papers have been published on this topic, where several new variations

were introduced: weak Roman domination [9], Roman {2}-domination [7], maximal

Roman domination [1], mixed Roman domination [3], double Roman domination

[6], independent Roman domination [5], signed Roman domination [4, 11], signed

total Roman domination [13, 14] and recently outer-independent Roman domination

introduced by [2].

For a Roman dominating function f , let Vi = {v ∈ V | f(v) = i} for i = 0, 1, 2.

Since these three sets determine f , we can equivalently write f = (V0, V1, V2) (or

f = (V f
0 , V

f
1 , V

f
2 ) to refer f). We note that ω(f) = |V1|+ 2|V2|.

A function f : V (G)→ {0, 1, 2} is an outer-independent Roman dominating function

(OIRDF) on G if f is an RDF and the set {v ∈ V | f(v) = 0} is an independent set.

The outer-independent Roman domination number γoiR(G) is the minimum weight of

an OIRDF on G. The concept of outer-independent Roman domination in graphs was

introduced by Ahangar et al. in [2]. Since each outer-independent Roman dominating

function is a Roman dominating function, we have the following observation.

Observation 1. For every graph G, γoiR(T ) ≥ γR(T ).

In this paper, we provide a constructive characterization of trees T with γR(T ) =

γoiR(T ).

We make use of the following observations in this paper.

Observation 2. Let H be a subgraph of a graph G. If γoiR(H) = γR(H), γoiR(G) ≤
γoiR(H)+s and γR(G) ≥ γR(H)+s for some non-negative integer s, then γR(G) = γoiR(G),
γoiR(G) = γoiR(H) + s and γR(G) = γR(H) + s.
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Proof. We deduce from the assumptions and Observation 1 that

γoiR(G) ≥ γR(G) ≥ γR(H) + s = γoiR(H) + s ≥ γoiR(G).

Hence, all inequalities occurring in above chain, become equalities and so γR(G) =

γoiR(G), γoiR(G) = γoiR(H) + s and γR(G) = γR(H) + s.

Observation 3. Let H be a subgraph of a graph G. If γR(G) = γoiR(G), γR(G) ≤
γR(H) + s and γoiR(G) ≥ γoiR(H) + s for some non-negative integer s, then γR(H) =
γoiR(H), γoiR(G) = γoiR(H) + s and γR(G) = γR(H) + s.

Proof. By Observation 1 and the assumptions, we have

γoiR(G) = γR(G) ≤ γR(H) + s ≤ γoiR(H) + s ≤ γoiR(G).

Thus, all inequalities occurring in above chain, become equalities and so γR(H) =

γoiR(H), γoiR(G) = γoiR(H) + s and γR(G) = γR(H) + s.

2. A characterization of trees T with γR(T ) = γoiR(T )

In this section we give a constructive characterization of all trees T satisfying γR(T ) =

γoiR(T ). We start with a definition.

Definition 1. For a graph G and each vertex v ∈ V (G), we say v has property P in G if
there exists a γoiR(G)-function f such that f(v) 6= 0. Define

WG = {v | v has property P in G}.

Proposition 1. Let G be a graph and v be a strong support vertex in G. Then there
exists a γoiR(G)-function (resp. γR(G)-function) f such that f(v) = 2.

Proof. Suppose w1, w2 ∈ Lv and let f be a γoiR(G)-function. If f(v) = 2, then we

are done. Let f(v) ≤ 1. If f(v) = 1, then we must have f(w1) = f(w2) = 1 and the

function g : V (G)→ {0, 1, 2} defined by g(w1) = g(w2) = 0, g(v) = 2 and g(u) = f(u)

otherwise, is an OIRDF of G of weight less than γoiR(G) which is a contradiction.

Hence, we assume f(v) = 0. Since f is an OIRDF of G, we have f(x) ≥ 1 for each

x ∈ N(v). Now the function g defined above, is a γoiR(G)-function with g(v) = 2, as

desired.

Using a similar argument, we can see that there exists a γR(G)-function f such that

f(v) = 2.

Corollary 1. Any strong support vertex of a graph G, has property P in G.
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Figure 1. The graph F1 used in Operation O7
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Figure 2. The graph F2 used in Operation O8

In order to presenting our constructive characterization, we define a family of trees

as follows. Let T be the family of trees T that can be obtained from a sequence

T1, T2, . . . , Tk of trees for some k ≥ 1, where T1 ∈ {P2, P3, P4} and T = Tk. If i ≥ 2,

Ti+1 can be obtained from Ti by one of the following operations.

Operation O1: If x ∈ V (Ti) is a strong support vertex, then O1 adds a pendant

edge xy to obtain Ti+1.

Operation O2: If x ∈ V (Ti) is a strong support vertex or is adjacent to the center

of a pendant star K1,r (r ≥ 1), then O2 adds a star K1,2 and joins x to the

center of K1,2 to obtain Ti+1.

Operation O3: If x ∈WTi , then O3 adds a star K1,r (r = 2, 3) and joins x to a leaf

of K1,r to obtain Ti+1.

Operation O4: If x ∈ V (Ti) satisfies in one of the following statement:

1. x is a strong support vertex,

2. x is adjacent to the center of a pendant star K1,r (r ≥ 1),

3. x is adjacent to a support vertex of a pendant path P4,

4. x is adjacent to the center of a pendant path P5,

then O4 adds a path y1y2y3y4y5 or a path y1y2y3y4 and joins x to y3 to obtain

Ti+1.

Operation O5: If x ∈ WTi
, then O5 adds a double star DS2,1 and joins x to the

support vertex of degree 2 in DS2,1 to obtain Ti+1.



S. Nazari-Moghaddam, S.M. Sheikholeslami 189

Operation O6: If x ∈ V (Ti) satisfies in one of the following statement:

1. x is a strong support vertex,

2. x is a support vertex and there is a path xx2x1 such that deg(x1) = 1 and

deg(x2) = 2,

3. there are two paths xx2x1 and xz2z1 such that deg(x1) = deg(z1) = 1 and

deg(x2) = deg(z2) = 2,

then O6 adds a path y1y2 and joins x to y1 to obtain Ti+1.

Operation O7: If x ∈ WTi , then O7 adds the graph F1 illustrated in Figure 1 and

joins x to y to obtain Ti+1.

Operation O8: If x ∈ WTi , then O8 adds the graph F2 illustrated Figure 2 and

joins x to y to obtain Ti+1.

Operation O9: If x ∈ WTi , then O9 adds the graph F3 illustrated in Figure 3 and

the edge xy to obtain Ti+1.

Operation O10: If x ∈ WTi , then O10 adds the graph F4 illustrated Figure 4 and

the edge xy to obtain Ti+1.

The proof of the first lemma is trivial by Proposition 1 and Observation 2 and therefore

omitted.

Lemma 1. If Ti is a tree with γR(Ti) = γoiR(Ti) and Ti+1 is a tree obtained from Ti by
Operation O1, then γR(Ti+1) = γoiR(Ti+1).

Lemma 2. If Ti is a tree with γR(Ti) = γoiR(Ti) and Ti+1 is a tree obtained from Ti by
Operation O2, then γR(Ti+1) = γoiR(Ti+1).

Proof. Let the Operation O2 add a star K1,2 centered at y and join x to y. Clearly,

any outer-independent Roman dominating function of Ti, can be extended to an outer-

independent Roman dominating function of Ti+1 by assigning weight 2 to y and 0 to

the vertices in Ly yielding γoiR(Ti+1) ≤ γoiR(Ti) + 2.

Now let f be a γR(Ti+1)-function such that f(y) + f(x) is as large as possible. Obvi-

ously f(y) = 2. If f(x) ≥ 1, then the function f , restricted to Ti is an RDF of Ti and

so γR(Ti+1) ≥ 2 + γR(Ti). Let f(x) = 0. Then x is not a strong support vertex and

so x is adjacent to the center, say w, of a pendant star K1,r (r ≥ 1). We may assume

without loss of generality that f(w) = 2. As above, the function f , restricted to Ti is

an RDF of Ti and so γR(Ti+1) ≥ 2 + γR(Ti). Now the result follows by Observation

2.

Lemma 3. If Ti is a tree with γR(Ti) = γoiR(Ti) and Ti+1 is a tree obtained from Ti by
Operation O3, then γR(Ti+1) = γoiR(Ti+1).
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Proof. Let O3 add a star K1,r (r = 2, 3) centered at z and an edge xy where y is a

leaf of K1,r. It is easy to see that γR(Ti+1) ≥ γR(Ti) + 2. On the other hand, since

x ∈W (Ti), there exists a γoiR(Ti)-function f with f(x) ≥ 1. Then f can be extended

to an outer-independent Roman dominating function of Ti+1 by assigning weight 2

to z and 0 to the neighbors of z implying that γoiR(Ti+1) ≤ γoiR(Ti) + 2. Now the

result follows by Observation 2.

yy3

y4y1

y2

Figure 3. The graph F3 used in Operation O9

Lemma 4. If Ti is a tree with γR(Ti) = γoiR(Ti) and Ti+1 is a tree obtained from Ti by
Operation O4, then γR(Ti+1) = γoiR(Ti+1).

Proof. Let O4 add a path y1y2y3y4y5 (resp. y1y2y3y4) and join x to y3. Clearly, any

outer-independent Roman domination function of Ti can be extended to an outer-

independent Roman dominating function of Ti+1 by assigning the value 2 to y3, 1

to y1, y5 and 0 to y2, y4 (resp. the value 2 to y3, 1 to y1 and 0 to y2, y4) and so

γoiR(Ti+1) ≤ γoiR(Ti) + 4 (resp. γoiR(Ti+1) ≤ γoiR(Ti) + 3).

Assume now that f is a γR(Ti+1)-function such that f(N [x]) is as large as possible.

Obviously, f(y3) = 2. Since, x is a strong support vertex or is adjacent to the center of

a pendant star K1,r (r ≥ 1) or is adjacent to a support vertex of a pendant path P4 or

is adjacent to the center of a pendant path P5, by the choice of f we have f(y) = 2 for

some y ∈ N [x]−{y3}. Hence, the function f , restricted to Ti is a Roman dominating

function of Ti and we have γR(Ti+1) ≥ 4 + γR(Ti) (resp. γR(Ti+1) ≥ γR(Ti) + 3).

Now the result follows by Observation 2.

Lemma 5. If Ti is a tree with γR(Ti) = γoiR(Ti) and Ti+1 is a tree obtained from Ti by
Operation O5, then γR(Ti+1) = γoiR(Ti+1).

Proof. Let O5 add a double star DS2,1 with the support vertices a, b and join x

to a where deg(a) = 2. Since, x ∈ WTi
, there exists a γoiR(Ti)-function f such

that f(x) ≥ 1. Then f can be extended to an outer-independent Roman dominating

function of Ti+1 by assigning weight 2 to b, 1 to the leaf adjacent to a and 0 to the

vertices in Lb ∪ {a} yielding γoiR(Ti+1) ≤ γoiR(Ti) + 3.
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Figure 4. The graph F4 used in Operation O10

Assume that w is the leaf adjacent to a and g is a γR(Ti+1)-function such that g(b) +

g(w) is as large as possible. Obviously, we have g(b) = 2 and g(w) = 1. Then

the function g, restricted to Ti is a Roman dominating function of Ti and we have

γR(Ti+1) ≥ 3 + γR(Ti). Now the result follows by Observation 2.

Lemma 6. If Ti is a tree with γR(Ti) = γoiR(Ti) and Ti+1 is a tree obtained from Ti by
Operation O6, then γR(Ti+1) = γoiR(Ti+1).

Proof. Let O6 add a path y1y2 and the edge xy1. Suppose that f is a γoiR(Ti)-

function such that f(x) is as large as possible. Then f(x) = 2 and f can be extended

to an outer-independent Roman dominating function of Ti+1 by assigning a 1 to y2
and a 0 to y1 and this implies that γoiR(Ti+1) ≤ γoiR(Ti) + 1.

On the other hand, if g is a γR(Ti+1)-function, then g(x) = 2 and g(y2) = 1, and the

function g, restricted to Ti is a Roman dominating function of Ti yielding γR(Ti+1) ≥
1 + γR(Ti). As in the above lemmas, we obtain γoiR(Ti+1) = γR(Ti+1).

Lemma 7. If Ti is a tree with γR(Ti) = γoiR(Ti) and Ti+1 is a tree obtained from Ti by
Operation O7, then γR(Ti+1) = γoiR(Ti+1).

Proof. Let O7 add the graph F1 and the edge xy. Since, x ∈ WTi
, there exists

a γoiR(Ti)-function f such that f(x) ≥ 1. Then f can be extended to an outer-

independent Roman dominating function of Ti+1 by assigning a 2 to y3, a 1 to y1, y5
and a 0 to the vertices N(y3), and so γoiR(Ti+1) ≤ γoiR(Ti) + 4.

On the other hand, let g be a γR(Ti+1)-function such that g(y3) is as large as possible.

Clearly, g(y3) = 2, g(y1) = g(y5) = 1 and g(y) = 0. Hence, g restricted to Ti is an

RDF of Ti implying that γR(Ti+1) ≥ 4+γR(Ti). Now the result follows by Observation

2.

Lemma 8. If Ti is a tree with γR(Ti) = γoiR(Ti) and Ti+1 is a tree obtained from Ti by
Operation O8, then γR(Ti+1) = γoiR(Ti+1).
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Proof. Let O8 add the graph F2 and joins x to y. Since, x ∈ WTi
, there exists a

γoiR(Ti)-function f such that f(x) ≥ 1 and f can be extended to an outer-independent

Roman dominating function of Ti+1 by assigning a 2 to y3, a 1 to y1, y5, z and a 0 to

y, y2, y4. Thus γoiR(Ti+1) ≤ γoiR(Ti) + 5.

Now let g be a γR(Ti+1)-function such that g(y3)+g(z) is as large as possible. Then we

must have g(y3) = 2, g(z) = g(y1) = g(y5) = 1 and g(y) = 0. Hence, the function g,

restricted to Ti is an Roman dominating function of Ti and so γR(Ti+1) ≥ 5 +γR(Ti).

Now the result follows by Observation 2.

Lemma 9. If Ti is a tree with γR(Ti) = γoiR(Ti) and Ti+1 is a tree obtained from Ti by
Operation O9, then γR(Ti+1) = γoiR(Ti+1).

Proof. Let O9 add a graph F3 and the edge xy. Since x ∈ WTi
, there exists a

γoiR(Ti)-function f such that f(x) ≥ 1 and f can be extended to an outer-independent

Roman dominating function of Ti+1 by assigning a 2 to y3, 1 to y1 and 0 to the vertices

in N(y3). Hence, γoiR(Ti+1) ≤ γoiR(Ti) + 3.

Now let g be a γR(Ti+1)-function such that g(y3) is as large as possible. Clearly,

g(y3) = 2, g(y1) = 1 and g(y) = 0. Then the function g, restricted to Ti is an RDF

of Ti yielding γR(Ti+1) ≥ 3 + γR(Ti). Now the result follows by Observation 2.

The proof of the next lemma is similar to the proof of Lemma 9 and therefore it is

omitted.

Lemma 10. If Ti is a tree with γR(Ti) = γoiR(Ti) and Ti+1 is a tree obtained from Ti

by Operation O10, then γR(Ti+1) = γoiR(Ti+1).

Theorem 4. If T ∈ T , then γR(T ) = γoiR(T ).

Proof. If T ∈ {P2, P3, P4}, then obviously γR(T ) = γoiR(T ). Suppose now that

T ∈ T . Then there exists a sequence of trees T1, T2, . . . , Tk (k ≥ 1) such that T1 ∈
{P2, P3, P4}, T = Tk and if k ≥ 2, then Ti+1 can be obtained from Ti by one of

the Operations O1,O2, . . . ,O10 for i = 1, 2, . . . , k − 1. We apply induction on the

number of operations used to construct T . If k = 1, the result is trivial. Assume

the result holds for each tree T ∈ T which can be obtained from a sequence of

operations of length k − 1 and let T ′ = Tk−1. By the induction hypothesis, we have

γR(T ′) = γoiR(T ′). Since T = Tk is obtained by one of the Operations O1,O2, . . . ,O10

from T ′, we conclude from the above Lemmas that γR(T ) = γoiR(T ).

Now we are ready to prove our main result.

Theorem 5. Let T be a non-trivial tree. Then γR(T ) = γoiR(T ) if and only if T ∈ T .
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Proof. According to Theorem 4, we need only to prove necessity. Let T be a tree

of order n ≥ 3 with γR(T ) = γoiR(T ). The proof is by induction on n. If n ≤ 3, then

clearly T ∈ T . Let n ≥ 4 and let the statement hold for all trees of order less than

n. Assume that T is a tree of order n with γR(T ) = γoiR(T ). If diam(T ) ≤ 3, then

T = P4 or T is a star or double star. If T = P4, then obviously T ∈ T , if T is a

star, then T can be obtained from P3 by repeated application of operation O1, and

if T is a double star different from P4, then T can be obtained from P3 by applying

operation O2 once and operation O1 repeatedly, and this implies that T ∈ T . Hence

let diam(T ) ≥ 4.

Let v1v2 . . . vk (k ≥ 5) be a diametral path in T such that degT (v2) is as large as

possible and root T at vk. If degT (v2) ≥ 4, then clearly γR(T −v1) = γoiR(T −v1). It

follows from the induction hypothesis that T − v1 ∈ T and hence T can be obtained

from T − v1 by Operation O1 implying that T ∈ T . Assume that degT (v2) ≤ 3.

First let degT (v3) = 2. Suppose that T ′ = T − Tv3 . Clearly, any Roman dominating

function of T ′ can be extended to a Roman dominating function of T by assigning a

2 to v2 and a 0 to the vertices in NT (v2) yielding

γR(T ) ≤ γR(T ′) + 2. (1)

Similarly, any outer-independent Roman dominating function of T ′ can be extended

to an outer-independent Roman dominating function of T by assigning a 1 to v3, a 2 to

v2 and a 0 to the vertices in Lv2 yielding γoiR(T ) ≤ γoiR(T ′) + 3. On the other hand,

assume that f is a γoiR(T )-function. Clearly f(N [v2]) ≥ 2. If f(v3) ≤ 1, then the

function f restricted to T ′ is an OIRDF of T ′ that implies γoiR(T ) ≥ γoiR(T ′) + 2.

If f(v3) = 2, then f(Lv2) ≥ 1, and the function g : V (T ′) → {0, 1, 2} defined by

g(v4) = min{f(v4) + 1, 2} and g(x) = f(x) otherwise is an OIRDF of T ′ of weight at

most γoiR(T ) − 2 yielding γoiR(T ) ≥ γoiR(T ′) + 2. Thus γoiR(T ) − 3 ≤ γoiR(T ′) ≤
γoiR(T )− 2. If γoiR(T ′) = γoiR(T )− 3, then

γoiR(T ′) = γoiR(T )− 3 = γR(T )− 3 ≤ γR(T ′)− 1

which is a contradiction by Observation 1. Hence,

γoiR(T ′) = γoiR(T )− 2. (2)

By (1), (2) and Observation 3, we obtain γR(T ′) = γoiR(T ′). By the induction

hypothesis we have T ′ ∈ T . Now we show that v4 ∈WT ′ . Let h be a γoiR(T )-function

such that h(v4) is as large as possible. Clearly h(N [v2]) ≥ 2. Since γR(T ) = γoiR(T ),

h is also a γR(T )-function. If h(v4) ≥ 1, then h restricted to T ′ is a γoiR(T ′)-function

and we are done. Assume that h(v4) = 0. Since h is an OIRDF of T , we must have

h(v3) ≥ 1. If h(v3) = 1, then to Roman dominate the vertices of v1, v2, we must

have h(N [v2] − {v3}) ≥ 2. But then the function h1 : V (T ) → {0, 1, 2} defined by

h1(v2) = 2, h1(x) = 0 for x ∈ N(v2) and h1(x) = h(x) otherwise, is an RDF of T of
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weight less than ω(h) which is a contradiction. Assume that h(v3) = 2. To Roman

dominate v1, we must have f(v1)+f(v2) ≥ 1. Now the function h2 : V (T )→ {0, 1, 2}
defined by h2(v4) = min{2, h(v4) + 1}, h2(v2) = 2, h2(x) = 0 for x ∈ N(v2) and

h2(x) = h(x) otherwise, is an OIRDF of T of weight ω(h) contradicting the choice of

h. Thus v4 ∈WT ′ . Now T can be obtained from T ′ by Operation O3 and so T ∈ T .

Now, let degT (v3) ≥ 3. We consider the following cases.

Case 1. degT (v2) = 3.

We distinguish the following subcases.

Subcase 1.1 v3 has two children with depth 0 or v3 has one child with depth 1 other

than v2.

Let T ′ = T − Tv2 . Clearly, any Roman dominating function of T ′ can be extended to

a Roman dominating function of T by assigning a 2 to v2 and 0 to the vertices in Lv2

yielding

γR(T ) ≤ γR(T ′) + 2. (3)

On the other hand, let f be a γoiR(T )-function such that f(v2) + f(v3) is as large

as possible. Clearly, f(v2) = 2. If f(v3) ≥ 1, then the function f , restricted to

T ′ is an outer-independent Roman dominating function of T ′ which implies that

γoiR(T ′) ≤ γoiR(T ) − 2. Assume that f(v3) = 0. We deduce from the assumption

that v3 is not a strong support vertex, and thus v3 has one child with depth 1, say

u, different from v2. Since f is an OIRDF of T , we have f(u) ≥ 1. To Roman

dominate the leaves adjacent to u, we must have f(u) + f(L(u)) ≥ 2. Without

loss of generality, we may assume that f(u) = 2. Now the function f , restricted

to T ′ is an outer-independent Roman dominating function of T ′ which implies that

γoiR(T ′) ≤ γoiR(T )− 2. Thus

γoiR(T ′) ≤ γoiR(T )− 2 (4)

We conclude from (3), (4), Observation 3 and the induction hypothesis that T ′ ∈ T .

Now T can be obtained from T ′ by Operation O2 and so T ∈ T .

Subcase 1.2 degT (v3) = 3 and v3 has one child with depth 0 .

Assume that T ′ = T −Tv3 and L(v3) = {u}. Clearly, any Roman dominating function

of T ′ can be extended to a Roman dominating function of T by assigning weight 2 to

v2 , 1 to u and 0 to the vertices in NT (v2) which implies that

γR(T ) ≤ γR(T ′) + 3. (5)

Consider now a γoiR(T )-function f such that f(v2)+f(u) is as large as possible. Then

we must have f(v2) = 2, f(u) = 1 and f(x) = 0 for x ∈ N(v2). Then the function

f , restricted to T ′ is an outer-independent Roman dominating function of T ′ which

implies that

γoiR(T ′) ≤ γoiR(T )− 3. (6)
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It follows from (3), (4) and Observation 3 that γoiR(T ′) = γR(T ′) and by the induction

hypothesis we have T ′ ∈ T . Since γoiR(T ′) = γR(T ′), the function f restricted to

T ′ is a γoiR(T ′)-function. Since f is an OIRDF of T and f(v3) = 0, we deduce that

f(v4) ≥ 1 and so v4 ∈WT ′ . Now T can be obtained from T ′ by Operation O5 yielding

T ∈ T .

Case 2. degT (v2) = 2.

First let degT (v3) ≥ 4. Assume that T ′ = T − {v1, v2}. By the choice of diametrical

path, v3 is a strong support vertex or is a weak support vertex and there is a path

xx2x1 such that deg(x1) = 1 and deg(x2) = 2 or there are two paths xx2x1 and

xz2z1 such that deg(x1) = deg(z1) = 1 and deg(x2) = deg(z2) = 2. If f is a γoiR(T )-

function, then f is a γR(T )-function (since γoiR(T ) = γR(T )) and we must have

f(v3) = 2 and f(v1) = 1. Thus the function f restricted to T ′ is an OIRDF of T ′

and so γoiR(T ) ≥ γoiR(T ′) + 1. On the other hand, if g is a γR(T ′)-function such that

g(v3) is as large as possible, then clearly g(v3) = 2 and g can be extended to an RDF

of T by assigning a 1 to v1 and a 0 to v2 yielding γR(T ) ≤ γR(T ′) + 1. We conclude

from Observation 3 that γoiR(T ′) = γR(T ′) and by the induction hypothesis we have

T ′ ∈ T . Now T can be obtained from T ′ by Operation O6 and so T ∈ T .

Now, let degT (v3) = 3. Then Tv3 is a pendant path P4 or a pendant path P5 in T .

If diam(T ) = 4, then T can be obtained from P4 by Operation O6 or from P2 by

Operations O3,O6 and so T ∈ T . Suppose that diam(T ) ≥ 5. We distinguish the

following subcases.

Subcase 2.1. v3 is a support vertex and degT (v4) = 2.

Let u be the leaf adjacent to v3 and let T ′ = T −Tv4 . Clearly, any Roman dominating

function of T ′ can be extended to a Roman dominating function of T by assigning a 2

to v3 , 1 to v1 and 0 to v2, v4, u which implies that γR(T ) ≤ γR(T ′) + 3. On the other

hand, let f be a γoiR(T )-function such that f(v3) is as large as possible. Then we

must have f(v3) = 2, f(v1) = 1 and f(v2) = f(u) = 0. Now the function g : V (T ′)→
{0, 1, 2} defined by g(v5) = min{2, f(v5) + f(v4)} and g(x) = f(x) otherwise, is an

OIRDF of T ′ of weight γoiR(T ) − 3 and this implies that γoiR(T ′) ≤ γoiR(T ) − 3.

It follows that Observation 3 that γoiR(T ′) = γR(T ′) and so g is a γR(T ′)-function

yielding v5 ∈ WT ′ . By the induction hypothesis, we obtain T ′ ∈ T . Now T can be

obtained from T ′ by Operation O9 and so T ∈ T .

Subcase 2.2. v3 is a support vertex and v4 has a child with depth 2.

Let u be the leaf adjacent to v3 and let v4y3y2y1 be a path in T such that y3 6∈ {v3, v5}.
By the choice of diametrical path we have deg(y2) = 1. Considering above arguments,

we may assume that Ty3 = P4 or Ty3 = P5 since otherwise we can rename yi as

vi and are in the case that degT (v3) = 2 which we have considered already. Let

T ′ = T − Tv3 . As in the Subcase 2.1, we have γR(T ) ≤ γR(T ′) + 3. Now let f

be a γoiR(T )-function such that f(y3) is as large as possible. Clearly, f(y3) = 2 and

f(u)+f(v1)+f(v2)+f(v3) ≥ 3. Hence the function f restricted to T ′ is an OIRDF of

T ′ of weight at most γoiR(T )−3 implying that γoiR(T ) ≥ γoiR(T ′)+3. It follows that

Observation 3 and the induction hypothesis that T ′ ∈ T . Since T can be obtained

from T ′ by Operation O4, we have T ∈ T .
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Subcase 2.3. v3 is a support vertex and v4 has a child with depth 1.

Let u be the leaf adjacent to v3 and let v4y2y1 be a path in T such that y2 6= v5.

Let T ′ = T − Tv3 . As in the Subcase 2.1, we have γR(T ) ≤ γR(T ′) + 3. Now let f

be a γoiR(T )-function such that f(v3) + f(y2) is as large as possible. Then clearly,

f(v3) = 2, f(u) + f(v1) + f(v2) + f(v3) ≥ 3 and either f(v4) ≥ 1 or f(v4) = 0 and

f(y2) = 2. Hence, the function f restricted to T ′ is an OIRDF of T ′ of weight at most

γoiR(T ) − 3 yielding γoiR(T ) ≥ γoiR(T ′) + 3. By Observation 3 and the induction

hypothesis, we have T ′ ∈ T . Since T can be obtained from T ′ by Operation O4, we

have T ∈ T .

Subcase 2.4. v3 is a support vertex and v4 is a strong support vertex.

Let u be the leaf adjacent to v3 and let T ′ = T − Tv3 . As in the Subcase 2.1, we

have γR(T ) ≤ γR(T ′) + 3. Consider now a γoiR(T )-function f such that f(v4) = 2 to

according Proposition 1. Clearly, f(u) + f(v1) + f(v2) + f(v3) ≥ 3 and the function f

restricted to T ′ is an OIRDF of T ′ of weight at most γoiR(T )− 3 yielding γoiR(T ) ≥
γoiR(T ′) + 3. By Observation 3 and the induction hypothesis, we have T ′ ∈ T . Now,

T can be obtained from T ′ by Operation O4, we have T ∈ T .

Subcase 2.5. v3 is a support vertex, degT (v4) = 3 and v4 has a child with depth 0.

Let z be the leaf adjacent to v4. If diam(T ) = 4, then T can be obtained from P3 by

Operation O4 and so T ∈ T . Let diam(T ) ≥ 5 and let T ′ = T − Tv4 . Clearly, any

γR(T ′)-function can be extended to an RDF of T by assigning a 2 to v3, a 1 to v1, z

and a 0 to u, v2, v4 and so

γR(T ) ≤ γR(T ′) + 4. (7)

Let f be a γoiR(T )-function such that f(v3) + f(z) is as large as possible. Clearly,

f(v3) = 2, f(V (Tv3)) ≥ 3 and f(V (Tv4)) ≥ 4. We claim that f(v4) = 0. Suppose,

to the contrary, that f(v4) ≥ 1. Since γR(T ) = γoiR(T ), f is also a γR(T )-function.

This implies that f(v4) = 2, otherwise we must have f(z) = 1 and the function

h : V (T ) → {0, 1, 2} defined by h(v4) = 0, and h(t) = f(t) otherwise, is an RDF

of T of weight less that ω(f) = γR(T ) which is a contradiction. Now the function

g : V (T ) → {0, 1, 2} defined by g(v4) = 0, g(z) = 1, g(v5) = min{2, f(v5) + 1} and

g(x) = f(x) otherwise, is a γoiR(T )-function contradicting the choice of f . Thus

f(v4) = 0 and so f(v5) ≥ 1 because f is an OIRDF of T . Then the function f

restricted to T ′ is an OIRDF of T ′ and so

γoiR(T ) ≥ γoiR(T ′) + 4. (8)

We deduce from (7), (8) and Observation 3 that γoiR(T ′) = γR(T ′) and so f restricted

to T ′ is a γoiR(T ′)-function implying that v5 ∈WT ′ . By the induction hypothesis, we

have T ′ ∈ T and since T can be obtained from T ′ by Operation O10, we have T ∈ T .

Subcase 2.6. There is a pendant path v3y2y1 such that y2 6∈ {v2, v4}, and

degT (v4) = 2.

Then Tv3 = P5. If diam(T ) = 4, then T can be obtained from P5 by Operation O6

and so T ∈ T . Suppose diam(T ) ≥ 5 and let T ′ = T − Tv4 . Clearly, any Roman



S. Nazari-Moghaddam, S.M. Sheikholeslami 197

dominating function of T ′ can be extended to a Roman dominating function of T by

assigning a 2 to v3 , 1 to v1, y1 and 0 to v2, y2, v4 which implies that

γR(T ) ≤ γR(T ′) + 4. (9)

Consider now a γoiR(T )-function f such that f(v3) is as large as possible. Then we

must have f(v3) = 2, f(v1) = f(y1) = 1 and f(v2) = f(y2) = 0. Now the function

g : V (T ′) → {0, 1, 2} defined by g(v5) = min{2, f(v5) + f(v4)} and g(x) = f(x)

otherwise, is an OIRDF of T ′ of weight γoiR(T )− 4 yielding

γoiR(T ′) ≤ γoiR(T )− 4. (10)

By inequalities (9), (10) and Observation 3, we have γoiR(T ′) = γR(T ′) and so g is a

γR(T ′)-function. Since f is an OIRDF of T , we must have f(v4) + f(v5) ≥ 1 and so

g(v5) = min{2, f(v5) + f(v4)} ≥ 1 yielding v5 ∈ WT ′ . By the induction hypothesis,

we obtain T ′ ∈ T . Since T can be obtained from T ′ by Operation O7, we have T ∈ T .

Subcase 2.7. There is a pendant path v3y2y1 such that y2 6∈ {v2, v4}, and v4 has a

child with depth 2.

Let v4z3z2z1 be a path in T such that z3 6∈ {v3, v5}. By the choice of diametrical

path we have deg(z2) = 1. If deg(z3) = 2, then T can be obtained from T − Tz3 by

Operation O3 (see the third paragraph of the proof), if deg(z3) ≥ 4, then T can be

obtained from T − {z1, z2} by Operation O6 (see the first paragraph of Case 2) and

if deg(v3) = 3 and z3 is a support vertex, then T can be obtained from T − Tz3 by

Operation O4 (see Subcase 2.2). Henceforth, we may assume that Ty3 = P5. Let

T ′ = T − Tv3 . Clearly, any Roman dominating function of T ′ can be extended to a

Roman dominating function of T by assigning a 2 to v3 , 1 to v1, y1 and 0 to v2, y2
and so

γR(T ) ≤ γR(T ′) + 4. (11)

Consider now a γoiR(T )-function f such that f(v3) + f(z3) is as large as possible.

Then we must have f(v3) = f(z3) = 2, f(v1) = f(y1) = 1 and f(v2) = f(y2) = 0,

and f restricted to T ′ is an OIRDF of T ′ of weight γoiR(T )− 4 and so

γoiR(T ) ≥ γoiR(T ′) + 4. (12)

By inequalities (11), (12), Observation 3 and the induction hypothesis T ′ ∈ T . Since

T can be obtained from T ′ by Operation O4, we have T ∈ T .

Subcase 2.8. There is a pendant path v3y2y1 such that y2 6∈ {v2, v4}, and v4 has a

child z2 with depth 1.

Let v4z2z1 be a path in T . Assume that T ′ = T − Tv3 . As in the Subcase 2.7, we can

see that γR(T ) ≤ γR(T ′)+4. Now let f be a γoiR(T )-function such that f(v3)+f(z2)

is as large as possible. Then clearly, f(v3) = 2, f(y2)+f(y1)+f(v1)+f(v2)+f(v3) ≥ 4

and either f(v4) ≥ 1 or f(v4) = 0 and f(z2) = 2. Hence, the function f restricted to
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T ′ is an OIRDF of T ′ of weight at most γoiR(T )− 4 yielding γoiR(T ) ≥ γoiR(T ′) + 4.

By Observation 3 and the induction hypothesis, we obtain T ′ ∈ T and since T can

be obtained from T ′ by Operation O4, we have T ∈ T .

Subcase 2.9. There is a pendant path v3y2y1 such that y2 6∈ {v2, v4}, and v4 is a

strong support vertex.

Let T ′ = T − Tv3 . As in the subcase 2.4, we can see that T ′ ∈ T , and since T can be

obtained from T ′ by Operation O4, we have T ∈ T .

Subcase 2.10. There is a pendant path v3y2y1 such that y2 6∈ {v2, v4}, degT (v4) = 3

and v4 has a child with depth one.

Let z be the child of v4 with depth one and let T ′ = T − Tv4 . Clearly, any γR(T ′)-

function can be extended to an RDF of T by assigning a 2 to v3, a 1 to v1, y1, z

and a 0 to y2, v2, v4 and so γR(T ) ≤ γR(T ′) + 5. Consider now a γoiR(T )-function

f such that f(v3) + f(z) is as large as possible. Clearly, f(v3) = 2, f(V (Tv3)) ≥ 4

and f(V (Tv4)) ≥ 5. We claim that f(v4) = 0. Suppose, to the contrary, that

f(v4) ≥ 1. Since γR(T ) = γoiR(T ), f is also a γR(T )-function. This implies that

f(v4) = 2, otherwise we must have f(z) = 1 and the function h : V (T ) → {0, 1, 2}
defined by h(v4) = 0, and h(t) = f(t) otherwise, is an RDF of T of weight less that

ω(f) = γR(T ) which is a contradiction. Define g : V (T ) → {0, 1, 2} by g(v4) =

0, g(z) = 1, g(v5) = min{2, f(v5) + 1} and g(x) = f(x) otherwise. Clearly, g is a

γoiR(T )-function contradicting the choice of f . Thus f(v4) = 0 and so f(v5) ≥ 1

because f is an OIRDF of T . Now the function f restricted to T ′ is an OIRDF of T ′

and so γoiR(T ) ≥ γoiR(T ′)+5. We deduce from Observation 3 that γoiR(T ′) = γR(T ′)

and hence f restricted to T ′ is a γoiR(T ′)-function with f(v5) ≥ 1 implying that

v5 ∈WT ′ . On the other hand, by the induction hypothesis, we have T ′ ∈ T and since

T can be obtained from T ′ by Operation O8, we have T ∈ T . This completes the

proof.
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