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Abstract: A Roman dominating function (RDF) on a graph G is a function f :
V(G) — {0,1,2} satisfying the condition that every vertex u for which f(u) = 0 is
adjacent to at least one vertex v for which f(v) = 2. A Roman dominating function f is
called an outer-independent Roman dominating function (OIRDF) on G if the set {v €
V | f(v) = 0} is independent. The (outer-independent) Roman domination number
Yr(G) (Yoir(G)) is the minimum weight of an RDF (OIRDF) on G. Clearly for any
graph G, Yr(G) < 7,;r(G). In this paper, we provide a constructive characterization
of trees T' with Yr(T') = voir(T).
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1. Introduction

Throughout this paper, G is a simple graph with vertex set V(G) and edge set E(G)
(briefly V, E)). The order |V of G is denoted by n = n(G). For every vertex v € V(G),
the open neighborhood of v is the set Ng(v) = N(v) = {u € V(G) | wv € E(G)} and
its closed neighborhood is the set Ng[v] = N[v] = N(v) U {v}. The degree of a vertex
v € Visdeg(v) = |[N(v)|. Aleaf of G is a vertex with degree one in G, a support vertex
is a vertex adjacent to a leaf, a strong support vertex is a support vertex adjacent to
at least two leaves, an end support vertex is a support vertex whose all neighbors with
exception at most one are leaves, and a weak support verter is a support vertex with
exactly one leaf neighbor. For every vertex v € V(G), the set of all leaves adjacent to
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186 On trees with equal Roman domination and ...

v is denoted by L,. A double star DS, 4 is a tree containing exactly two non-pendant
vertices which one is adjacent to p leaves and the other is adjacent to ¢ leaves. We
denote by P, the path on n vertices. The distance dg(u,v) between two vertices u
and v in a connected graph G is the length of a shortest u—wv path in G. The diameter
of a graph G, denoted by diam(G), is the greatest distance between two vertices of
G. For a vertex v in a rooted tree T, let C(v) denote the set of children of v, D(v)
denotes the set of descendants of v and D[v] = D(v) U {v}. Also, the depth of v,
depth(v), is the largest distance from v to a vertex in D(v). The maximal subtree
at v is the subtree of T induced by D[v], and is denoted by T,. A proper induced
subgraph H of a graph G is called a pendant subgraph if there is exactly one edge
between V(H) and V(G) — V(H).

A function f : V(G) — {0,1,2} is called a Roman dominating function (RDF) on
G if every vertex u € V for which f(u) = 0 is adjacent to at least one vertex v for
which f(v) = 2. The weight of an RDF is the value f(V(G)) = >_,cv(q) f(u). The
Roman domination number vr(G) is the minimum weight of an RDF on G. Roman
domination was introduced by Cockayne et al. in [8] and was inspired by the work of
ReVelle and Rosing [10] and Stewart [12]. It is worth mentioning that since 2004, more
than hundred papers have been published on this topic, where several new variations
were introduced: weak Roman domination [9], Roman {2}-domination [7], maximal
Roman domination [1], mixed Roman domination [3], double Roman domination
[6], independent Roman domination [5], signed Roman domination [4, 11], signed
total Roman domination [13, 14] and recently outer-independent Roman domination
introduced by [2].

For a Roman dominating function f, let V; = {v € V | f(v) = i} for i = 0,1,2.
Since these three sets determine f, we can equivalently write f = (Vp, V1, Va) (or
f =V Vi) to refer f). We note that w(f) = [Vi| + 2|Val.

A function f: V(G) — {0, 1,2} is an outer-independent Roman dominating function
(OIRDF) on G if f is an RDF and the set {v € V| f(v) = 0} is an independent set.
The outer-independent Roman domination number 7,;g(G) is the minimum weight of
an OIRDF on G. The concept of outer-independent Roman domination in graphs was
introduced by Ahangar et al. in [2]. Since each outer-independent Roman dominating
function is a Roman dominating function, we have the following observation.

Observation 1. For every graph G, Yoir(T) > vr(T).

In this paper, we provide a constructive characterization of trees T' with vr(T) =
'7012R(T)'
We make use of the following observations in this paper.

Observation 2. Let H be a subgraph of a graph G. If Yoir(H) = vr(H), Yoir(G) <
Yoir(H)+ s and yr(G) > yr(H) + s for some non-negative integer s, then Yyr(G) = Yoir(G),
Y0ir(G) = Yoir(H) + s and yr(G) = yr(H) + s.
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Proof. We deduce from the assumptions and Observation 1 that
Yir(G) > Yr(G) = Yr(H) + 5 = Yoir(H) + 5 > 70ir(G).

Hence, all inequalities occurring in above chain, become equalities and so yr(G) =
Y0iR(G);, Yoir(G) = Yoir(H) + s and Yr(G) = yr(H) + 5.

O

Observation 3.  Let H be a subgraph of a graph G. If vr(G) = voir(G), vr(G)
Yr(H) + s and voir(G) > voir(H) + s for some non-negative integer s, then yr(H)
Yoir(H), Yoir(G) = Yoir(H) + s and yr(G) = yr(H) + s.

Il IA

Proof. By Observation 1 and the assumptions, we have
Yoir(G) = Vr(G) < Vr(H) + 5 < Yoir(H) + 5 < Y0ir(G).

Thus, all inequalities occurring in above chain, become equalities and so yr(H) =
Yoir(H), Yoir(G) = Yoir(H) + s and yr(G) = yr(H) + s. U

2. A characterization of trees 7' with vg(T) = v,ir(T)

In this section we give a constructive characterization of all trees T satistying vr(T') =
Yoir(T). We start with a definition.

Definition 1. For a graph G and each vertex v € V(G), we say v has property P in G if
there exists a voir(G)-function f such that f(v) # 0. Define

We = {v | v has property P in G}.

Proposition 1. Let G be a graph and v be a strong support vertex in G. Then there
exists a voir(G)-function (resp. yr(G)-function) f such that f(v) = 2.

Proof. Suppose wy,ws € L, and let f be a y,;r(G)-function. If f(v) = 2, then we
are done. Let f(v) < 1. If f(v) =1, then we must have f(w;) = f(w2) =1 and the
function g : V(G) — {0, 1, 2} defined by g(w1) = g(w2) =0, g(v) = 2 and g(u) = f(u)
otherwise, is an OIRDF of G of weight less than «,;z(G) which is a contradiction.
Hence, we assume f(v) = 0. Since f is an OIRDF of G, we have f(x) > 1 for each
x € N(v). Now the function g defined above, is a 7y,;z(G)-function with g(v) = 2, as
desired.

Using a similar argument, we can see that there exists a yr(G)-function f such that
flv) =2. O

Corollary 1. Any strong support vertex of a graph G, has property P in G.
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Figure 1. The graph F; used in Operation O~
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Figure 2. The graph F; used in Operation Og

In order to presenting our constructive characterization, we define a family of trees
as follows. Let 7 be the family of trees T that can be obtained from a sequence
Ty, Ty, ..., T of trees for some k > 1, where Ty € {Ps, P35, Py} and T =T}, If i > 2,
T;+1 can be obtained from T; by one of the following operations.

Operation O;: If © € V(T;) is a strong support vertex, then O; adds a pendant
edge zy to obtain T 4.

Operation Oy: If z € V(T;) is a strong support vertex or is adjacent to the center
of a pendant star K;, (r > 1), then Oy adds a star K7 o and joins z to the
center of K o to obtain 75 1.

Operation Oz: If z € Wy, then O3 adds a star K7, (r = 2, 3) and joins z to a leaf
of K, to obtain Tj ;.

Operation O4: If z € V(T;) satisfies in one of the following statement:

1. = is a strong support vertex,

2. z is adjacent to the center of a pendant star Ky, (r > 1),
3. x is adjacent to a support vertex of a pendant path Py,
4. x is adjacent to the center of a pendant path Ps,

then Oy adds a path y19y2y3y4ys or a path y1y2y3y4 and joins x to y3 to obtain
Tiv1

Operation Os: If x € Wy, then Os adds a double star DS5; and joins x to the
support vertex of degree 2 in DS5 ;1 to obtain Tj 4.
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Operation Og: If z € V(T;) satisfies in one of the following statement:

1. x is a strong support vertex,

2. z is a support vertex and there is a path xxzox; such that deg(xz1) =1 and
deg(z2) = 2,

3. there are two paths zzox; and x2021 such that deg(zq) = deg(z1) = 1 and
deg(zg) = deg(z2) = 2,

then Og adds a path y1y2 and joins  to y; to obtain Tj4.

Operation O7: If x € Wr,, then O adds the graph F} illustrated in Figure 1 and
joins x to y to obtain T;1.

Operation Og: If z € Wr,, then Og adds the graph F; illustrated Figure 2 and
joins = to y to obtain T;4 ;.

Operation Oy: If x € Wr,, then Oy adds the graph Fj illustrated in Figure 3 and
the edge xy to obtain T;;.

Operation Oi9: If x € Wr,, then Oy¢ adds the graph F} illustrated Figure 4 and
the edge xy to obtain T} ;.

The proof of the first lemma is trivial by Proposition 1 and Observation 2 and therefore
omitted.

Lemma 1. IfT; is a tree with ygr(T;) = v0ir(T;) and T;41 is a tree obtained from T; by
Operation O1, then yr(Ti+1) = Yoir(Tit1).

Lemma 2. If T} is a tree with vr(T}) = Yo:r(T3) and T;11 is a tree obtained from T; by
Operation Oz, then Yr(Ti+1) = Yoir(Tit+1).

Proof.  Let the Operation O, add a star K » centered at y and join x to y. Clearly,
any outer-independent Roman dominating function of T}, can be extended to an outer-
independent Roman dominating function of 7,1, by assigning weight 2 to y and 0 to
the vertices in L, yielding Yoir(Ti+1) < Yoir(T3) + 2.

Now let f be a yr(T;+1)-function such that f(y) + f(z) is as large as possible. Obvi-
ously f(y) = 2. If f(x) > 1, then the function f, restricted to T; is an RDF of T; and
50 Yr(Ti41) > 2+ vr(T;). Let f(z) = 0. Then z is not a strong support vertex and
so x is adjacent to the center, say w, of a pendant star K , (r > 1). We may assume
without loss of generality that f(w) = 2. As above, the function f, restricted to T; is
an RDF of T; and so yr(Ti41) > 2 + vr(T;). Now the result follows by Observation
2. O

Lemma 3. If T; is a tree with vr(T}) = Y0:r(T3) and T;11 is a tree obtained from T; by
Operation Os, then Yr(Ti+1) = Yoir(Tit1)-
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Proof. Let Oz add a star K , (r = 2,3) centered at z and an edge xy where y is a
leaf of K ,. It is easy to see that yr(Ti+1) > vr(T:) + 2. On the other hand, since
x € W(T;), there exists a voir(T;)-function f with f(z) > 1. Then f can be extended
to an outer-independent Roman dominating function of 7;,; by assigning weight 2
to z and 0 to the neighbors of z implying that voir(Ti+1) < Yoir(Ti) + 2. Now the
result follows by Observation 2. O

Y2 °

Y1 Ya

Figure 3. The graph F3 used in Operation Og

Lemma 4. If T; is a tree with vr(T}) = Yo:r(T3) and T;11 is a tree obtained from T; by
Operation Oy, then Yr(Ti+1) = Yoir(Tit1)-

Proof. Let O4 add a path y1y2ysyays (resp. y1y2ysy4) and join z to ys. Clearly, any
outer-independent Roman domination function of 7; can be extended to an outer-
independent Roman dominating function of T;y; by assigning the value 2 to ys, 1
to y1,y5 and 0 to yo,ys (resp. the value 2 to y3, 1 to y; and 0 to ya,y4) and so
Yoir(Ti+1) < Yoir(Ti) + 4 (resp. Yoir(Tit1) < Yoir(Ti) + 3).

Assume now that f is a yg(T;41)-function such that f(N[z]) is as large as possible.
Obviously, f(ys) = 2. Since, x is a strong support vertex or is adjacent to the center of
a pendant star K5 , (r > 1) or is adjacent to a support vertex of a pendant path Py or
is adjacent to the center of a pendant path Ps, by the choice of f we have f(y) = 2 for
some y € N[z] — {ys}. Hence, the function f, restricted to T; is a Roman dominating
function of T; and we have Yg(T;y1) > 4 + yr(T;) (vesp. Yr(Tit1) = vr(T;) + 3).
Now the result follows by Observation 2. O

Lemma 5. If T; is a tree with vr(T3) = Yo:r(T3) and T;11 is a tree obtained from T; by
Operation Os, then Yr(Ti+1) = Yoir(Tit+1)-

Proof. Let Os add a double star DS;; with the support vertices a,b and join x
to a where deg(a) = 2. Since, z € Wry,, there exists a 7,z (T;)-function f such
that f(z) > 1. Then f can be extended to an outer-independent Roman dominating
function of T;4; by assigning weight 2 to b, 1 to the leaf adjacent to a and 0 to the
vertices in Ly U {a} yielding voir(Tit1) < Yoir(T;) + 3.
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Y2

Y1 Ya z

Figure 4. The graph F; used in Operation O

Assume that w is the leaf adjacent to a and g is a yg(T;+1)-function such that g(b) +
g(w) is as large as possible. Obviously, we have g(b) = 2 and g(w) = 1. Then
the function g, restricted to T; is a Roman dominating function of 7T; and we have
Yr(Tix1) > 3+ vr(T;). Now the result follows by Observation 2. O

Lemma 6. If T; is a tree with yg(T;) = 70ir(T3) and T;41 is a tree obtained from T; by
Operation Og, then Yr(Ti+1) = Yoir(Tit1).

Proof. Let Og add a path yiy» and the edge zy;. Suppose that f is a vo;r(T})-
function such that f(x) is as large as possible. Then f(z) = 2 and f can be extended
to an outer-independent Roman dominating function of 7541 by assigning a 1 to ys
and a 0 to y; and this implies that ve;r(Ti+1) < Yoir(Ty) + 1.

On the other hand, if g is a yg(T;+1)-function, then g(x) = 2 and ¢(y2) = 1, and the
function g, restricted to T; is a Roman dominating function of T; yielding vg(T;+1) >
1+ vr(T;). As in the above lemmas, we obtain Yo;r(Ti+1) = Yr(Tit1)- O

Lemma 7. IfT; is a tree with ygr(T;) = 70ir(T3) and T;41 is a tree obtained from T; by
Operation Oz, then Yr(Ti+1) = Yoir(Tit+1).

Proof. Let O7 add the graph F; and the edge zy. Since, x € Wr,, there exists
a Yoir(T;)-function f such that f(z) > 1. Then f can be extended to an outer-
independent Roman dominating function of T;,; by assigning a 2 to y3, a 1 to y1,ys
and a 0 to the vertices N(y3), and 50 Voir(Ti+1) < Yoir(Ti) + 4.

On the other hand, let g be a yr(T};41)-function such that g(ys) is as large as possible.
Clearly, g(ys) = 2, g(y1) = g(ys) = 1 and ¢(y) = 0. Hence, g restricted to T; is an
RDF of T; implying that yr(T;+1) > 4+vr(T;). Now the result follows by Observation
2. O

Lemma 8. If T; is a tree with vr(T}) = Yoir(T;) and T;11 is a tree obtained from T; by
Operation Os, then Yr(Ti+1) = Yoir(Tit+1)-
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Proof. Let Og add the graph Fh and joins = to y. Since, z € Wr,, there exists a
Yoir (T3 )-function f such that f(x) > 1 and f can be extended to an outer-independent
Roman dominating function of T;;1 by assigning a 2 to y3, a 1 to y1,¥s,2 and a 0 to
Y, Y2, Y4- Thus ’YoiR(T’i+1> < P)IoiR(Ti) +5.

Now let g be a yr(T;+1)-function such that g(y3)+g(z) is as large as possible. Then we
must have g(y3) = 2,9(z) = g(y1) = g(ys) = 1 and ¢g(y) = 0. Hence, the function g,
restricted to 7T; is an Roman dominating function of T; and so yr(T;41) > 5 +vr(T;).
Now the result follows by Observation 2. O

Lemma 9. If T; is a tree with vr(T3) = Yo:r(T3) and T;11 is a tree obtained from T; by
Operation Og, then ’YR(TH—I) = 'YoiR(Ti+1)-

Proof. Let Oy add a graph F3 and the edge zy. Since x € Wr,, there exists a
Yoir (T;)-function f such that f(z) > 1 and f can be extended to an outer-independent
Roman dominating function of T;,1 by assigning a 2 to y3, 1 to y; and 0 to the vertices
in N(y3). Hence, Yoir(Tit1) < Yoir(T3) + 3.

Now let g be a yr(T;+1)-function such that g(ys) is as large as possible. Clearly,
9(ys) =2, gy1) = 1 and g(y) = 0. Then the function g, restricted to T; is an RDF
of T; yielding vr(Ti+1) > 3+ vr(T;). Now the result follows by Observation 2. O

The proof of the next lemma is similar to the proof of Lemma 9 and therefore it is
omitted.

Lemma 10. If T; is a tree with vr(T3) = Yoir(T3) and T;41 is a tree obtained from 7;
by Operation O19, then 'YR(Ti+1) = ’YoiR(Ti+l)~

Theorem 4. If T € T, then vr(T) = Yoir(T).

Proof. T T € {P,, P3, Py}, then obviously ygr(T) = 7oir(T). Suppose now that
T € T. Then there exists a sequence of trees 11,75, ..., T (k > 1) such that T} €
{P2, P35, Py}, T = T} and if k > 2, then T;;1 can be obtained from T; by one of
the Operations O1,0s,...,0q¢ for i = 1,2,...,k — 1. We apply induction on the
number of operations used to construct 7. If k = 1, the result is trivial. Assume
the result holds for each tree T € T which can be obtained from a sequence of
operations of length k — 1 and let 77 = T},_;. By the induction hypothesis, we have
Yr(T") = v0ir(T"). Since T = T}, is obtained by one of the Operations O1, O, ..., O1g
from T”, we conclude from the above Lemmas that vg(T) = Yoir(T). O

Now we are ready to prove our main result.

Theorem 5. Let T be a non-trivial tree. Then vr(T) = voir(T) if and only if T € T.
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Proof. According to Theorem 4, we need only to prove necessity. Let T be a tree
of order n > 3 with Yr(T') = 7oir(T). The proof is by induction on n. If n < 3, then
clearly T € T. Let n > 4 and let the statement hold for all trees of order less than
n. Assume that T is a tree of order n with Yr(T) = voir(T). If diam(7T") < 3, then
T = P, or T is a star or double star. If T = Py, then obviously T € T, if T is a
star, then T can be obtained from P3; by repeated application of operation O;, and
if T is a double star different from P,, then T can be obtained from P; by applying
operation Oy once and operation 7 repeatedly, and this implies that T' € 7. Hence
let diam(T) > 4.

Let vivg...v, (k > 5) be a diametral path in T such that deg,(v2) is as large as
possible and root T at vy. If deg(va) > 4, then clearly Yr(T —v1) = Yoir(T —v1). It
follows from the induction hypothesis that T'— v; € T and hence T' can be obtained
from T — vy by Operation O; implying that 7' € T. Assume that degy(vs) < 3.
First let degy(v3) = 2. Suppose that 7" = T — T,,. Clearly, any Roman dominating
function of T” can be extended to a Roman dominating function of T by assigning a
2 to vy and a 0 to the vertices in Ny (v2) yielding

Yr(T) < vr(T") +2. (1)

Similarly, any outer-independent Roman dominating function of T” can be extended
to an outer-independent Roman dominating function of T" by assigning a 1 to vs, a 2 to
vy and a 0 to the vertices in L,, yielding vo;r(T) < Yoir(T”) + 3. On the other hand,
assume that f is a v,z (T)-function. Clearly f(Nvz]) > 2. If f(vs) < 1, then the
function f restricted to T” is an OIRDF of T that implies voir(T) > Yoir(T") + 2.
If f(v3) = 2, then f(Ly,) > 1, and the function g : V(T") — {0,1,2} defined by
g(va) = min{f(vs) + 1,2} and g(x) = f(x) otherwise is an OIRDF of T” of weight at
most Yoir(T) — 2 yielding Yo;r(T) > Yoir(T') + 2. Thus Yo;r(T) — 3 < Yoir(T") <
7oiR(T) —2.1If ’YoiR(T/) = ’)/oiR(T) - 37 then

’VoiR(T/) = ’YoiR(T) -3= ’YR(T) -3 < ’YR(T/) -1
which is a contradiction by Observation 1. Hence,
’YoiR(T/) = ’yoiR(T) - 2. (2)

By (1), (2) and Observation 3, we obtain yr(T") = ~Yor(T’). By the induction
hypothesis we have T” € T. Now we show that vy € Wr.. Let h be a v,;r(T)-function
such that h(vy) is as large as possible. Clearly h(Nvs]) > 2. Since Yr(T) = voir(T),
h is also a yr(T)-function. If h(vg) > 1, then h restricted to T” is a v,;r(T”)-function
and we are done. Assume that h(vs) = 0. Since h is an OIRDF of T, we must have
h(vs) > 1. If h(vs) = 1, then to Roman dominate the vertices of vy,ve, we must
have h(Nva] — {v3}) > 2. But then the function hy : V(T) — {0,1,2} defined by
hi(ve) = 2,hq1(x) = 0 for © € N(va) and hy(z) = h(x) otherwise, is an RDF of T of
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weight less than w(h) which is a contradiction. Assume that h(vsz) = 2. To Roman
dominate vy, we must have f(v1)+ f(v2) > 1. Now the function he : V(T) — {0,1,2}
defined by ho(vs) = min{2, h(vy) + 1}, ha(ve) = 2,he(z) = 0 for x € N(vz) and
ha(z) = h(x) otherwise, is an OIRDF of T' of weight w(h) contradicting the choice of
h. Thus vy € Wy.. Now T can be obtained from T” by Operation O3 and so T € 7.
Now, let degy(v3) > 3. We consider the following cases.

Case 1. degp(v2) = 3.
We distinguish the following subcases.

Subcase 1.1 v has two children with depth 0 or v3 has one child with depth 1 other
than vs.
Let T" =T —T,,. Clearly, any Roman dominating function of 7" can be extended to
a Roman dominating function of T by assigning a 2 to vy and 0 to the vertices in L,
yielding

Yr(T) <Yr(T') + 2. (3)

On the other hand, let f be a v,;r(T)-function such that f(vs) 4+ f(vs) is as large
as possible. Clearly, f(ve) = 2. If f(vs) > 1, then the function f, restricted to
T’ is an outer-independent Roman dominating function of 77 which implies that
Yoir(T") < Yoir(T) — 2. Assume that f(v3) = 0. We deduce from the assumption
that v is not a strong support vertex, and thus v3 has one child with depth 1, say
u, different from ve. Since f is an OIRDF of T, we have f(u) > 1. To Roman
dominate the leaves adjacent to w, we must have f(u) + f(L(u)) > 2. Without
loss of generality, we may assume that f(u) = 2. Now the function f, restricted
to T" is an outer-independent Roman dominating function of 7" which implies that
’YoiR(T/) < fYoiR(T) — 2. Thus

Yoir(T") < Yoir(T) —2 (4)

We conclude from (3), (4), Observation 3 and the induction hypothesis that 7" € T.
Now T can be obtained from 7" by Operation Oy and so T € T.

Subcase 1.2 deg;(vs) = 3 and vs has one child with depth 0 .

Assume that 7" = T —T,, and L(v3) = {u}. Clearly, any Roman dominating function
of T’ can be extended to a Roman dominating function of T' by assigning weight 2 to
vy , 1 to uw and 0 to the vertices in Np(v2) which implies that

Yr(T) < yr(T") + 3. (5)

Consider now a v,;r(T)-function f such that f(vs)+ f(u) is as large as possible. Then
we must have f(vy) =2, f(u) =1 and f(x) = 0 for z € N(v2). Then the function
f, restricted to T” is an outer-independent Roman dominating function of 77 which
implies that

rYoiR(T/) S '-YoiR(T) - 3. (6)
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It follows from (3), (4) and Observation 3 that v,z (T") = vr(T") and by the induction
hypothesis we have 77 € T. Since v,;r(T’) = vr(T"), the function f restricted to
T" is a Yoir(T")-function. Since f is an OIRDF of T and f(v3) = 0, we deduce that
f(vg) > 1 and so vy € Wrs. Now T can be obtained from 7" by Operation Os yielding
TeT.

Case 2. degp(v2) = 2.

First let degp(vs) > 4. Assume that 7/ =T — {v1,v2}. By the choice of diametrical
path, vs is a strong support vertex or is a weak support vertex and there is a path
xxoxy such that deg(z1) = 1 and deg(xz) = 2 or there are two paths zxzox; and
xz9z1 such that deg(xz1) = deg(z1) = 1 and deg(z2) = deg(z2) = 2. If fis a voir(T)-
function, then f is a ygr(T)-function (since vo;r(T) = vr(T)) and we must have
f(vs) = 2 and f(v1) = 1. Thus the function f restricted to 7" is an OIRDF of T’
and 80 Yoir(T) > Yoir(T') + 1. On the other hand, if g is a yr(T”)-function such that
g(vs) is as large as possible, then clearly g(vs) = 2 and g can be extended to an RDF
of T by assigning a 1 to v; and a 0 to vy yielding vg(T) < yr(T") + 1. We conclude
from Observation 3 that v,;r(T") = Yr(T") and by the induction hypothesis we have
T’ € T. Now T can be obtained from 7" by Operation Og and so T € T.

Now, let degr(vs3) = 3. Then T,, is a pendant path Py or a pendant path Ps in 7.
If diam(T") = 4, then T can be obtained from P; by Operation Og or from P, by
Operations O3, 0¢ and so T € T. Suppose that diam(7T) > 5. We distinguish the
following subcases.

Subcase 2.1. wvs is a support vertex and degp(vq) = 2.

Let u be the leaf adjacent to vz and let T/ = T —T,,. Clearly, any Roman dominating
function of 7" can be extended to a Roman dominating function of T by assigning a 2
to vs , 1 to v; and 0 to va, vy, w which implies that yg(7T") < vgr(7”) + 3. On the other
hand, let f be a v,z (T)-function such that f(vs) is as large as possible. Then we
must have f(vs) =2, f(v1) =1 and f(v2) = f(u) = 0. Now the function g : V(T") —
{0,1,2} defined by g(vs) = min{2, f(vs) + f(v4)} and g(z) = f(x) otherwise, is an
OIRDF of T" of weight v,;r(T) — 3 and this implies that vir(T’) < Yoir(T) — 3.
It follows that Observation 3 that v,;r(T") = Yr(T") and so g is a yg(T")-function
yielding vs € Wrs. By the induction hypothesis, we obtain 77 € T. Now T can be
obtained from 7" by Operation Qg and so T € T .

Subcase 2.2. w3 is a support vertex and v4 has a child with depth 2.

Let u be the leaf adjacent to vs and let vqy3y2y1 be a path in T such that ys3 & {vs,vs}.
By the choice of diametrical path we have deg(y2) = 1. Considering above arguments,
we may assume that T,, = P, or Ty, = P5 since otherwise we can rename y; as
v; and are in the case that degp(vs) = 2 which we have considered already. Let
T =T —T,,. As in the Subcase 2.1, we have yg(T) < yr(T’) + 3. Now let f
be a ¥, r(T)-function such that f(ys) is as large as possible. Clearly, f(y3) = 2 and
fu)+ f(v1)+ f(v2)+ f(vs) > 3. Hence the function f restricted to T is an OIRDF of
T’ of weight at most v,;r(T) — 3 implying that y,;r(T) > Yoir(T") + 3. It follows that
Observation 3 and the induction hypothesis that 7/ € 7. Since T can be obtained
from T” by Operation Oy, we have T' € T.
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Subcase 2.3. w3 is a support vertex and v4 has a child with depth 1.

Let u be the leaf adjacent to vz and let vsysy1 be a path in T such that yo # vs.
Let T = T — T,,. As in the Subcase 2.1, we have yg(T) < vg(T’) + 3. Now let f
be a v,;r(T)-function such that f(vs) + f(y2) is as large as possible. Then clearly,
flvs) =2, f(u) + f(v1) + f(v2) + f(v3) > 3 and either f(vg) > 1 or f(vy) = 0 and
f(y2) = 2. Hence, the function f restricted to 7" is an OIRDF of T” of weight at most
Yoir(T) — 3 yielding voir(T) > Yoir(T') + 3. By Observation 3 and the induction
hypothesis, we have T’ € 7. Since T can be obtained from 7" by Operation Oy, we
have T € T.

Subcase 2.4. wvj3 is a support vertex and vy is a strong support vertex.

Let u be the leaf adjacent to vz and let 7/ = T — T,,. As in the Subcase 2.1, we
have Ygr(T) < ygr(T') + 3. Consider now a 7,z (T)-function f such that f(v4) =2 to
according Proposition 1. Clearly, f(u)+ f(v1) + f(v2) + f(v3) > 3 and the function f
restricted to 7" is an OIRDF of T” of weight at most vo;z(T) — 3 yielding vo;r(T) >
Yoir(T") + 3. By Observation 3 and the induction hypothesis, we have 7" € T. Now,
T can be obtained from T’ by Operation O4, we have T € T.

Subcase 2.5. w3 is a support vertex, deg,(v4) = 3 and vy has a child with depth 0.
Let z be the leaf adjacent to vs. If diam(7T) = 4, then T can be obtained from P; by
Operation O4 and so T' € T. Let diam(T) > 5 and let T/ = T — T,,. Clearly, any
~vr(T")-function can be extended to an RDF of T' by assigning a 2 to v3, a 1 to vy, 2z
and a 0 to u,ve,v4 and so

Yr(T) < vr(T") + 4. (7)

Let f be a v4;r(T)-function such that f(vs) + f(z) is as large as possible. Clearly,
flvs) =2, f(V(Ty,)) > 3 and f(V(T,,)) > 4. We claim that f(vs) = 0. Suppose,
to the contrary, that f(vs) > 1. Since Yr(T) = voir(T), f is also a vgr(T')-function.
This implies that f(vs) = 2, otherwise we must have f(z) = 1 and the function
h : V(T) — {0,1,2} defined by h(vs) = 0, and h(t) = f(t) otherwise, is an RDF
of T of weight less that w(f) = vr(T) which is a contradiction. Now the function
g : V(T) — {0,1,2} defined by g(vs) = 0,9(2) = 1,g(vs) = min{2, f(vs) + 1} and
g(z) = f(x) otherwise, is a v,;r(T)-function contradicting the choice of f. Thus
f(vg) = 0 and so f(vs) > 1 because f is an OIRDF of T. Then the function f
restricted to T is an OIRDF of 7" and so

’YoiR(T) > ’YoiR(T/) +4. (8)

We deduce from (7), (8) and Observation 3 that v,;r(T") = yr(T”) and so f restricted
to T is a Yo; g (T")-function implying that vs € Wr . By the induction hypothesis, we
have T” € T and since T can be obtained from 7" by Operation O1g, we have T € T.
Subcase 2.6. There is a pendant path vsysy; such that yo & {va,vs4}, and
degy(va) = 2.

Then T,, = Ps. If diam(T") = 4, then T can be obtained from Ps by Operation Og
and so T € T. Suppose diam(T) > 5 and let 77 = T — T,,. Clearly, any Roman
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dominating function of T’ can be extended to a Roman dominating function of T' by
assigning a 2 to v3 , 1 to v1,y; and 0 to vs, y2, v4 which implies that

Yr(T) < vr(T') + 4. 9)

Consider now a 7,;z(T)-function f such that f(v3) is as large as possible. Then we
must have f(vs) = 2, f(v1) = f(y1) =1 and f(v2) = f(y2) = 0. Now the function
g : V(T — {0,1,2} defined by g(vs) = min{2, f(vs) + f(v4)} and g(x) = f(z)
otherwise, is an OIRDF of T” of weight v,;r(T) — 4 yielding

'YOz'R(T/) < 'YOiR(T) —4. (10)

By inequalities (9), (10) and Observation 3, we have v,;r(T') = yr(T") and so g is a
vr(T")-function. Since f is an OIRDF of T, we must have f(vq) + f(vs) > 1 and so
g(vs) = min{2, f(vs) + f(va)} > 1 yielding vs € Wrs. By the induction hypothesis,
we obtain T” € 7. Since T can be obtained from 7" by Operation O, we have T € T.
Subcase 2.7. There is a pendant path vsysy; such that ys & {vs,v4}, and vy has a
child with depth 2.

Let v4z32021 be a path in T such that z3 & {vs,vs}. By the choice of diametrical
path we have deg(z2) = 1. If deg(z3) = 2, then T can be obtained from T — T, by
Operation O3 (see the third paragraph of the proof), if deg(z3) > 4, then T can be
obtained from T — {z1, 22} by Operation Og (see the first paragraph of Case 2) and
if deg(vs) = 3 and z3 is a support vertex, then T can be obtained from T' — T, by
Operation O4 (see Subcase 2.2). Henceforth, we may assume that Ty, = P5. Let
T' =T —1T,,. Clearly, any Roman dominating function of 7" can be extended to a
Roman dominating function of T" by assigning a 2 to vs , 1 to v1,y; and 0 to vs, ya
and so

Yr(T) < vr(T') + 4. (11)

Consider now a 7,;r(T)-function f such that f(vs) + f(z3) is as large as possible.

Then we must have f(vs) = f(z5) = 2, f(o1) = f(yn) = 1 and f(va) = f(y) = O,
and f restricted to T” is an OIRDF of T” of weight v,;r(T) — 4 and so

Yoir(T) = Yoir(T") + 4. (12)

By inequalities (11), (12), Observation 3 and the induction hypothesis 7" € 7. Since
T can be obtained from T’ by Operation O4, we have T € T.

Subcase 2.8. There is a pendant path vsysy; such that yo € {vs,v4}, and vy has a
child zo with depth 1.

Let vg2921 be a path in T. Assume that 7" =T —T,,. As in the Subcase 2.7, we can
see that Yr(T') < yr(T")+4. Now let f be a v,;r(T)-function such that f(vs)+ f(z2)
is as large as possible. Then clearly, f(vs) = 2, f(y2)+f(y1)+f(v1)+f(v2)+ f(vs) > 4
and either f(vy) > 1 or f(vq) =0 and f(22) = 2. Hence, the function f restricted to
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T" is an OIRDF of T” of weight at most v,z (T") — 4 yielding voir(T) > Yoir(T") + 4.
By Observation 3 and the induction hypothesis, we obtain 7" € T and since T' can
be obtained from T” by Operation Oy, we have T € T.

Subcase 2.9. There is a pendant path vsysy; such that yo & {va,v4}, and vy is a
strong support vertex.

Let T =T — T,,. As in the subcase 2.4, we can see that 7" € T, and since T can be
obtained from 7" by Operation Oy, we have T € T.

Subcase 2.10. There is a pendant path vzy2y; such that yo & {va, v4}, degy(vy) =3
and v4 has a child with depth one.

Let z be the child of vy with depth one and let T/ = T — T,,,. Clearly, any yr(T")-
function can be extended to an RDF of T by assigning a 2 to vz, a 1 to vi,y1,2
and a 0 to y2,v2,v4 and so Yr(T) < vgr(T’) + 5. Consider now a ~,;r(T)-function
f such that f(v3) + f(z) is as large as possible. Clearly, f(v3) = 2, f(V(T,,)) > 4
and f(V(Ty,,)) > 5. We claim that f(vq) = 0. Suppose, to the contrary, that
f(vg) > 1. Since yr(T) = voir(T), f is also a yr(T)-function. This implies that
f(vg) = 2, otherwise we must have f(z) = 1 and the function h : V(T) — {0,1,2}
defined by h(vs) = 0, and h(t) = f(t) otherwise, is an RDF of T of weight less that
w(f) = vr(T) which is a contradiction. Define g : V(T) — {0,1,2} by g(vs) =
0,9(2) = 1,9(vs) = min{2, f(vs) + 1} and g(z) = f(z) otherwise. Clearly, g is a
Yoir(T)-function contradicting the choice of f. Thus f(v4) = 0 and so f(vs) > 1
because f is an OIRDF of T. Now the function f restricted to 7" is an OIRDF of T”
and 80 Yoir(T) > Yoir(T")+5. We deduce from Observation 3 that v,z (T") = yr(T")
and hence f restricted to T” is a v,ir(T")-function with f(vs) > 1 implying that
vs € Wy, On the other hand, by the induction hypothesis, we have T” € T and since
T can be obtained from T” by Operation Og, we have T € 7. This completes the
proof. O
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