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Abstract: A Roman dominating function on a graph G is a function f : V (G) →
{0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at

least one vertex v for which f(v) = 2. A total Roman dominating function is a Roman
dominating function with the additional property that the subgraph of G induced by

the set of all vertices of positive weight has no isolated vertices. The weight of a total

Roman dominating function f is the value Σu∈V (G)f(u). The total Roman domination
number of G, γtR(G), is the minimum weight of a total Roman dominating function

on G. The total Roman domination subdivision number sdγtR (G) of a graph G is the

minimum number of edges that must be subdivided (each edge in G can be subdivided
at most once) in order to increase the total Roman domination number. In this paper,

we initiate the study of total Roman domination subdivision number in graphs and we

present sharp bounds for this parameter.
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1. Introduction

Throughout this paper, G is a simple graph with vertex set V (G) and edge set E(G)

(briefly V,E, respectively). For every vertex v ∈ V (G), the open neighborhood of v is

the set NG(v) = N(v) = {u ∈ V (G) | uv ∈ E(G)} and its closed neighborhood is the

set NG[v] = N [v] = N(v) ∪ {v}. Similarly, the open neighborhood of a set S ⊆ V (G)

is the set N(S) = ∪v∈SN(v) and the closed neighborhood of S is N [S] = N(S) ∪ S.

The degree of a vertex v ∈ V is degG(v) = |N(v)|. The minimum degree and the

maximum degree of a graph G are denoted by δ = δ(G) and ∆ = ∆(G), respectively.

The distance between two vertices u and v is the length of a shortest path joining

them. We denote by N2(v) the set of vertices at distance 2 from the vertex v and put

d2(v) = |N2(v)| and δ2(G) = min{d2(v) | v ∈ V (G)}. For a set S of vertices and a
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vertex v ∈ S, the private neighborhood of v with respect to S, pn(v, S), is defined by

pn(v, S) = N [v]−N(S − {v}).
A subset S of vertices of G is a dominating (total dominating) set if N [S] = V

(N(S) = V ). The domination (total domination) number γ(G) (γt(G)) is the min-

imum cardinality of a (total) dominating set of G. A (total) dominating set with

cardinality γ(G) (γt(G)) is called a γ(G)-set (γt(G)-set). The domination and its

variations have been attracted considerable attention and surveyed in three books

[19, 20, 23].

A function f : V (G) → {0, 1, 2} is a Roman dominating function (RDF) on G if

every vertex u ∈ V for which f(u) = 0 is adjacent to at least one vertex v for

which f(v) = 2. The weight of an RDF is the value f(V (G)) =
∑
u∈V (G) f(u).

The Roman domination number γR(G) is the minimum weight of an RDF on G.

Roman domination was introduced by Cockayne et al. in [9] and was inspired by the

work of ReVelle and Rosing [26] and Stewart [27]. A Roman dominating function

f : V (G) −→ {0, 1, 2} may be represented by the ordered triple (V f0 , V
f
1 , V

f
2 ) of V

where V fi = {v ∈ V (G) | f(v) = i} for i ∈ {0, 1, 2}.
A total Roman dominating function of a graph G with no isolated vertex, abbreviated

TRD-function (TRDF), is a Roman dominating function f on G with the additional

property that the subgraph of G induced by the set of all vertices of positive weight

under f has no isolated vertex. The total Roman domination number γtR(G) is the

minimum weight of a TRD-function on G. A TRD-function with weight γtR(G) in G

is called a γtR(G)-function. The concept of total Roman domination in graphs was

introduced by Liu and Chang [25] and has been studied in [1–4].

In application, network design for example, if a parameter µ(G) is important to study,

then it is important to know the effect that modifications of G have on µ(G). For

example, vertices can be deleted and edges can be deleted, added or subdivided. In

network design, deleting a vertex or an edge may represent components failure. From

the other perspective, networks can be made fault tolerant by providing redundant

communication link (adding edges). The effects on the domination number of a graph,

when G is modified by deleting a vertex or deleting or adding an edge, have been

investigated extensively (see chapter 7 of [20]).

Alternatively, one can consider how many modifications must take place before a pa-

rameter changes. Along these lines, Fink et al. [17], defined the bondage number of

a graph to equal the minimum number of edges whose removal increases the domina-

tion number. On the other hand, Kok and Mynhardt [24] defined the reinforcement

number of a graph to equal the minimum number of edges which must be added to

a graph in order to decrease the domination number. Considering a different type of

graph modification, Velammal [28] defined the domination subdivision number sdγ(G)

to be the minimum number of edges that must be subdivided (where each edge in G

can be subdivided at most once) in order to increase the domination number. The

domination subdivision number has been studied by several authors (see for instance

[5, 18, 21]). A similar concepts related to connected domination were studied in [14],

to total domination in [14–16, 22], to Roman domination in [7, 8], to rainbow domi-

nation in [10, 13], to 2-domination in [6], to weakly convex domination in [11] and to
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convex domination in [12].

The total Roman domination subdivision number sdγtR(G) of a graph G is the min-

imum number of edges that must be subdivided (where each edge in G can be sub-

divided at most once) in order to increase the total Roman domination number of

G. If G1, G2, . . . , Gs are the components of G, then γtR(G) =
∑s
i=1 γtR(Gi) and

sdγtR(G) = min{sdγtR(Gi) | 1 ≤ i ≤ s}. Hence, it is sufficient to study sdγtR(G)

for connected graphs. Proposition 1 below shows that the total Roman domination

number of graphs cannot decrease when an edge of graph is subdivided.

We make use of the following results in this paper.

Theorem A. [2] For every graph G with no isolated vertex

γt(G) ≤ γR(G) ≤ γtR(G) ≤ 2γt(G).

A graph G for which γtR(G) = 2γt(G) is defined in [2] to be a total Roman graph. In

their paper, they presented the following trivial necessary and sufficient condition for

a graph to be a total Roman graph.

Theorem B. [2] Let G be a graph without isolated vertices. Then, G is a total Roman
graph if and only if there exists a γtR(G)-function f = (V0, V1, V2) such that V1 = ∅.

Theorem C. [2] For any integer n ≥ 3, γtR(Pn) = γtR(Cn) = n.

As a consequence of Theorem C, we have:

Corollary 1. For any integer n ≥ 3, sdγtR(Pn) = sdγtR(Cn) = 1.

Theorem D. [1] For any graph G of order n ≥ 3, γtR(G) = 3 if and only if ∆(G) = n−1.

Theorem E. [1] For any graph G of order n ≥ 4, γtR(G) = 4 if and only if G = 2K2,
∆(G) = n− 2 or there are two adjacent vertices u, v ∈ V (G) such that N [u]∪N [v] = V (G).

Next result shows that subdividing an edge does not decrease the total Roman dom-

ination number.

Proposition 1. Let G be a simple connected graph of order n ≥ 3 and e = uv ∈ E(G).
If G′ is obtained from G by subdivision the edge e, then γtR(G′) ≥ γtR(G).

Proof. Let x be the subdivision vertex and let f be a γtR(G′)-function. Since f is

a TRDF on G′, we have that f(u) + f(v) ≥ 1. With loss of generality, we suppose

that v has positive weight under f . Let g : V (G) −→ {0, 1, 2} be a function defined

by g(u) = min{2, f(u)+f(v)} and g(z) = f(z) whenever z ∈ V (G)\{u}. Notice that
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g is a TRDF on G and ω(g) ≤ ω(f). Hence γtR(G′) ≥ γtR(G), which completes the

proof.

Observation 1. [2] Let G be a connected graph of order at least three and let f =
(V f0 , V

f
1 , V

f
2 ) be a γtR(G)-function. Then the following assertions hold.

1. |V f2 | ≤ |V
f
0 |.

2. If x is a leaf and y a support vertex in G, then x /∈ V f2 , y 6∈ V f0 and f(x) + f(y) ≥ 2.

3. If z has at least three leaf-neighbors, then f(z) = 2 and at most one leaf-neighbor of z
belongs to V f1 .

2. Sufficient conditions for small total Roman domination
subdivision number

In this section we present some sufficient conditions for graphs to have small total

Roman domination subdivision number.

Proposition 2. If G contains a strong support vertex, then sdγtR(G) = 1.

Proof. Let w be a strong support vertex of G and let u, v be two leaves adjacent to w.

Suppose G′ is the graph obtained from G by subdivision the edge uw with vertex x and

let f be a γtR(G′)-function. By Observation 1 we have that f(w) 6= 0, f(u)+f(x) ≥ 2

and f(w) + f(v) ≥ 2. Define g : V (G) −→ {0, 1, 2} by g(w) = 2, g(u) = 1, g(v) = 0

and g(z) = f(z) for each z ∈ V (G) \ {u, v, w}. Observe that g is a TRDF on G with

ω(g) < ω(f). Hence sdγtR(G) = 1.

Proposition 3. Let G be a connected graph of order n ≥ 3. If γtR(G) = 3, then
sdγtR(G) = 1.

Proof. Let e = uv ∈ E(G) and let G
′

be the graph obtained from G by subdivision

the edge uv with vertex x. Then n(G′) = n + 1 and ∆(G′) ≤ n(G′) − 2. It follows

from Theorem D that γtR(G′) ≥ 4 and so sdγtR(G) = 1.

By Theorem D and Proposition 3 we have the next results.

Corollary 2. For any graph G of order n ≥ 3 with ∆(G) = n− 1, sdγtR(G) = 1.

Proposition 4. Let G be a connected graph of order n ≥ 5. If γtR(G) = 4, then

sdγtR(G) ≤ 2.

Furthermore, this bound is sharp for the graph illustrated in Figure 1.
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Figure 1. Graph G with γtR(G) = 4 and sdγtR (G) = 2

Proof. Let f = (V f0 , V
f
1 , V

f
2 ) be a γtR(G)-function such that |V f2 | is maximum. We

claim that V f1 = ∅. Suppose that V f1 6= ∅. Then we must have |V f1 | = 2 and |V f2 | = 1.

Let u, v ∈ V f1 and w ∈ V f2 . Since f is a TRDF of G, w is adjacent to any vertex in V0

and to at least one vertex in {u, v}. We conclude from Theorem D and the assumption

that w is adjacent to exactly one vertex in {u, v}. Suppose without loss of generality

that vw ∈ E(G). This implies that uv ∈ E(G). Define g : V (G) −→ {0, 1, 2} by

g(v) = 0, g(u) = 2 and g(z) = f(z) for each z ∈ V (G) \ {u, v}. Obviously, g is

a γtR(G)-function contradicting the choice of f . Thus V1 = ∅ and |V2| = 2. Let

V f2 = {x, y}. By definition xy ∈ E(G). Then each of x and y have at least one

private neighbor in V f0 , otherwise γtR(G) = 3, a contradiction.

Let x′, y′ be two private neighbors of x, y in V f0 , respectively and let G′ be a graph

obtained fromG by subdividing the edges xx′ and yy′ with vertices x1, y1, respectively.

We claim that γtR(G′) ≥ 5. Suppose, to the contrary, that γtR(G′) = 4. Assume that

g = (V g0 , V
g
1 , V

g
2 ) is a γtR(G′)-function such that |V g2 | is as large as possible. As

above we may assume that |V g2 | = 2. To total Roman dominate the vertices x1, y1,

we must have g(x) + g(x′) + g(x1) ≥ 2 and g(y) + g(y′) + g(y1) ≥ 2. It follows from

γtR(G′) = 4 that g(x) + g(x′) + g(x1) = 2 and g(y) + g(y′) + g(y1) = 2. This implies

that g(x1) = g(y1) = 0.

Now to Roman dominate x1 and using the fact g(x)+g(x′)+g(x1) = 2, we must have

g(x) = 2 and g(x′) = 0 or g(x) = 0 and g(x′) = 2. Similarly, g(y) = 2 and g(y′) = 0

or g(y) = 0 and g(y′) = 2. Since g is a TRDF of G′, we must have g(x) = g(y) = 2

or g(x′) = g(y′) = 2. If g(x) = g(y) = 2, then x′ is not Roman dominated and if

g(x′) = g(y′) = 2, then x is not Roman dominated which is a contradiction. Thus

γtR(G′) ≥ 5, and this implies that sdγtR(G) ≤ 2.

Next result is an immediate consequence of Theorem E and Proposition 4.

Corollary 3. If G is a connected graph of order n ≥ 4 with ∆(G) = n − 2, then
sdγtR(G) ≤ 2. Furthermore, this bound is sharp for the graph illustrated in Figure 2.
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Figure 2. Graph G with ∆(G) = n(G)− 2 and sdγtR (G) = 2

Proposition 5. Let G be a simple connected graph of order n ≥ 3. If G has a
vertex v ∈ V (G) which is contained in a triangle uvw such that N(u) ∪N(w) ⊆ N [v], then
sdγtR(G) ≤ 3.

Proof. Let G′ be obtained from G by subdividing the edges vu, vw, uw with vertices

x, y, z, respectively, and let f be a γtR(G′)-function. It is easy to see that f(x) +

f(y) + f(z) + f(u) + f(v) + f(w) ≥ 4. Define g : V (G) −→ {0, 1, 2} by g(v) =

2, g(u) = 1, g(w) = 0 and g(a) = f(a) for each a ∈ V (G)− {u, v, w}. Obviously, g is

a TRDF of G with ω(g) < ω(f) and the proof is complete.

3. Bounds

In this section we present some sharp upper bounds on sdγtR(G).

Theorem 2. Let G be a connected graph. If v ∈ V (G) has degree at least two, then

sdγtR(G) ≤ deg(v).

Furthermore, this bound is sharp for the graphs illustrated in Figures 1 and 2.

Proof. Let N(v) = {v1, v2, . . . , vd} where d = deg(v). Let G′ be the graph ob-

tained from G by subdividing the edges vv1, vv2, . . . , vvd with vertices x1, x2, . . . , xd,

respectively, and let f be a γtR(G′)-function. Then f(xi) ≥ 1 for some 1 ≤ i ≤ d,

say i = 1, and so f(v) ≥ 1 or f(v1) ≥ 1. Suppose G′′ is obtained from G by sub-

dividing the edges vv2, vv3, . . . , vvd with vertices x2, x3, . . . , xd. If f(v1) ≥ 1 and

f(v) ≥ 1, then the function f , restricted to G′′, is a TRDF of G′′ which implies that

γtR(G) ≤ ω(f |G′′) < ω(f) by Proposition 1. We now consider the cases depending on

the value f(v).

Case 1. f(v) = 0.

Then f(v1) ≥ 1 and f(xi) = 2 for some i ∈ {1, . . . , d}. (Note that if f(xi) ≥ 1,
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then f(vi) ≥ 1 for each i ∈ {2, . . . , d}). Define the function g : V (G) −→ {0, 1, 2} by

g(v) = 1 and g(x) = f(x) for each x ∈ V (G)− {v}. Clearly, g is a TRDF of G with

ω(g) < ω(f) and so γtR(G) ≤ ω(g) < ω(f).

Case 2. f(v) ≥ 1.

If f(v1) ≥ 1, then the function f , restricted to G′′, is a TRDF of G′′ which implies that

γtR(G) ≤ ω(f |G′′) < ω(f) by Proposition 1. Assume that f(v1) = 0. If f(x1) = 2,

then define g : V (G′′) −→ {0, 1, 2} by g(v1) = 1, and g(z) = f(z) for z ∈ V (G′′)\{v1}.
Clearly, g is a TRDF of G′′ with ω(g) < ω(f) and hence γtR(G) ≤ ω(g) < ω(f).

Assume f(x1) = 1. If f(xi) = 2 for some i ∈ {2, . . . , d}, then the function g :

V (G) −→ {0, 1, 2} define by g(v) = 2, g(v1) = 1, and g(z) = f(z) otherwise, is a

TRDF of G of weight less than ω(f) and so γtR(G) < ω(f). Let f(xi) ≤ 1 for each

i ∈ {2, 3, . . . , d}. If f(xi) = 1 for some i ∈ {2, . . . , d}, then the function g : V (G) −→
{0, 1, 2} define by g(v1) = 1, and g(z) = f(z) for z ∈ V (G) \ {v1}, is a TRDF of G

with ω(g) < ω(f). Now we assume that f(xi) = 0 for i ∈ {2, 3, . . . , d}. If f(v) = 2,

then the function g : V (G) −→ {0, 1, 2} define by g(v) = g(v1) = 1 and g(z) = f(z)

for z ∈ V (G) \ {v, v1}, is a TRDF of G with ω(g) < ω(f) yielding γtR(G) < ω(f).

Let f(v) = 1. Then f(vi) = 2 for each i ∈ {2, . . . , d} and clearly f |G is a TRDF of G

of weight less than ω(f) implying that γtR(G) < ω(f). Thus sdγtR(G) ≤ deg(v) and

the proof is complete.

Next result is an immediate result of Proposition 2 and Theorem 2.

Corollary 4. For every tree T of order at least 3,

sdγtR(T ) ≤ 2.

Furthermore, this bound is sharp for the trees illustrated in Figure 3.

Figure 3. Trees with total Roman domination subdivision number two

Another consequence of Theorem 2 is that sdγtR(G) is defined for every connected

graph G of order n ≥ 3. In addition:

Corollary 5. For every connected graph G with δ ≥ 2, sdγtR(G) ≤ δ.
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The graphs in Figures 1 and 2 shows that the bound of Corollary 5 is sharp. It is well

known that every planar graph contains at least one vertex of degree at most five.

Thus, the following result is an immediate consequence of Corollary 5.

Corollary 6. For every planar graph G, sdγtR(G) ≤ 5.

Corollary 7. For any connected graph G with adjacent vertices u and v, each of degree
at least two,

sdγtR(G) ≤| N(u) ∪N(v) | −1.

In the above results, we essentially encountered graphs with small total Roman domi-

nation subdivision numbers. Next we show that the total Roman domination subdivi-

sion number of a graph can be arbitrarily large. The following graph was introduced

by Haynes et al. in [22] to prove a similar result on sdγt(G).

Theorem 3. For any integer k ≥ 4, there exists a connected graph G with sdγtR(G) = k.

Proof. Let X = {1, 2, . . . , 3(k−1)} and let Y = {Y ⊂ X | |Y | = k}. Thus Y consists

of all k-elements of X, and so | Y |=
(

3(k−1)
k

)
. Let G be the graph with vertex set

X∪Y and with edge set constructed as follows: add an edge joining every two distinct

vertices of X and for each x ∈ X and Y ∈ Y, add an edge joining x and Y if and

only if x ∈ Y . Then, G is a connected graph of order n =
(

3(k−1)
k

)
+ 3(k − 1). The

set X induces a clique in G, while the set Y is an independent set and each vertex

of Y has degree k in G. By the proof of Theorems 13 in [22] and 17 in [7], we have

γt(G) = 2k − 2 and γR(G) = 4k − 5, respectively. It follows from Theorem A that

4k − 5 ≤ γtR(G) ≤ 4(k − 1).

We claim that γtR(G) = 4(k − 1). Suppose, to the contrary, that γtR(G) = 4k − 5

and let f = (V0, V1, V2) be a γtR(G)-function. Since γtR(G) = γR(G), f is a γR(G)-

function and this implies that V2 6= ∅ and no edge of G joins a vertex in V1 to a

vertex in V2. Moreover, γtR(G) = 4k − 5 implies that V1 6= ∅. If |X ∩ V1| ≥ 1, then

we must have V2 ∩ X = ∅ because G[X] is a clique. Hence V2 ⊆ Y. Since Y is an

independent set, to totaly Roman dominate any vertex in V2 ∩ Y we must have an

edge between V2 ∩ Y and V1 ∩ X which is a contradiction. Thus X ∩ V1 = ∅. This

implies that V1 ⊆ Y. Let z ∈ V1. Then to totaly Roman dominate the vertex z, z

must be adjacent to a vertex in V2 ∩ X because Y is independent and X ∩ V1 = ∅,
and this leads to a contradiction. Therefore γtR(G) = 4(k − 1).

Let F = {e1, e2, . . . , ek−1} be an arbitrary subset of k − 1 edges of G. Assume H is

obtained from G by subdividing each edge in F . We show that γtR(H) = γtR(G). By

the proof of Theorem 13 [22], γt(G) = γt(H) = 2(k−1). We deduce from Theorem A

and Proposition 1 that γtR(G) ≤ γtR(H) ≤ 4(k−1). Consequently, γtR(H) = 4(k−1),

whence sdγtR(G) ≥ k.

By Theorem 2, we have sdγtR(G) = k. Note that since δ = k, G is an example of

equality in Corollary 5.
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In the next result, we establish an upper bound on the total Roman domination

number of a connected graph in terms of its order and minimum degree.

Proposition 6. For any connected graph G of order n ≥ 3,

γtR(G) ≤ n− δ + 2.

Furthermore, this bound is sharp for complete graphs.

Proof. Suppose v is a vertex with minimum degree δ(G) and define f : V (G) −→
{0, 1, 2} by f(v) = 2, f(w) = 1 for some w ∈ N(v), f(u) = 0 for each u ∈ N(v) \ {w}
and f(u) = 1 for each u ∈ V (G) \N [v]. Since N(u) ∩ ((V (G) \N(v)) ∪ {w}) 6= ∅ for

any u ∈ V (G) \N [v], f is a TRDF of G. Hence γtR(G) ≤ n− δ + 2 and the proof is

complete.

The following corollary is an immediate consequence of Corollary 5 and Proposition

6.

Corollary 8. For any connected graph G with δ ≥ 2,

sdγtR(G) ≤ n− γtR(G) + 2.

Ahangar et al. in [1] proved that for any connected graph G of order n ≥ 3, γtR(G) ≥
d 2n

∆ e. Using this bound and Corollary 8 we obtain the next result.

Corollary 9. For any connected graph G with n ≥ 3,

sdγtR(G) ≤ n− d2n
∆
e+ 2.

In the sequel, we present an upper bounds on the total Roman domination subdivision

number in terms of d2 for certain graphs.

Proposition 7. Let G be a connected graph of order n ≥ 3. If v ∈ V (G) is a support
vertex and has a neighbor u with N(u) \N [v] 6= ∅, then

sdγtR(G) ≤ 2 + |N(u)−N [v]|.

In particular, sdγtR(G) ≤ 2 + d2(v).
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Proof. Assume N(v) = {u = v1, v2, . . . , vdeg(v)} where deg(v2) = 1, and N(u) \
N [v] = {y1, y2, . . . , yk}. Let G1 be the graph obtained from G by subdividing the

edge vvi with a vertex xi for i = 1, 2, and the edge uyj with a vertex zj for 1 ≤ j ≤ k.

Let f be a γtR(G′)-function. Then f(v2) + f(x2) ≥ 2 and f(v) + f(x1) + f(u) ≥ 2. If∑k
j=1 f(zj)+f(x1)+f(v)+f(u) ≥ 3, then the function g : V (G) −→ {0, 1, 2} defined

by g(v) = 2, g(u) = 2, g(v2) = 0 and g(x) = f(x) for each x ∈ V (G) \ {v, v2, u} is a

TRDF of G of weight less than ω(f) = γtR(G). Let
∑k
j=1 f(zj)+f(x1)+f(v)+f(u) =

2. Then
∑k
j=1 f(zj) = 0. It is easy see that the function g : V (G) −→ {0, 1, 2} defined

by g(v) = 2, g(u) = 1, g(v2) = 0 and g(x) = f(x) for each x ∈ V (G) \ {v, v2, u} is a

TRDF of G with ω(g) < ω(f). Thus sdγtR(G) ≤ 2 + |N(u) −N [v]| and the proof is

complete.

Proposition 8. Let G be a connected graph of order n ≥ 3. If v ∈ V (G) is a support
vertex, then

sdγtR(G) ≤ 2 + d2(v).

Proof. Assume that N(v) = {v1, v2, . . . , vdeg(v)} where deg(v1) = 1. If v has a

neighbor u such thatN(u)\N [v] 6= ∅, the it follows from Proposition 8 that sdγtR(G) ≤
2+ |N(u)−N [v]| ≤ 2+d2(v). Let N(u) ⊆ N [v] for each u ∈ N(v). If G is a star, then

clearly sdγtR(G) = 1. Thus we may assume that v2v3 ∈ E(G). Let G1 be obtained

from G by subdividing the edges vv1 and v2v3, with vertices x, y respectively. Let f

be a γtR(G)- function. Then f(v1) + f(x) ≥ 2 and f(v2) + f(y) + f(v3) ≥ 2. Define

g : V (G) −→ {0, 1, 2} by g(v) = 2, g(v2) = 1, g(v3) = g(v1) = 0 and g(x) = f(x)

for each x ∈ V (G) \ {v, v1, v2, v3}. Since N(v3) ⊆ N(v), g is a TRDF of G with

ω(g) < ω(f) and hence sdγtR(G) ≤ 2. This completes the proof.

Proposition 9. Let G be a simple connected graph of order n ≥ 3. If G has a vertex
v ∈ V (G) which is contained in a triangle vuw such that N(u) ⊆ N [v] and N(w) \N [v] 6= ∅,
then

sdγtR(G) ≤ 3 + |N(w) \N [v]|.

In particular, sdγtR(G) ≤ 3 + d2(v).

Proof. Let N(w) \N [v] = {w1, w2, . . . , wk} and let G′ be a graph obtained from G

by subdividing the edges vu, vw, uw with vertices x, y, z, respectively, and, the edge

wwi with the vertex zi for each 1 ≤ i ≤ k. Suppose T = {z1, z2, . . . , zk}.
Let f = (V f0 , V

f
1 , V

f
2 ) be a γtR(G′)-function. Then f(x) +f(y) +f(z) +f(u) +f(v) +

f(w) ≥ 4. Define g : V (G) −→ {0, 1, 2} by g(v) = 2, g(u) = 0,

g(w) =

{
2 if

∑
z∈T f(z) ≥ 2

1 if
∑
z∈T f(z) ≤ 1

and g(a) = f(a) for each a ∈ V (G) \ {v, u, w}. It is easy to see that g is a TRDF of

G with ω(g) < ω(f) and so sdγtR(G) ≤ 3 + |N(w) \N [v]|.
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We conclude this section with two open problem.

Problem 1. Characterize all trees T attaining the bound of Corollary 4.

Problem 2. Is it true that, for any connected graph G with δ(G) ≥ 2, sdγtR(G) ≤
δ2(G) + 3.
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