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Abstract: Let k ≥ 1 be an integer, and let G be a finite and simple graph with

vertex set V (G). A weak signed Roman k-dominating function (WSRkDF) on a graph

G is a function f : V (G)→ {−1, 1, 2} satisfying the conditions that
∑

x∈N [v] f(x) ≥ k
for each vertex v ∈ V (G), where N [v] is the closed neighborhood of v. The weight of a
WSRkDF f is w(f) =

∑
v∈V (G) f(v). The weak signed Roman k-domination number

γkwsR(G) of G is the minimum weight of a WSRkDF on G. In this paper we initiate
the study of the weak signed Roman k-domination number of graphs, and we present

different bounds on γkwsR(G). In addition, we determine the weak signed Roman k-

domination number of some classes of graphs. Some of our results are extensions of
well-known properties of the signed Roman k-domination number γksR(G), introduced

and investigated by Henning and Volkmann [5] as well as Ahangar, Henning, Zhao,

Löwenstein and Samodivkin [1] for the case k = 1.
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domination number, Signed Roman k-dominating function, Signed Roman k-
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1. Terminology and introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi

and Slater [4]. Specifically, let G be a graph with vertex set V (G) = V and edge

set E(G) = E. The integers n = n(G) = |V (G)| and m = m(G) = |E(G)| are the

order and the size of the graph G, respectively. The open neighborhood of a vertex

v is NG(v) = N(v) = {u ∈ V (G)|uv ∈ E(G)}, and the closed neighborhood of v is

NG[v] = N [v] = N(v) ∪ {v}. The degree of a vertex v is dG(v) = d(v) = |N(v)|.
The minimum and maximum degree of a graph G are denoted by δ(G) = δ

and ∆(G) = ∆, respectively. For a set X ⊆ V (G), its open neighborhood is
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the set NG(X) = N(X) =
⋃
v∈X N(v), and its closed neighborhood is the set

NG[X] = N [X] = N(X) ∪ X. The complement of a graph G is denoted by G. For

sets A,B ⊆ V (G), we say that A dominates B if B ⊆ N [A]. A leaf of a graph G is a

vertex of degree 1, while a support vertex of G is a vertex adjacent to a leaf. An edge

incident with a leaf is called a pendant edge. The star K1,t has on vertex of degree

t and t leaves. A spider is the graph formed by subdividing all edges of a star K1,t.

Let Pn, Cn and Kn be the path, cycle and complete graph of order n, and let Kp,p

be the complete bipartite graph of order 2p.

All along this paper we will assume that k is a positive integer. In 1985, Fink and

Jacobson [3] introduced the concept of k-dominating sets. A subset D ∈ V (G) is a

k dominating set if every vertex in V (D) − D has at least k neighbors in D. The

minimum cardinality of a k-dominating set is the k-domination number, denoted by

γk(G).

In this paper we continue the study of Roman dominating functions in graphs

and digraphs. For a subset S ⊆ V (G) of vertices of a graph G and a function

f : V (G) −→ R, we define f(S) =
∑
x∈S f(x). For a vertex v, we denote f(N [v]) by

f [v] for notational convenience.

If k ≥ 1 is an integer, then Henning and Volkmann [5] defined the signed Roman k-

dominating function (SRkDF) on a graph G as a function f : V (G) −→ {−1, 1, 2} such

that f [v] ≥ k for every v ∈ V (G), and every vertex u for which f(u) = −1 is adjacent

to a vertex v for which f(v) = 2. The weight of an SRkDF f on a graph G is ω(f) =∑
v∈V (G) f(v). The signed Roman k-domination number γksR(G) of G is the minimum

weight of an SRkDF on G. The special case k = 1 was introduced and investigated

by Ahangar, Henning, Zhao, Löwenstein and Samodivkin [1]. Sheikholeslami and

Volkmann [6] studied the signed Roman domination number in digraphs. A γksR(G)-

function is a signed Roman k-dominating function on G of weight γksR(G).

A weak signed Roman k-dominating function (WSRkDF) on a graph G is defined as

a function f : V (G) −→ {−1, 1, 2} having the property f [v] ≥ k for every v ∈ V (G).

The weight of a WSRkDF f on a graph G is ω(f) =
∑
v∈V (G) f(v). The weak signed

Roman k-domination number γkwsR(G) of G is the minimum weight of a WSRkDF

on G. The special case k = 1 was introduced and investigated by Volkmann [7].

A γkwsR(G)-function is a weak signed Roman k-dominating function on G of weight

γkwsR(G). For a WSRkDF f on G, let Vi = Vi(f) = {v ∈ V (G) : f(v) = i} for

i = −1, 1, 2. A weak signed Roman k-dominating function f : V (G) −→ {−1, 1, 2}
can be represented by the ordered partition (V−1, V1, V2) of V (G).

The weak signed Roman k-domination number exists when δ ≥ k
2 − 1. Therefore we

assume in this paper that δ ≥ k
2 − 1. The definitions lead to γkwsR(G) ≤ γksR(G).

Therefore each lower bound of γkwsR(G) is also a lower bound of γksR(G) and each

upper bound of γksR(G) is also an upper bound of γkwsR(G).

Our purpose in this work is to initiate the study of the weak signed Roman k-
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domination number. We present basic properties and sharp bounds on γkwsR(G).

In particular, we show that many lower bounds on γksR(G) are also valid for γkwsR(G).

Some of our results are extensions of well-known properties of the signed Roman

k-domination number and the weak signed Roman domination number γwsR(G) =

γ1wsR(G), given by Ahangar, Henning, Zhao, Löwenstein and Samodivkin [1], Am-

jadi, Nazari-Moghaddam, Sheikholeslami and Volkmann [2], Henning and Volkmann

[5] and Volkmann [7].

2. Preliminary results

In this section we present basic properties of the weak signed Roman k-dominating

functions and the weak signed Roman k-domination numbers.

Proposition 1. If f = (V−1, V1, V2) is a WSRkDF on a graph G of order n, then

(a) |V−1|+ |V1|+ |V2| = n.

(b) ω(f) = |V1|+ 2|V2| − |V−1|.

(c) V1 ∪ V2 is a d k+1
2
e-dominating set.

Proof. Since (a) and (b) are immediate, we only prove (c). If |V−1| = 0 then

V1 ∪ V2 = V (G) is a dk+1
2 e-dominating set. Let now |V−1| ≥ 1 and let v ∈ V−1 an

arbitrary vertex. Assume that v has j neighbors in V1 and q neighbors in V2. The

the condition f [v] ≥ k leads to j + 2q − 1 ≥ k and so q ≥ k+1−j
2 . This implies

j + q ≥ j +
k + 1− j

2
=
k + 1 + j

2
≥ k + 1

2
.

Therefore v has at least j + q ≥ dk+1
2 e neighbors in V1 ∪ V2. Since v was an arbitrary

vertex in V−1, we deduce that V1 ∪ V2 is a dk+1
2 e-dominating set.

Corollary 1. If G is a graph of order n, then γk
wsR(G) ≥ 2γd k+1

2
e(G)− n.

Proof. Let f = (V−1, V1, V2) be a γkwsR(G)-function. Then it follows from Proposi-

tion 1 that

γkwsR(G) = |V1|+ 2|V2| − |V−1| = 2|V1|+ 3|V2| −n ≥ 2|V1 ∪ V2| −n ≥ 2γd k+1
2 e

(G)−n.

The graphs Kn and qK2 show that Corollary 1 is sharp for k = 1 and k = 2. The

proof of the next proposition is identically with the proof of Proposition 2 in [5] and

is therefore omitted.
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Proposition 2. Assume that f = (V−1, V1, V2) is a WSRkDF on a graph G of order n,
∆ = ∆(G) and δ = δ(G). Then

(i) (2∆ + 2− k)|V2|+ (∆ + 1− k)|V1| ≥ (δ + k + 1)|V−1|.

(ii) (2∆ + δ + 3)|V2|+ (∆ + δ + 2)|V1| ≥ (δ + k + 1)n.

(iii) (∆ + δ + 2)ω(f) ≥ (δ −∆ + 2k)n+ (δ −∆)|V2|.

(iv) ω(f) ≥ (δ − 2∆ + 2k − 1)n/(2∆ + δ + 3) + |V2|.

3. Bounds on the weak signed Roman k-domination number

We start with a general upper bound, and we characterize all extremal graphs.

Theorem 1. Let G be a graph of order n with δ(G) ≥ d k
2
e − 1. Then γk

wsR(G) ≤ 2n,
with equality if and only if k is even, δ(G) = k

2
− 1, and each vertex of G is of minimum

degree or adjacent to a vertex of minimum degeree.

Proof. Define the function g : V (G) −→ {−1, 1, 2} by g(x) = 2 for each vertex

x ∈ V (G). Since δ(G) ≥ dk2 e− 1, the function g is a WSRkDF on G of weight 2n and

thus γkwsR(G) ≤ 2n.

Now let k be even, δ(G) = k
2 − 1, and assume that each vertex of G is of minimum

degree or adjacent to a vertex of minimum degeree. Let f be a WSRkDF on G, and

let x ∈ V (G) be an arbitray vertex. If d(x) = k
2 − 1, then f [x] ≥ k implies that

f(x) = 2. If x is not of minimum degree, then x is adjacent to a vertex w of minmum

degree. The condition f [w] ≥ k implies f(x) = 2. Thus f is of weight 2n, and we

obtain γkwsR(G) = 2n in this case.

Conversely, assume that γkwsR(G) = 2n. If k = 2p + 1 is odd, then δ(G) ≥ p. Define

the function h : V (G) −→ {−1, 1, 2} by h(w) = 1 for an arbitrary vertex w and

h(x) = 2 for each vertex x ∈ V (G) \ {w}. Then

h[v] =
∑

x∈N [v]

f(x) ≥ 1 + 2δ(G) ≥ 1 + 2p = k

for each vertex v ∈ V (G). Thus the function h is a WSRkDF on G of weight 2n− 1,

and we obtain the contradiction γkwsR(G) ≤ 2n− 1.

Let now k even, and assume that there exists a vertex w with d(w) ≥ k
2 and d(x) ≥ k

2

for each x ∈ N(w). Define the function h1 : V (G) −→ {−1, 1, 2} by h1(w) = 1 and

h1(x) = 2 for each vertex x ∈ V (G) \ {w}. Then h1[v] ≥ k + 1 for each v ∈ N [w]

and h1[x] ≥ k for each x 6∈ N [w]. Hence the function h1 is a WSRkDF on G of

weight 2n− 1, a contradiction to the assumption γkwsR(G) = 2n. This completes the

proof.

The next result is an immediate corollary of Theorem 1.
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Corollary 2. Let G be a graph of order n with δ(G) ≥ d k
2
e − 1. Then γk

sR(G) ≤ 2n,
with equality if and only if k is even, δ(G) = k

2
− 1, and each vertex of G is of minimum

degree or adjacent to a vertex of minimum degeree.

The next known corollary follows immediately from Corollary 2.

Corollary 3. ([2]) Let T be a tree of order n. Then γ4
sR(T ) ≤ 2n, with equality if and

only if every vertex of T is either a leaf or a support vetex.

Observation 2. If G is a graph of order n with δ(G) ≥ k−1, then γk
wsR(G) ≤ γk

sR(G) ≤ n.

Proof. Define the function f : V (G) −→ {−1, 1, 2} by f(x) = 1 for each vertex

x ∈ V (G). Since δ(G) ≥ k − 1, the function f is an SRkDF on G of weight n and

thus γkwsR(G) ≤ γksR(G) ≤ n.

As an application of Proposition 2 (iii), we obtain a lower bound on the weak signed

Roman k-domination number for r-regular graphs.

Corollary 4. If G is an r-regular graph of order n with r ≥ k
2
− 1, then

γk
wsR(G) ≥ kn

r + 1
.

Example 1. If H is a (k − 1)-regular graph of order n, then it follows from Corollary 4
that γk

wsR(H) ≥ n and thus γk
wsR(H) = n, according to Observation 2.

Example 1 shows that Observation 2 and Corollary 4 are both sharp. The proof of

the next observation is analogously to the proof of Proposition 3 in [7] and is therefore

omitted.

Observation 3. If G is a graph of order n with δ(G) ≥ k
2
− 1, then

γk
wsR(G) ≥ k + 1 + ∆(G)− n.

Let n ≥ k ≥ 2 be integers. Then it was shown in [5] that γksR(Kn) = k. This implies

γkwsR(Kn) ≤ γksR(Kn) = k. According to Corollary 4, we deduce that γkwsR(Kn) ≥
k. Therefore we obtain γkwsR(Kn) = k for n ≥ k ≥ 2. This example shows that

Observation 3 is sharp.

Corollary 5. Let G be a graph of order n, minimum degree δ ≥ k
2
− 1 and maximum

degree ∆. If δ < ∆, then

γk
wsR(G) ≥ −2∆ + 2δ + 3k

2∆ + δ + 3
n.
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Proof. Multiplying both sides of the inequality in Proposition 2 (iv) by ∆ − δ and

adding the resulting inequality to the inequality in Proposition 2 (iii), we obtain the

desired lower bound.

Since γksR(G) ≥ γkwsR(G), Corollary 5 leads immediately to the next lower bound,

given by Henning and Volkmann [5].

Corollary 6. ([5]) Let G be a graph of order n, minimum degree δ ≥ k
2
−1 and maximum

degree ∆. If δ < ∆, then

γk
sR(G) ≥ −2∆ + 2δ + 3k

2∆ + δ + 3
n.

Examples 9 and 10 in [5] demonstrate that Corollary 6 is sharp and therefore Corollary

5 too. The special case k = 1 of Corollary 6 can be found in [1].

A set S ⊆ V (G) is a 2-packing of the graph G if N [u]∩N [v] = ∅ for any two distinct

vertices u, v ∈ S. The 2-packing number ρ(G) of G is defined by

ρ(G) = max{|S| : S is a 2− packing of G}.

Theorem 4. If G is a graph of order n with δ(G) ≥ k
2
− 1, then

γk
wsR(G) ≥ ρ(G)(k + δ(G) + 1)− n.

Proof. Let {v1, v2, . . . , vρ(G)} be a 2-packing of G, and let f be a γkwsR(G)-function.

If we define the set A =
⋃ρ(G)
i=1 N [vi], then since {v1, v2, . . . , vρ(G)} is a 2-packing, we

have that

|A| =
ρ(G)∑
i=1

(d(vi) + 1) ≥ ρ(G)(δ(G) + 1).

It follows that

γkwsR(G) =
∑

x∈V (G)

f(x) =

ρ(G)∑
i=1

f [vi] +
∑

x∈V (G)−A

f(x)

≥ kρ(G) +
∑

x∈V (G)−A

f(x) ≥ kρ(G)− n+ |A|

≥ kρ(G)− n+ ρ(G)(δ(G) + 1)

= ρ(G)(k + δ(G) + 1)− n.

Theorem 4 yields the next result immediately.
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Corollary 7. ([5]) If G is a graph of order n with δ(G) ≥ k
2
− 1, then

γk
sR(G) ≥ ρ(G)(k + δ(G) + 1)− n.

In [5], the authors presented an infinite family of graphs achieving equality in Corollary

7. Thus Corollary 7 and Theorem 4 are sharp. Using Corollary 4, one can prove the

following Nordhaus-Gaddum type inequality analogously to Theorem 13 in [5].

Theorem 5. If G is an r-regular graph of order n such that r ≥ k
2
−1 and n−r−1 ≥ k

2
−1,

then

γk
wsR(G) + γk

wsR(G) ≥ 4kn

n+ 1
.

If n is even, then γk
wsR(G) + γk

wsR(G) ≥ 4k(n+ 1)/(n+ 2).

Let k ≥ 1 be an odd integer, and let H and H be (k − 1)-regular graphs of order

n = 2k − 1. By Example 1, we have γkwsR(H) = γkwsR(H) = n. Consequently,

γkwsR(H) + γkwsR(H) = 2n =
4kn

n+ 1
.

Thus the Nordhaus-Gaddum bound of Theorem 5 is sharp for odd k.

4. The weak signed Roman k-domination number of Kp,p

Example 2. Let k ≥ 1 and p ≥ k + 1 be integers.

(1) If p ≥ k + 3, then γk
wsR(Kp,p) = 2k + 2.

(2) If k + 1 ≤ p ≤ k + 2, then γk
wsR(Kp,p) = p+ k − 1.

(3) If k ≥ 2, then γk
wsR(Kk,k) = 2k and γ1

wsR(K1,1) = 1.

Proof. Let X = {x1, x2, . . . , xp} and Y be a bipartition of the complete bipartite

graph Kp,p.

(1) First we show that γkwsR(Kp,p) ≥ 2k + 2. Let f : V (Kp,p) −→ {−1, 1, 2} be a

WSRkDF. If f(u) ≥ 1 for each u ∈ V (Kp,p), then ω(f) ≥ 2p ≥ 2k + 2. Assume next,

without loss of generality, that f(x) = −1 for at least one vertex x ∈ X and f(y) ≥ 1

for each y ∈ Y . If w ∈ Y , then it follows that

ω(f) = f [w] +
∑

y∈Y−{w}

f(y) ≥ k + p− 1 ≥ 2k + 2.

Finally, assume that f(x) = −1 for at least one vertex x ∈ X and f(y) = −1 for at

least one vertex y ∈ Y . We deduce that

ω(f) = f [x] + f [y]− f(x)− f(y) ≥ 2k + 2.
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Since we have discussed all possible cases, we obtain γkwsR(Kp,p) ≥ 2k + 2.

As γksR(Kp,p) = 2k + 2 for p ≥ k + 2 (see Example 14 in [5]), we have the converse

inequality γkwsR(Kp,p) ≤ γksR(Kp,p) = 2k + 2 and so the desired result.

(2) First we show that γkwsR(Kp,p) ≥ p + k − 1. Let f : V (Kp,p) −→ {−1, 1, 2} be a

WSRkDF. If f(u) ≥ 1 for each u ∈ V (Kp,p), then ω(f) ≥ 2p ≥ p + k − 1. Assume

next, without loss of generality, that f(x) = −1 for at least one vertex x ∈ X and

f(y) ≥ 1 for each y ∈ Y . If w ∈ Y , then it follows that

ω(f) = f [w] +
∑

y∈Y−{w}

f(y) ≥ k + p− 1.

Finally, assume that f(x) = −1 for at least one vertex x ∈ X and f(y) = −1 for at

least one vertex y ∈ Y . We deduce that

ω(f) = f [x] + f [y]− f(x)− f(y) ≥ 2k + 2 ≥ k + p ≥ p+ k − 1.

If p = k + 2, then define the function g : V (Kp,p) −→ {−1, 1, 2} by g(x1) = g(x2) =

−1, g(x3) = 2 and g(x) = 1 otherwise. Then g is a WSRkDF function on Kp,p of

weight 2k+1 = p+k−1 and thus γkwsR(Kp,p) ≤ p+k−1 and so γkwsR(Kp,p) = p+k−1

in this case.

If p = k + 1, then define the function h : V (Kp,p) −→ {−1, 1, 2} by h(x1) = −1 and

h(x) = 1 otherwise. Then h is a WSRkDF function on Kp,p of weight 2k = p+ k − 1

and thus γkwsR(Kp,p) ≤ p+ k − 1 and so γkwsR(Kp,p) = p+ k − 1 also in this case.

(3) Clearly, γ1wsR(K1,1) = 1. Let now k ≥ 2.

First we show that γkwsR(Kk,k) ≥ 2k. Let f : V (Kk,k) −→ {−1, 1, 2} be a WSRkDF.

If f(u) ≥ 1 for each u ∈ V (Kk,k), then ω(f) ≥ 2k. Assume next, without loss of

generality, that f(x) = −1 for at least one vertex x ∈ X and f(y) ≥ 1 for each y ∈ Y .

Then f(u) = 2 for at least one vertex u ∈ Y . If w ∈ Y with w 6= u, then it follows

that

ω(f) = f [w] +
∑

y∈Y−{w}

f(y) ≥ k + k = 2k.

Finally, assume that f(x) = −1 for at least one vertex x ∈ X and f(y) = −1 for at

least one vertex y ∈ Y . We deduce that

ω(f) = f [x] + f [y]− f(x)− f(y) ≥ 2k + 2.

Applying Observation 2, we obtain γkwsR(Kk,k) = 2k.

Example 1 implies γkwsR(Kk−1,k−1) = 2k − 2 for k ≥ 2.
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5. Cycles

Let Cn be a cycle of length n ≥ 3. In [1], the authors have shown that γsR(Cn) =

d2n/3e. In addition, in [7] it is proved that γwsR(Cn) = dn/3e when n ≡ 0, 1 (mod 3)

and γwsR(Cn) = dn/3e+ 1 when n ≡ 2 (mod 3). Now we determine γkwsR(Cn) as well

as γsR(Cn) for 2 ≤ k ≤ 6.

Theorems 1 and 2 immediately lead to γ6wsR(Cn) = γ6sR(Cn) = 2n. In addition,

according to Corollary 4 and Observation 2, we have γ3wsR(Cn) = γ3sR(Cn) = n.

Example 3. For n ≥ 3, we have γ5
wsR(Cn) = γ5

sR(Cn) =
⌈

5n
3

⌉
.

Proof. Corollary 4 implies γ5sR(Cn) ≥ γ5wsR(Cn) ≥
⌈
5n
3

⌉
. For the converse inequality

γ5wsR(Cn) ≤ γ5sR(Cn) ≤
⌈
5n
3

⌉
, we distinguish three cases.

Case 1. Assume that n = 3t with an integer t ≥ 1. Let C3t = v0v1 . . . v3t−1v0. Define

the function f : V (C3t) −→ {−1, 1, 2} by f(v3i) = 1 and f(v3i+1) = f(v3i+2) = 2

for 0 ≤ i ≤ t − 1. Then f [vj ] = 5 for each 0 ≤ j ≤ 3t − 1 and therefore f is an

SR5DF on C3t of weight ω(f) = 5t. Thus γ5wsR(C3t) ≤ γ5sR(C3t) ≤ 5t. Consequently,

γ5wsR(Cn) = γ5sR(Cn) = 5t =
⌈
5n
3

⌉
in this case.

Case 2. Assume that n = 3t + 1 with an integer t ≥ 1. Let C3t+1 = v0v1 . . . v3tv0.

Define the function f : V (C3t+1) −→ {−1, 1, 2} by f(v3i) = 1, f(v3i+1) = f(v3i+2) =

2 for 0 ≤ i ≤ t−1 and f(v3t) = 2. Then f [vj ] ≥ 5 for each 0 ≤ j ≤ 3t and therefore f is

an SR5DF on C3t+1 of weight ω(f) = 5t+2. Thus γ5wsR(C3t+1) ≤ γ5sR(C3t+1) ≤ 5t+2.

Consequently, γ5wsR(Cn) = γ5sR(Cn) = 5t+ 2 =
⌈
5n
3

⌉
also in this case.

Case 3. Assume that n = 3t+ 2 with an integer t ≥ 1. Let C3t+2 = v0v1 . . . v3t+1v0.

Define the function f : V (C3t+2) −→ {−1, 1, 2} by f(v3i) = 1, f(v3i+1) = f(v3i+2) =

2 for 0 ≤ i ≤ t− 1 and f(v3t) = f(v3t+1) = 2. Then f [vj ] ≥ 5 for each 0 ≤ j ≤ 3t+ 1

and therefore f is an SR5DF on C3t+2 of weight ω(f) = 5t+ 4. Thus γ5wsR(C3t+2) ≤
γ5sR(C3t+2) ≤ 5t+ 4. Consequently, γ5wsR(Cn) = γ5sR(Cn) = 5t+ 4 =

⌈
5n
3

⌉
also in the

last case.

Example 4. For n ≥ 3, we have γ4
wsR(Cn) = γ4

sR(Cn) =
⌈

4n
3

⌉
.

Proof. Corollary 4 implies γ4sR(Cn) ≥ γ4wsR(Cn) ≥
⌈
4n
3

⌉
. For the converse inequality

γ4wsR(Cn) ≤ γ4sR(Cn) ≤
⌈
4n
3

⌉
, we distinguish three cases.

Case 1. Assume that n = 3t with an integer t ≥ 1. Let C3t = v0v1 . . . v3t−1v0. Define

the function f : V (C3t) −→ {−1, 1, 2} by f(v3i) = f(v3i+1) = 1 and f(v3i+2) = 2

for 0 ≤ i ≤ t − 1. Then f [vj ] = 4 for each 0 ≤ j ≤ 3t − 1 and therefore f is an

SR4DF on C3t of weight ω(f) = 4t. Thus γ4wsR(C3t) ≤ γ4sR(C3t) ≤ 4t. Consequently,

γ4wsR(Cn) = γ4sR(Cn) = 4t =
⌈
4n
3

⌉
.

Case 2. Assume that n = 3t + 1 with an integer t ≥ 1. Let C3t+1 = v0v1 . . . v3tv0.

Define the function f : V (C3t+1) −→ {−1, 1, 2} by f(v3i) = f(v3i+1) = 1, f(v3i+2) =

2 for 0 ≤ i ≤ t−1 and f(v3t) = 2. Then f [vj ] ≥ 4 for each 0 ≤ j ≤ 3t and therefore f is
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an SR4DF on C3t+1 of weight ω(f) = 4t+2. Thus γ4wsR(C3t+1) ≤ γ4sR(C3t+1) ≤ 4t+2.

Consequently, γ4wsR(Cn) = γ4sR(Cn) = 4t+ 2 =
⌈
4n
3

⌉
.

Case 3. Assume that n = 3t+ 2 with an integer t ≥ 1. Let C3t+2 = v0v1 . . . v3t+1v0.

Define the function f : V (C3t+2) −→ {−1, 1, 2} by f(v3i) = f(v3i+1) = 1, f(v3i+2) =

2 for 0 ≤ i ≤ t−1, f(v3t) = 1 and f(v3t+1) = 2. Then f [vj ] ≥ 4 for each 0 ≤ j ≤ 3t+1

and therefore f is an SR4DF on C3t+2 of weight ω(f) = 4t+ 3. Thus γ4wsR(C3t+2) ≤
γ4sR(C3t+2) ≤ 4t+ 3. Consequently, γ4wsR(Cn) = γ4sR(Cn) = 4t+ 3 =

⌈
4n
3

⌉
.

Examples 3 and 4 also show the sharpness of Corollary 4. In [5], we have determined

γ2sR(Cn).

Example 5. ([5]) For n ≥ 3, we have γ2
sR(Cn) =

⌈
2n

3

⌉
+
⌈n

3

⌉
−
⌊n

3

⌋
.

Analogously to Example 5, one can determine the weak signed Roman 2-domination

number of a cycle.

Example 6. For n ≥ 3, we have γ2
wsR(Cn) =

⌈
2n

3

⌉
+
⌈n

3

⌉
−
⌊n

3

⌋
.

6. Trees

Let Pn be a path of order n. Our aim in the section is to determine γkwsR(Pn), and

to establish lower bounds on the weak signed Roman k-domination number of a tree

for 2 ≤ k ≤ 4.

We start with the path Pn. In [1] it is proved that γsR(Pn) = b 2n3 c and in [7], the

author has shown that γwsR(P2) = 1, γwsR(Pn) = dn/3e when n ≡ 1 (mod 3) and

γwsR(Pn) = dn/3e+1 when n ≡ 0, 2 (mod 3) and n ≥ 3. Now we determine γkwsR(Pn)

for 2 ≤ k ≤ 4. In [5], one can find the following result.

Example 7. If 2 ≤ n ≤ 7 then γ2
sR(Pn) = n, and if n ≥ 8, then γ2

sR(Pn) =
⌈

2n+5
3

⌉
.

If f is an SR2DF on Pn, then f is also a WSR2DF on Pn. Now assume that g is a

WSR2DF on Pn. If g(v) = −1, then g[v] ≥ 2 implies that v has a neighbor w with

g(w) = 2. Therefore g is also an SR2Df on Pn. This observation and Example 7 lead

to the next result immediately.

Example 8. If 2 ≤ n ≤ 7 then γ2
wsR(Pn) = n, and if n ≥ 8, then γ2

wsR(Pn) =
⌈

2n+5
3

⌉
.

In [2], the authors have shown that γ3sR(Pn) = n + 2 when n ≥ 4 and γ4sR(Pn) =

d 4n3 e+ 2 when n ≥ 3. The same arguments as above lead to γ3wsR(P2) = n+ 2 when

n ≥ 4 and γ4wsR(Pn) = d 4n3 e+ 2 when n ≥ 3.
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Observation 6. Let T be a tree of order n and let f be a WSR2DF on T . Then the
following holds.
(a) If v is a leaf or a support vertex in T , then f(v) ≥ 1.
(b) If 2 ≤ n ≤ 5, then γ2

sR(T ) = n.

The next result provided a lower bound on the weak signed Roman 2-domination

number of a tree in terms of its order.

Theorem 7. If T is a tree of order n ≥ 4, then

γ2
wsR(T ) ≥ n+ 4

2
.

Proof. We proceed by induction on the order n ≥ 4. If n = 4, then by Obser-

vation 6(b), γ2sR(T ) = n = (n + 4)/2. This establishes the base case when n = 4.

Let n ≥ 5 and suppose that if T ′ is a tree of order n′ where 4 ≤ n′ < n, then

γ2sR(T ′) ≥ (n′ + 4)/2. Let T be a tree of order n. Choose an optimal WSR2DF

f on T , and so γ2sR(T ) = ω(f). If f(x) ≥ 1 for each vertex x ∈ V (T ), then

ω(f) ≥ n > (n+ 4)/2. Now suppose that there is a vertex v ∈ V (T ) with f(v) = −1.

Suppose that T − v is the disjoint union of r trees T1, T2, . . . , Tr. Let fi be the re-

striction of f on Ti for 1 ≤ i ≤ r. Clearly, fi is a WSR2DF on Ti for 1 ≤ i ≤ r. Since

by Observation 6(a) a leaf and its only neighbor has a positive label, r ≥ 2 and each

Ti has ni ≥ 2 vertices. If ni = 2, then in fact ω(fi) ≥ 3 = (ni + 4)/2, and if ni = 3,

then ω(fi) = 3 or ω(fi) ≥ 4 > (ni + 4)/2. If ni ≥ 4, then by the induction hypothesis

ω(fi) ≥ (ni + 4)/2. If ω(fi) ≥ (ni + 4)/2 for all i, then since r ≥ 2,

ω(f) = −1 +

r∑
i=1

ω(fi) ≥ −1 +

r∑
i=1

ni + 4

2
=
n+ 4r − 3

2
≥ n+ 5

2
.

Hence we may assume that for some i, ni = 3 and ω(fi) = 3, for otherwise the desired

result follows. Assume that T1, T2, . . . , Tq, q ≥ 1, are exactly the trees with three

vertices and with ω(fi) = 3, 1 ≤ i ≤ q. We note that f(w) = 1 for each vertex w that

belongs to such a tree Ti with ω(fi) = 3. If r > q, then

ω(f) = −1 +

q∑
i=1

ω(fi) +

r∑
i=q+1

ω(fi)

≥ −1 + 3q +

r∑
i=q+1

ni + 4

2

=
n+ 4(r − q) + 3(q − 1)

2
≥ n+ 4

2
,

as desired. If r = q, then q ≥ 3, and we obtain

ω(f) = −1 +

q∑
i=1

ω(fi) = −1 + 3q = n− 2 ≥ n+ 4

2
,
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since n ≥ 10 in this case. This completes the proof.

Corollary 8. ([5]) If T is a tree of order n ≥ 4, then

γ2
sR(T ) ≥ n+ 4

2
.

In [2], one can find the following statement. If T is a tree of order n ≥ 2, then

γ3sR(T ) ≥ 4n+7
5 , with equality if and only if T = P2. The next examples demonstrates

that this statement is not valid.

Example 9. Let P = v1v2 . . . v2p+1 be a path of order 2p + 1 with p ≥ 1. Now attach
two pendant edges to v1 and v2p+1 and three pendant edges to v2i+1 for 1 ≤ i ≤ p− 1. The
resulting tree T5p+2 is of order 5p + 2. Define the function f : V (T5p+2) −→ {−1, 1, 2} by
f(v2i+1) = 2 for 0 ≤ i ≤ p, f(v2i) = −1 for 1 ≤ i ≤ p and f(x) = 1 otherwise. Then f is an
SR3DF on T5p+2 of weight

ω(f) = 2(p+ 1)− p+ 3p+ 1 = 4p+ 3 =
4n(T5p+2) + 7

5
.

Therefore γ3
sR(T5p+2) ≤ 4n(T5p+2)+7

5
. Since f(u) + f(v) ≥ 3 if v is a leaf and u its support

vertex, it easy to verify that γ3
sR(T5p+2) =

4n(T5p+2)+7

5
.

Example 10. Let S∆ be a spider and w be a vertex of maximum degree ∆ ≥ 1. In addition,
let v1, v2 . . . , v∆ be the neighbors of w and ui 6= w be the neighbor of vi for 1 ≤ i ≤ ∆. Now
attach ∆+1 pendant edges to w and two pendant edges to ui for 1 ≤ i ≤ ∆. The resulting tree
H is of order 5∆ + 2. Define the function f : V (H) −→ {−1, 1, 2} by f(w) = 2, f(ui) = 2
for 1 ≤ i ≤ ∆, f(vi) = −1 for 1 ≤ i ≤ ∆ and f(x) = 1 otherwise. Then f is an SR3DF on
H of weight

ω(f) = 4∆ + 3 =
4n(H) + 7

5
.

Therefore γ3
sR(H) = 4n(H)+7

5
.

I conjecture that the bound γ3sR(T ) ≥ 4n+7
5 is really valid for each tree T of order

n ≥ 2, however, I only can prove the following weaker bound.

Theorem 8. If T is a tree of order n ≥ 2, then

γ3
sR(T ) ≥ γ3

wsR(T ) ≥ 3n+ 6

4
.

Proof. Clearly, it is enogh to prove the right inequality. We proceed by induction

on the order n ≥ 2. If n = 2, then γ3wsR(T ) = 3 = (3n + 6)/4. If n = 3, then

γ3wsR(T ) = 4 ≥ (3n+ 6)/4. Let now n ≥ 4 and suppose that if T ′ is a tree of order n′

where 2 ≤ n′ < n, then γ3wsR(T ′) ≥ (3n′ + 6)/4. Let T be a tree of order n. Choose
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an optimal WSR3DF f = (V−1, V1, V2) on T , and so γ3wsR(T ) = ω(f). If f(x) ≥ 1 for

each vertex x ∈ V (T ), then ω(f) ≥ n+ 1 > (3n+ 6)/4.

Now suppose that there is a vertex v ∈ V (T ) with f(v) = −1. If |V−1| ≥ 2, then

choose u, v ∈ V−1 such that d(u, v) is as large as possible. Suppose that T − v is

the disjoint union of r trees T1, T2, . . . , Tr. Let fi be the restriction of f on Ti for

1 ≤ i ≤ r. Clearly, fi is a SWR3DF on Ti for 1 ≤ i ≤ r. Since a leaf and its only

neighbor has a positive label, r ≥ 2 and each Ti has ni ≥ 2 vertices.

If r ≥ 3, then we deduce from the induction hypothesis that

ω(f) = −1 +

r∑
i=1

ω(fi) ≥ −1 +

r∑
i=1

3ni + 6

4

= −1 +
3(n− 1) + 6r

4

=
3n+ 6

4
+

6r − 13

4
>

3n+ 6

4
.

Let now r = 2. By the choice of u and v, we observe that V−1 ∩ V (T1) = ∅ or

V−1 ∩ V (T2) = ∅, say V−1 ∩ V (T2) = ∅. Note that ω(fi) = 4 if ni = 2. If n2 = 2 then

we deduce from the induction hypothesis that

ω(f) = ω(f1) + ω(f2)− 1 ≥ 3n1 + 6

4
+ 4− 1

=
3(n− 3) + 6 + 12

4
>

3n+ 6

4
.

If n2 ≥ 3 then, ω(f2) ≥ n2 + 1, and we deduce from the induction hypothesis that

ω(f) = ω(f1) + ω(f2)− 1 ≥ 3n1 + 6

4
+ n2 + 1− 1

=
3n1 + 6 + 4n2

4
=

3(n1 + n2) + n2 + 6

4

≥ 3(n1 + n2 + 1) + 6

4
≥ 3n+ 6

4
,

and the proof is complete.

Observation 9. Let T be a tree, and let f be a WSR4DF on T . If v is a leaf or a support
vertex in T , then f(v) = 2.

Theorem 10. If T is a tree of order n ≥ 4, then γ4
wsR(T ) ≥ n+ 4.

Proof. We proceed by induction on the order n ≥ 4. If n = 4, then by Observation

9, γ4sR(T ) = 8 = n + 4. This establishes the base case when n = 4. Let n ≥ 5 and
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suppose that if T ′ is a tree of order n′ where 4 ≤ n′ < n, then γ4sR(T ′) ≥ n′ + 4. Let

T be a tree of order n. Choose an optimal WSR4DF f on T , and so γ4wsR(T ) = ω(f).

Assume first that f(x) ≥ 1 for each vertex x ∈ V (T ). Since n ≥ 5, the tree has at

least 4 leaves or support vertices v1, v2, v3, v4. According to Observation 9, we note

that f(v1) = f(v2) = v(v3) = f(v4) = 2 and hence ω(f) ≥ 8 + n − 4 = n + 4 in this

case.

Now assume that there is a vertex v ∈ V (T ) with f(v) = −1. Suppose that T − v
is the disjoint union of r trees T1, T2, . . . , Tr. Let fi be the restriction of f on Ti
for 1 ≤ i ≤ r. Clearly, fi is a WSR4DF on Ti for 1 ≤ i ≤ r. Since f [v] ≥ 4, we

deduce that r ≥ 3 and each Ti has ni ≥ 3 vertices. If ni = 3, then in fact ω(fi) = 6,

and if ni ≥ 4, then by the induction hypothesis ω(fi) ≥ ni + 4. Now assume that

n1 = n2 = . . . = nq = 3 for 0 ≤ q ≤ r and ni ≥ 4 for q + 1 ≤ i ≤ r. We deduce from

the induction hypothesis that

ω(f) = −1 +

q∑
i=1

ω(fi) +

r∑
i=q+1

ω(fi)

≥ −1 + 6q +

r∑
i=q+1

(ni + 4)

= −1 + 6q + (n− 3q − 1) + 4(r − q)
= n+ 3q − 2 + 4(r − q) ≥ n+ 4.

Corollary 9. If T is a tree of order n ≥ 4, then γ4
sR(T ) ≥ n+ 4.

Note that if H ∈ {K1,3, P4, P5, P6}, then γ4wsR(H) = γ4sR(H) = n(H) + 4. Corollary

9 is an improvement of the bound γ4sR(T ) ≥ n+ 2, given in [2].
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V. Samodivkin, Signed Roman domination in graphs, J. Comb. Optim. 27 (2014),

no. 2, 241–255.

[2] J. Amjadi, S. Nazari-Moghaddam, S.M. Sheikholeslami, and L. Volkmann, On the

signed Roman k-domination in graphs, Quaest. Math. (to appear).

[3] J.F. Fink and M.S. Jacobson, n-domination in graphs, Graph Theory with Ap-

plications to Algorithms and Computer Science, John Wiley & Sons, Inc., 1985,

pp. 283–300.

[4] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of domination in

graphs, Marcel Dekker, Inc., New York, 1998.



L. Volkmann 15

[5] M.A. Henning and L. Volkmann, Signed Roman k-domination in graphs, Graphs

Combin. 32 (2016), no. 1, 175–190.

[6] S.M. Sheikholeslami and L. Volkmann, Signed Roman domination in digraphs, J.

Comb. Optim. 30 (2015), no. 3, 456–467.

[7] L. Volkmann, Weak signed Roman domination in graphs, Commun. Comb. Optim.

5 (2020), no. 2, 111–123.


	Terminology and introduction
	Preliminary results
	Bounds on the weak signed Roman k-domination number
	The weak signed Roman k-domination number of Kp,p
	Cycles
	Trees
	References

