Weak signed Roman \(k \)-domination in graphs

Lutz Volkmann

Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany
volkm@math2.rwth-aachen.de

Received: 7 December 2019; Accepted: 7 March 2020
Published Online: 13 March 2020

Abstract: Let \(k \geq 1 \) be an integer, and let \(G \) be a finite and simple graph with vertex set \(V(G) \). A weak signed Roman \(k \)-dominating function (WSRkDF) on a graph \(G \) is a function \(f: V(G) \to \{-1,1,2\} \) satisfying the conditions that \(\sum_{x \in N[v]} f(x) \geq k \) for each vertex \(v \in V(G) \), where \(N[v] \) is the closed neighborhood of \(v \). The weight of a WSRkDF \(f \) is \(w(f) = \sum_{v \in V(G)} f(v) \). The weak signed Roman \(k \)-domination number \(\gamma_{w,R}^k(G) \) of \(G \) is the minimum weight of a WSRkDF on \(G \). In this paper we initiate the study of the weak signed Roman \(k \)-domination number of graphs, and we present different bounds on \(\gamma_{w,R}^k(G) \). In addition, we determine the weak signed Roman \(k \)-domination number of some classes of graphs. Some of our results are extensions of well-known properties of the signed Roman \(k \)-domination number \(\gamma_{s,R}^k(G) \), introduced and investigated by Henning and Volkmann [5] as well as Ahangar, Henning, Zhao, Löwenstein and Samodivkin [1] for the case \(k = 1 \).

Keywords: Weak signed Roman \(k \)-dominating function, weak signed Roman \(k \)-domination number, Signed Roman \(k \)-dominating function, Signed Roman \(k \)-domination number

AMS Subject classification: 05C69

1. Terminology and introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi and Slater [4]. Specifically, let \(G \) be a graph with vertex set \(V(G) = V \) and edge set \(E(G) = E \). The integers \(n = n(G) = |V(G)| \) and \(m = m(G) = |E(G)| \) are the order and the size of the graph \(G \), respectively. The open neighborhood of a vertex \(v \) is \(N_G(v) = N(v) = \{u \in V(G) | uv \in E(G)\} \), and the closed neighborhood of \(v \) is \(N_G[v] = N[v] = N(v) \cup \{v\} \). The degree of a vertex \(v \) is \(d_G(v) = d(v) = |N(v)| \). The minimum and maximum degree of a graph \(G \) are denoted by \(\delta(G) = \delta \) and \(\Delta(G) = \Delta \), respectively. For a set \(X \subseteq V(G) \), its open neighborhood is...
the set \(N_G(X) = N(X) = \bigcup_{v \in X} N(v) \), and its \textit{closed neighborhood} is the set \(N_G[X] = N[X] = N(X) \cup X \). The \textit{complement} of a graph \(G \) is denoted by \(\overline{G} \). For sets \(A, B \subseteq V(G) \), we say that \(A \) \textit{dominates} \(B \) if \(B \subseteq N[A] \). A \textit{leaf} of a graph \(G \) is a vertex of degree 1, while a \textit{support vertex} of \(G \) is a vertex adjacent to a leaf. An edge incident with a leaf is called a \textit{pendant edge}. The star \(K_{1,t} \) has on vertex of degree \(t \) and \(t \) leaves. A \textit{spider} is the graph formed by subdividing all edges of a star \(K_{1,t} \). Let \(P_n, C_n \) and \(K_n \) be the path, cycle and complete graph of order \(n \), and let \(K_{p,p} \) be the complete bipartite graph of order \(2p \).

All along this paper we will assume that \(k \) is a positive integer. In 1985, Fink and Jacobson [3] introduced the concept of \(k \)-dominating sets. A subset \(D \in V(G) \) is a \(k \) dominating set if every vertex in \(V(D) - D \) has at least \(k \) neighbors in \(D \). The minimum cardinality of a \(k \)-dominating set is the \(k \)-\textit{domination number}, denoted by \(\gamma_k(G) \).

In this paper we continue the study of Roman dominating functions in graphs and digraphs. For a subset \(S \subseteq V(G) \) of vertices of a graph \(G \) and a function \(f : V(G) \rightarrow \mathbb{R} \), we define \(f(S) = \sum_{x \in S} f(x) \). For a vertex \(v \), we denote \(f(N[v]) \) by \(f[v] \) for notational convenience.

If \(k \geq 1 \) is an integer, then Henning and Volkmann [5] defined the \textit{signed Roman \(k \)-dominating function} (SRkDF) on a graph \(G \) as a function \(f : V(G) \rightarrow \{-1, 1, 2\} \) such that \(f[v] \geq k \) for every \(v \in V(G) \), and every vertex \(u \) for which \(f(u) = -1 \) is adjacent to a vertex \(v \) for which \(f(v) = 2 \). The weight of an SRkDF \(f \) on a graph \(G \) is \(\omega(f) = \sum_{v \in V(G)} f(v) \). The \textit{signed Roman \(k \)-domination number} \(\gamma^k_{sR}(G) \) of \(G \) is the minimum weight of an SRkDF on \(G \). The special case \(k = 1 \) was introduced and investigated by Ahangar, Henning, Zhao, Löwenstein and Samodivkin [1]. Sheikholeslami and Volkmann [6] studied the signed Roman domination number in digraphs. A \(\gamma^k_{sR}(G) \)-function is a signed Roman \(k \)-dominating function on \(G \) of weight \(\gamma^k_{sR}(G) \).

A \textit{weak signed Roman \(k \)-dominating function} (WSRkDF) on a graph \(G \) is defined as a function \(f : V(G) \rightarrow \{-1, 1, 2\} \) having the property \(f[v] \geq k \) for every \(v \in V(G) \). The weight of a WSRkDF \(f \) on a graph \(G \) is \(\omega(f) = \sum_{v \in V(G)} f(v) \). The \textit{weak signed Roman \(k \)-domination number} \(\gamma^k_{wsR}(G) \) of \(G \) is the minimum weight of a WSRkDF on \(G \). The special case \(k = 1 \) was introduced and investigated by Volkmann [7].

A \(\gamma^k_{wsR}(G) \)-function is a weak signed Roman \(k \)-dominating function on \(G \) of weight \(\gamma^k_{wsR}(G) \). For a WSRkDF \(f \) on \(G \), let \(V_i = V_i(f) = \{ v \in V(G) : f(v) = i \} \) for \(i = -1, 1, 2 \). A weak signed Roman \(k \)-dominating function \(f : V(G) \rightarrow \{-1, 1, 2\} \) can be represented by the ordered partition \((V_{-1}, V_1, V_2) \) of \(V(G) \).

The weak signed Roman \(k \)-domination number exists when \(\delta \geq \frac{k}{2} - 1 \). Therefore we assume in this paper that \(\delta \geq \frac{k}{2} - 1 \). The definitions lead to \(\gamma^k_{wsR}(G) \leq \gamma^k_{sR}(G) \). Therefore each lower bound of \(\gamma^k_{wsR}(G) \) is also a lower bound of \(\gamma^k_{sR}(G) \) and each upper bound of \(\gamma^k_{sR}(G) \) is also an upper bound of \(\gamma^k_{wsR}(G) \).

Our purpose in this work is to initiate the study of the weak signed Roman \(k \)-
domination number. We present basic properties and sharp bounds on $\gamma_{wsR}^k(G)$. In particular, we show that many lower bounds on $\gamma_{sR}^k(G)$ are also valid for $\gamma_{wsR}^k(G)$. Some of our results are extensions of well-known properties of the signed Roman k-domination number and the weak signed Roman domination number $\gamma_{wsR}^1(G)$, given by Ahangar, Henning, Zhao, Löwenstein and Samodivkin [1], Amjadi, Nazari-Moghaddam, Sheikholeslami and Volkmann [2], Henning and Volkmann [5] and Volkmann [7].

2. Preliminary results

In this section we present basic properties of the weak signed Roman k-dominating functions and the weak signed Roman k-domination numbers.

Proposition 1. If $f = (V_-, V_1, V_2)$ is a WSRkDF on a graph G of order n, then

(a) $|V_-| + |V_1| + |V_2| = n$.
(b) $\omega(f) = |V_1| + 2|V_2| - |V_-|$.
(c) $V_1 \cup V_2$ is a $\lceil \frac{k+1}{2} \rceil$-dominating set.

Proof. Since (a) and (b) are immediate, we only prove (c). If $|V_-| = 0$ then $V_1 \cup V_2 = V(G)$ is a $\lceil \frac{k+1}{2} \rceil$-dominating set. Let now $|V_-| \geq 1$ and let $v \in V_-\setminus V$ an arbitrary vertex. Assume that v has j neighbors in V_1 and q neighbors in V_2. The condition $f[v] \geq k$ leads to $j + 2q - 1 \geq k$ and so $q \geq \frac{k+1-j}{2}$. This implies

$$j + q \geq j + \frac{k+1-j}{2} = \frac{k+1+j}{2} \geq \frac{k+1}{2}.$$

Therefore v has at least $j + q \geq \lceil \frac{k+1}{2} \rceil$ neighbors in $V_1 \cup V_2$. Since v was an arbitrary vertex in $V_-\setminus V$, we deduce that $V_1 \cup V_2$ is a $\lceil \frac{k+1}{2} \rceil$-dominating set.

Corollary 1. If G is a graph of order n, then $\gamma_{wsR}^k(G) \geq 2\gamma_{l\frac{k+1}{2}}(G) - n$.

Proof. Let $f = (V_-, V_1, V_2)$ be a $\gamma_{wsR}^k(G)$-function. Then it follows from Proposition 1 that

$$\gamma_{wsR}^k(G) = |V_1| + 2|V_2| - |V_-| = 2|V_1| + 3|V_2| - n \geq 2|V_1 \cup V_2| - n \geq 2\gamma_{l\frac{k+1}{2}}(G) - n.$$

The graphs $\overline{K_n}$ and qK_2 show that Corollary 1 is sharp for $k = 1$ and $k = 2$. The proof of the next proposition is identically with the proof of Proposition 2 in [5] and is therefore omitted.
Proposition 2. Assume that $f = (V_1, V_2, V_3)$ is a WSRkDF on a graph G of order n, \(\Delta = \Delta(G) \) and $\delta = \delta(G)$. Then

\((i) \) \((2\Delta + 2 - k)|V_2| + (\Delta + 1 - k)|V_1| \geq (\delta + k + 1)|V_1| \).
\((ii) \) \((2\Delta + \delta + 3)|V_2| + (\Delta + \delta + 2)|V_1| \geq (\delta + k + 1)n \).
\((iii) \) \((\Delta + \delta + 2)\omega(f) \geq (\delta - \Delta + 2k)n + (\delta - \Delta)|V_2| \).
\((iv) \) $\omega(f) \geq (\delta - 2\Delta + 2k - 1)n/(2\Delta + \delta + 3) + |V_2|.$

3. Bounds on the weak signed Roman k-domination number

We start with a general upper bound, and we characterize all extremal graphs.

Theorem 1. Let G be a graph of order n with $\delta(G) \geq \lceil \frac{k}{2} \rceil - 1$. Then $\gamma_{wsR}^k(G) \leq 2n$, with equality if and only if k is even, $\delta(G) = \frac{k}{2} - 1$, and each vertex of G is of minimum degree or adjacent to a vertex of minimum degree.

Proof. Define the function $g : V(G) \rightarrow \{-1, 1, 2\}$ by $g(x) = 2$ for each vertex $x \in V(G)$. Since $\delta(G) \geq \lceil \frac{k}{2} \rceil - 1$, the function g is a WSRkDF on G of weight $2n$ and thus $\gamma_{wsR}^k(G) \leq 2n$.

Now let k be even, $\delta(G) = \frac{k}{2} - 1$, and assume that each vertex of G is of minimum degree or adjacent to a vertex of minimum degree. Let f be a WSRkDF on G, and let $x \in V(G)$ be an arbitrary vertex. If $d(x) = \frac{k}{2} - 1$, then $f[x] \geq k$ implies that $f(x) = 2$. If x is not of minimum degree, then x is adjacent to a vertex w of minimum degree. The condition $f[w] \geq k$ implies $f(x) = 2$. Thus f is of weight $2n$, and we obtain $\gamma_{wsR}^k(G) = 2n$ in this case.

Conversely, assume that $\gamma_{wsR}^k(G) = 2n$. If $k = 2p + 1$ is odd, then $\delta(G) \geq p$. Define the function $h : V(G) \rightarrow \{-1, 1, 2\}$ by $h(w) = 1$ for an arbitrary vertex w and $h(x) = 2$ for each vertex $x \in V(G) \setminus \{w\}$. Then

\[h[v] = \sum_{x \in N[v]} f(x) \geq 1 + 2\delta(G) \geq 1 + 2p = k \]

for each vertex $v \in V(G)$. Thus the function h is a WSRkDF on G of weight $2n - 1$, and we obtain the contradiction $\gamma_{wsR}^k(G) \leq 2n - 1$.

Let now k even, and assume that there exists a vertex w with $d(w) \geq \frac{k}{2}$ and $d(x) \geq \frac{k}{2}$ for each $x \in N(w)$. Define the function $h_1 : V(G) \rightarrow \{-1, 1, 2\}$ by $h_1(w) = 1$ and $h_1(x) = 2$ for each vertex $x \in V(G) \setminus \{w\}$. Then $h_1[v] \geq k + 1$ for each $v \in N[w]$ and $h_1[x] \geq k$ for each $x \not\in N[w]$. Hence the function h_1 is a WSRkDF on G of weight $2n - 1$, a contradiction to the assumption $\gamma_{wsR}^k(G) = 2n$. This completes the proof.

The next result is an immediate corollary of Theorem 1.
Corollary 2. Let G be a graph of order n with $\delta(G) \geq \lceil \frac{k}{2} \rceil - 1$. Then $\gamma^k_{sR}(G) \leq 2n$, with equality if and only if k is even, $\delta(G) = \frac{k}{2} - 1$, and each vertex of G is of minimum degree or adjacent to a vertex of minimum degree.

The next known corollary follows immediately from Corollary 2.

Corollary 3. ([2]) Let T be a tree of order n. Then $\gamma^4_{sR}(T) \leq 2n$, with equality if and only if every vertex of T is either a leaf or a support vertex.

Observation 2. If G is a graph of order n with $\delta(G) \geq k-1$, then $\gamma^k_{wsR}(G) \leq \gamma^k_{sR}(G) \leq n$.

Proof. Define the function $f : V(G) \rightarrow \{-1, 1, 2\}$ by $f(x) = 1$ for each vertex $x \in V(G)$. Since $\delta(G) \geq k-1$, the function f is an SRkDF on G of weight n and thus $\gamma^k_{wsR}(G) \leq \gamma^k_{sR}(G) \leq n$. \qed

As an application of Proposition 2 (iii), we obtain a lower bound on the weak signed Roman k-domination number for r-regular graphs.

Corollary 4. If G is an r-regular graph of order n with $r \geq \frac{k}{2} - 1$, then

$$\gamma^k_{wsR}(G) \geq \frac{kn}{r+1}.$$

Example 1. If H is a $(k-1)$-regular graph of order n, then it follows from Corollary 4 that $\gamma^k_{wsR}(H) \geq n$ and thus $\gamma^k_{wsR}(H) = n$, according to Observation 2.

Example 1 shows that Observation 2 and Corollary 4 are both sharp. The proof of the next observation is analogously to the proof of Proposition 3 in [7] and is therefore omitted.

Observation 3. If G is a graph of order n with $\delta(G) \geq \frac{k}{2} - 1$, then

$$\gamma^k_{wsR}(G) \geq k + 1 + \Delta(G) - n.$$

Let $n \geq k \geq 2$ be integers. Then it was shown in [5] that $\gamma^k_{sR}(K_n) = k$. This implies $\gamma^k_{wsR}(K_n) \leq \gamma^k_{sR}(K_n) = k$. According to Corollary 4, we deduce that $\gamma^k_{wsR}(K_n) \geq k$. Therefore we obtain $\gamma^k_{wsR}(K_n) = k$ for $n \geq k \geq 2$. This example shows that Observation 3 is sharp.

Corollary 5. Let G be a graph of order n, minimum degree $\delta \geq \frac{k}{2} - 1$ and maximum degree Δ. If $\delta < \Delta$, then

$$\gamma^k_{wsR}(G) \geq \frac{-2\Delta + 2\delta + 3k}{2\Delta + \delta + 3}n.$$
Proof. Multiplying both sides of the inequality in Proposition 2 (iv) by $\Delta - \delta$ and adding the resulting inequality to the inequality in Proposition 2 (iii), we obtain the desired lower bound.

Since $\gamma_{sR}^k(G) \geq \gamma_{wsR}^k(G)$, Corollary 5 leads immediately to the next lower bound, given by Henning and Volkmann [5].

Corollary 6. ([5]) Let G be a graph of order n, minimum degree $\delta \geq k^2 - 1$ and maximum degree Δ. If $\delta < \Delta$, then

$$\gamma_{sR}^k(G) \geq \frac{-2\Delta + 2\delta + 3k}{2\Delta + \delta + 3} n.$$

Examples 9 and 10 in [5] demonstrate that Corollary 6 is sharp and therefore Corollary 5 too. The special case $k = 1$ of Corollary 6 can be found in [1].

A set $S \subseteq V(G)$ is a 2-packing of the graph G if $N[u] \cap N[v] = \emptyset$ for any two distinct vertices $u, v \in S$. The 2-packing number $\rho(G)$ of G is defined by

$$\rho(G) = \max\{|S| : S \text{ is a 2-packing of } G\}.$$

Theorem 4. If G is a graph of order n with $\delta(G) \geq \frac{k}{2} - 1$, then

$$\gamma_{wsR}^k(G) \geq \rho(G)(k + \delta(G) + 1) - n.$$

Proof. Let $\{v_1, v_2, \ldots, v_{\rho(G)}\}$ be a 2-packing of G, and let f be a $\gamma_{wsR}^k(G)$-function. If we define the set $A = \bigcup_{i=1}^{\rho(G)} N[v_i]$, then $\{v_1, v_2, \ldots, v_{\rho(G)}\}$ is a 2-packing, we have that

$$|A| = \sum_{i=1}^{\rho(G)} (d(v_i) + 1) \geq \rho(G)(\delta(G) + 1).$$

It follows that

$$\gamma_{wsR}^k(G) = \sum_{x \in V(G)} f(x) = \sum_{i=1}^{\rho(G)} f[v_i] + \sum_{x \in V(G) - A} f(x) \geq k\rho(G) + \sum_{x \in V(G) - A} f(x) \geq k\rho(G) - n + |A| \geq k\rho(G) - n + \rho(G)(\delta(G) + 1) = \rho(G)(k + \delta(G) + 1) - n.$$

Theorem 4 yields the next result immediately.
Corollary 7. ([5]) If G is a graph of order n with $\delta(G) \geq \frac{k}{2} - 1$, then
\[
\gamma_{wsR}^k(G) \geq \rho(G)(k + \delta(G) + 1) - n.
\]

In [5], the authors presented an infinite family of graphs achieving equality in Corollary 7. Thus Corollary 7 and Theorem 4 are sharp. Using Corollary 4, one can prove the following Nordhaus-Gaddum type inequality analogously to Theorem 13 in [5].

Theorem 5. If G is an r-regular graph of order n such that $r \geq \frac{k}{2} - 1$ and $n - r - 1 \geq \frac{k}{2} - 1$, then
\[
\gamma_{wsR}^k(G) + \gamma_{wsR}^k(G^c) \geq \frac{4kn}{n+1}.
\]
If n is even, then $\gamma_{wsR}^k(G) + \gamma_{wsR}^k(G^c) \geq 4k(n+1)/(n+2)$.

Let $k \geq 1$ be an odd integer, and let H and H^c be $(k-1)$-regular graphs of order $n = 2k-1$. By Example 1, we have $\gamma_{wsR}^k(H) = \gamma_{wsR}^k(H^c) = n$. Consequently,
\[
\gamma_{wsR}^k(H) + \gamma_{wsR}^k(H^c) = 2n = \frac{4kn}{n+1}.
\]
Thus the Nordhaus-Gaddum bound of Theorem 5 is sharp for odd k.

4. The weak signed Roman k-domination number of $K_{p,p}$

Example 2. Let $k \geq 1$ and $p \geq k + 1$ be integers.

(1) If $p \geq k + 3$, then $\gamma_{wsR}^k(K_{p,p}) = 2k + 2$.

(2) If $k + 1 \leq p \leq k + 2$, then $\gamma_{wsR}^k(K_{p,p}) = p + k - 1$.

(3) If $k \geq 2$, then $\gamma_{wsR}^k(K_{k,k}) = 2k$ and $\gamma_{wsR}^1(K_{1,1}) = 1$.

Proof. Let $X = \{x_1, x_2, \ldots, x_p\}$ and Y be a bipartition of the complete bipartite graph $K_{p,p}$.

(1) First we show that $\gamma_{wsR}^k(K_{p,p}) \geq 2k + 2$. Let $f : V(K_{p,p}) \rightarrow \{-1, 1, 2\}$ be a WSRkDF. If $f(u) \geq 1$ for each $u \in V(K_{p,p})$, then $\omega(f) \geq 2p \geq 2k + 2$. Assume next, without loss of generality, that $f(x) = -1$ for at least one vertex $x \in X$ and $f(y) \geq 1$ for each $y \in Y$. If $w \in Y$, then it follows that
\[
\omega(f) = f[w] + \sum_{y \in Y \setminus \{w\}} f(y) \geq k + p - 1 \geq 2k + 2.
\]
Finally, assume that $f(x) = -1$ for at least one vertex $x \in X$ and $f(y) = -1$ for at least one vertex $y \in Y$. We deduce that
\[
\omega(f) = f[x] + f[y] - f(x) - f(y) \geq 2k + 2.
\]
Since we have discussed all possible cases, we obtain $\gamma_{wsR}^k(K_{p,p}) \geq 2k + 2$.

As $\gamma_{sR}^k(K_{p,p}) = 2k + 2$ for $p \geq k + 2$ (see Example 14 in [5]), we have the converse inequality $\gamma_{wsR}^k(K_{p,p}) \leq \gamma_{sR}^k(K_{p,p}) = 2k + 2$ and so the desired result.

(2) First we show that $\gamma_{wsR}^k(K_{p,p}) \geq p + k - 1$. Let $f : V(K_{p,p}) \to \{-1, 1, 2\}$ be a WSRkDF. If $f(u) \geq 1$ for each $u \in V(K_{p,p})$, then $\omega(f) \geq 2p \geq p + k - 1$. Assume next, without loss of generality, that $f(x) = -1$ for at least one vertex $x \in X$ and $f(y) \geq 1$ for each $y \in Y$. If $w \in Y$, then it follows that

$$\omega(f) = f[w] + \sum_{y \in Y - \{w\}} f(y) \geq k + p - 1.$$

Finally, assume that $f(x) = -1$ for at least one vertex $x \in X$ and $f(y) = -1$ for at least one vertex $y \in Y$. We deduce that

$$\omega(f) = f[x] + f[y] - f(x) - f(y) \geq 2k + 2 \geq k + p \geq p + k - 1.$$

If $p = k + 2$, then define the function $g : V(K_{p,p}) \to \{-1, 1, 2\}$ by $g(x_1) = g(x_2) = -1$, $g(x_3) = 2$ and $g(x) = 1$ otherwise. Then g is a WSRkDF function on $K_{p,p}$ of weight $2k + 1 = p + k - 1$ and thus $\gamma_{wsR}^k(K_{p,p}) \leq p + k - 1$ and so $\gamma_{wsR}^k(K_{p,p}) = p + k - 1$ in this case.

If $p = k + 1$, then define the function $h : V(K_{p,p}) \to \{-1, 1, 2\}$ by $h(x_1) = -1$ and $h(x) = 1$ otherwise. Then h is a WSRkDF function on $K_{p,p}$ of weight $2k = p + k - 1$ and thus $\gamma_{wsR}^k(K_{p,p}) \leq p + k - 1$ and so $\gamma_{wsR}^k(K_{p,p}) = p + k - 1$ also in this case.

(3) Clearly, $\gamma_{wsR}^1(K_{1,1}) = 1$. Let now $k \geq 2$.

First we show that $\gamma_{wsR}^k(K_{k,k}) \geq 2k$. Let $f : V(K_{k,k}) \to \{-1, 1, 2\}$ be a WSRkDF. If $f(u) \geq 1$ for each $u \in V(K_{k,k})$, then $\omega(f) \geq 2k$. Assume next, without loss of generality, that $f(x) = -1$ for at least one vertex $x \in X$ and $f(y) \geq 1$ for each $y \in Y$. Then $f(u) = 2$ for at least one vertex $u \in Y$. If $w \in Y$ with $w \neq u$, then it follows that

$$\omega(f) = f[w] + \sum_{y \in Y - \{w\}} f(y) \geq k + k = 2k.$$

Finally, assume that $f(x) = -1$ for at least one vertex $x \in X$ and $f(y) = -1$ for at least one vertex $y \in Y$. We deduce that

$$\omega(f) = f[x] + f[y] - f(x) - f(y) \geq 2k + 2.$$

Applying Observation 2, we obtain $\gamma_{wsR}^k(K_{k,k}) = 2k$.

Example 1 implies $\gamma_{wsR}^k(K_{k-1,k-1}) = 2k - 2$ for $k \geq 2$. \square
5. Cycles

Let C_n be a cycle of length $n \geq 3$. In [1], the authors have shown that $\gamma_{sR}(C_n) = \lfloor 2n/3 \rfloor$. In addition, in [7] it is proved that $\gamma_{wsR}(C_n) = \lceil n/3 \rceil$ when $n \equiv 0, 1 \pmod{3}$ and $\gamma_{wsR}(C_n) = \lceil n/3 \rceil + 1$ when $n \equiv 2 \pmod{3}$. Now we determine $\gamma_{wsR}^k(C_n)$ as well as $\gamma_{sR}(C_n)$ for $2 \leq k \leq 6$.

Theorems 1 and 2 immediately lead to $\gamma_{wsR}^6(C_n) = \gamma_{sR}^6(C_n) = 2n$. In addition, according to Corollary 4 and Observation 2, we have $\gamma_{wsR}^3(C_n) = \gamma_{sR}^3(C_n) = n$.

Example 3. For $n \geq 3$, we have $\gamma_{wsR}^5(C_n) = \gamma_{sR}^5(C_n) = \lceil \frac{5n}{3} \rceil$.

Proof. Corollary 4 implies $\gamma_{wsR}^5(C_n) \geq \gamma_{sR}^5(C_n) \geq \lceil \frac{5n}{3} \rceil$. For the converse inequality $\gamma_{wsR}^5(C_n) \leq \gamma_{sR}^5(C_n) \leq \lceil \frac{5n}{3} \rceil$, we distinguish three cases.

Case 1. Assume that $n = 3t$ with an integer $t \geq 1$. Let $C_{3t} = v_0v_1 \ldots v_{3t-1}v_0$. Define the function $f : V(C_{3t}) \rightarrow \{−1, 1, 2\}$ by $f(v_{3i}) = 1$ and $f(v_{3i+1}) = f(v_{3i+2}) = 2$ for $0 \leq i \leq t - 1$. Then $f[v] = 5$ for each $0 \leq j \leq 3t - 1$ and therefore f is an SR5DF on C_{3t} of weight $\omega(f) = 5t$. Thus $\gamma_{wsR}^5(C_{3t}) \leq \gamma_{sR}^5(C_{3t}) \leq 5t$. Consequently, $\gamma_{wsR}^5(C_n) = \gamma_{sR}^5(C_n) = 5t = \lceil \frac{5n}{3} \rceil$ in this case.

Case 2. Assume that $n = 3t + 1$ with an integer $t \geq 1$. Let $C_{3t+1} = v_0v_1 \ldots v_{3t+1}v_0$. Define the function $f : V(C_{3t+1}) \rightarrow \{−1, 1, 2\}$ by $f(v_{3i}) = 1$, $f(v_{3i+1}) = f(v_{3i+2}) = 2$ for $0 \leq i \leq t - 1$ and $f(v_{3t}) = 2$. Then $f[v] \geq 5$ for each $0 \leq j \leq 3t$ and therefore f is an SR5DF on C_{3t+1} of weight $\omega(f) = 5t+2$. Thus $\gamma_{wsR}^5(C_{3t+1}) \leq \gamma_{sR}^5(C_{3t+1}) \leq 5t+2$. Consequently, $\gamma_{wsR}^5(C_n) = \gamma_{sR}^5(C_n) = 5t + 2 = \lceil \frac{5n}{3} \rceil$ also in this case.

Case 3. Assume that $n = 3t + 2$ with an integer $t \geq 1$. Let $C_{3t+2} = v_0v_1 \ldots v_{3t+1}v_0$. Define the function $f : V(C_{3t+2}) \rightarrow \{−1, 1, 2\}$ by $f(v_{3i}) = 1$, $f(v_{3i+1}) = f(v_{3i+2}) = 2$ for $0 \leq i \leq t - 1$ and $f(v_{3t}) = f(v_{3t+1}) = 2$. Then $f[v] \geq 5$ for each $0 \leq j \leq 3t+1$ and therefore f is an SR5DF on C_{3t+2} of weight $\omega(f) = 5t+4$. Thus $\gamma_{wsR}^5(C_{3t+2}) \leq \gamma_{sR}^5(C_{3t+2}) \leq 5t+4$. Consequently, $\gamma_{wsR}^5(C_n) = \gamma_{sR}^5(C_n) = 5t + 4 = \lceil \frac{5n}{3} \rceil$ also in the last case.

Example 4. For $n \geq 3$, we have $\gamma_{wsR}^4(C_n) = \gamma_{sR}^4(C_n) = \lceil \frac{4n}{3} \rceil$.

Proof. Corollary 4 implies $\gamma_{wsR}^4(C_n) \geq \gamma_{sR}^4(C_n) \geq \lceil \frac{4n}{3} \rceil$. For the converse inequality $\gamma_{wsR}^4(C_n) \leq \gamma_{sR}^4(C_n) \leq \lceil \frac{4n}{3} \rceil$, we distinguish three cases.

Case 1. Assume that $n = 3t$ with an integer $t \geq 1$. Let $C_{3t} = v_0v_1 \ldots v_{3t-1}v_0$. Define the function $f : V(C_{3t}) \rightarrow \{−1, 1, 2\}$ by $f(v_{3i}) = f(v_{3i+1}) = 1$ and $f(v_{3i+2}) = 2$ for $0 \leq i \leq t - 1$. Then $f[v] = 4$ for each $0 \leq j \leq 3t - 1$ and therefore f is an SR4DF on C_{3t} of weight $\omega(f) = 4t$. Thus $\gamma_{wsR}^4(C_{3t}) \leq \gamma_{sR}^4(C_{3t}) \leq 4t$. Consequently, $\gamma_{wsR}^4(C_n) = \gamma_{sR}^4(C_n) = 4t = \lceil \frac{4n}{3} \rceil$.

Case 2. Assume that $n = 3t + 1$ with an integer $t \geq 1$. Let $C_{3t+1} = v_0v_1 \ldots v_{3t}v_0$. Define the function $f : V(C_{3t+1}) \rightarrow \{−1, 1, 2\}$ by $f(v_{3i}) = f(v_{3i+1}) = 1$, $f(v_{3i+2}) = 2$ for $0 \leq i \leq t - 1$ and $f(v_{3t}) = 2$. Then $f[v] \geq 4$ for each $0 \leq j \leq 3t$ and therefore f is
an SR4DF on C_{3t+1} of weight $\omega(f) = 4t+2$. Thus $\gamma_{wsR}^4(C_{3t+1}) \leq \gamma_{sr}^4(C_{3t+1}) \leq 4t+2$.

Consequently, $\gamma_{wsR}^4(C_n) = \gamma_{sr}^4(C_n) = 4t + 2 = \left\lfloor \frac{4n}3 \right\rfloor$.

Case 3. Assume that $n = 3t + 2$ with an integer $t \geq 1$. Let $C_{3t+2} = v_0v_1 \ldots v_{3t+1}v_0$.

Define the function $f : V(C_{3t+2}) \to \{-1,1,2\}$ by $f(v_{3i}) = f(v_{3i+1}) = 1$, $f(v_{3i+2}) = 2$ for $0 \leq i \leq t-1$, $f(v_{3t}) = 1$ and $f(v_{3t+1}) = 2$. Then $f(v_j) \geq 4$ for each $0 \leq j \leq 3t+1$ and therefore f is an SR4DF on C_{3t+2} of weight $\omega(f) = 4t+3$. Thus $\gamma_{wsR}^4(C_{3t+2}) \leq \gamma_{sr}^4(C_{3t+2}) \leq 4t+3$. Consequently, $\gamma_{wsR}^4(C_n) = \gamma_{sr}^4(C_n) = 4t + 3 = \left\lfloor \frac{4n}3 \right\rfloor$.

Example 6. For $n \geq 3$, we have $\gamma_{wsR}^2(C_n) = \left\lceil \frac{2n}3 \right\rceil + \left\lfloor \frac{n}3 \right\rfloor - \left\lfloor \frac{n}3 \right\rfloor$.

Analogously to Example 5, one can determine the weak signed Roman 2-domination number of a cycle.

Example 6. For $n \geq 3$, we have $\gamma_{wsR}^2(C_n) = \left\lceil \frac{2n}3 \right\rceil + \left\lfloor \frac{n}3 \right\rfloor - \left\lfloor \frac{n}3 \right\rfloor$.

6. Trees

Let P_n be a path of order n. Our aim in the section is to determine $\gamma_{wsR}^k(P_n)$, and to establish lower bounds on the weak signed Roman k-domination number of a tree for $2 \leq k \leq 4$.

We start with the path P_n. In [1] it is proved that $\gamma_{sr}(P_n) = \left\lceil \frac{2n}3 \right\rceil$ and in [7], the author has shown that $\gamma_{wsR}(P_2) = 1$, $\gamma_{wsR}(P_n) = \left\lfloor n/3 \right\rfloor$ when $n \equiv 1 \mod 3$ and $\gamma_{wsR}(P_n) = \left\lfloor n/3 \right\rfloor + 1$ when $n \equiv 0,2 \mod 3$ and $n \geq 3$. Now we determine $\gamma_{wsR}^k(P_n)$ for $2 \leq k \leq 4$. In [5], one can find the following result.

Example 7. If $2 \leq n \leq 7$ then $\gamma_{sr}^2(P_n) = n$, and if $n \geq 8$, then $\gamma_{sr}^2(P_n) = \left\lceil \frac{2n+5}3 \right\rceil$.

If f is an SR2DF on P_n, then f is also a WSR2DF on P_n. Now assume that g is a WSR2DF on P_n. If $g(v) = -1$, then $g[v] \geq 2$ implies that v has a neighbor w with $g(w) = 2$. Therefore g is also an SR2DF on P_n. This observation and Example 7 lead to the next result immediately.

Example 8. If $2 \leq n \leq 7$ then $\gamma_{wsR}^2(P_n) = n$, and if $n \geq 8$, then $\gamma_{wsR}^2(P_n) = \left\lceil \frac{2n+5}3 \right\rceil$.

In [2], the authors have shown that $\gamma_{sr}^3(P_n) = n + 2$ when $n \geq 4$ and $\gamma_{sr}^4(P_n) = \left\lceil \frac{4n}3 \right\rceil + 2$ when $n \geq 3$. The same arguments as above lead to $\gamma_{wsR}^3(P_2) = n + 2$ when $n \geq 4$ and $\gamma_{wsR}^4(P_n) = \left\lceil \frac{4n}3 \right\rceil + 2$ when $n \geq 3$.

Observation 6. Let T be a tree of order n and let f be a WSR2DF on T. Then the following holds.
(a) If v is a leaf or a support vertex in T, then $f(v) \geq 1$.
(b) If $2 \leq n \leq 5$, then $\gamma_{sR}^2(T) = n$.

The next result provided a lower bound on the weak signed Roman 2-domination number of a tree in terms of its order.

Theorem 7. If T is a tree of order $n \geq 4$, then

$$\gamma_{sR}^2(T) \geq \frac{n + 4}{2}.$$

Proof. We proceed by induction on the order $n \geq 4$. If $n = 4$, then by Observation 6(b), $\gamma_{sR}^2(T) = n = (n + 4)/2$. This establishes the base case when $n = 4$. Let $n \geq 5$ and suppose that if T' is a tree of order n' where $4 \leq n' < n$, then $\gamma_{sR}^2(T') \geq (n' + 4)/2$. Let T be a tree of order n. Choose an optimal WSR2DF f on T, and so $\gamma_{sR}^2(T) = \omega(f)$. If $f(x) \geq 1$ for each vertex $x \in V(T)$, then $\omega(f) \geq n > (n + 4)/2$. Now suppose that there is a vertex $v \in V(T)$ with $f(v) = -1$. Suppose that $T - v$ is the disjoint union of r trees T_1, T_2, \ldots, T_r. Let f_i be the restriction of f on T_i for $1 \leq i \leq r$. Clearly, f_i is a WSR2DF on T_i for $1 \leq i \leq r$. Since by Observation 6(a) a leaf and its only neighbor has a positive label, $r \geq 2$ and each T_i has $n_i \geq 2$ vertices. If $n_i = 2$, then in fact $\omega(f_i) \geq 3 = (n_i + 4)/2$, and if $n_i = 3$, then $\omega(f_i) = 3$ or $\omega(f_i) \geq 4 > (n_i + 4)/2$. If $n_i \geq 4$, then by the induction hypothesis $\omega(f_i) \geq (n_i + 4)/2$. If $\omega(f_i) \geq (n_i + 4)/2$ for all i, then since $r \geq 2$,

$$\omega(f) = -1 + \sum_{i=1}^r \omega(f_i) \geq -1 + \sum_{i=1}^r \frac{n_i + 4}{2} = \frac{n + 4r - 3}{2} \geq \frac{n + 5}{2}.$$

Hence we may assume that for some i, $n_i = 3$ and $\omega(f_i) = 3$, for otherwise the desired result follows. Assume that T_1, T_2, \ldots, T_q, $q \geq 1$, are exactly the trees with three vertices and with $\omega(f_i) = 3$, $1 \leq i \leq q$. We note that $f(w) = 1$ for each vertex w that belongs to such a tree T_i with $\omega(f_i) = 3$. If $r > q$, then

$$\omega(f) = -1 + \sum_{i=1}^q \omega(f_i) + \sum_{i=q+1}^r \omega(f_i) \geq -1 + 3q + \sum_{i=q+1}^r \frac{n_i + 4}{2} = \frac{n + 4(r - q) + 3(q - 1)}{2} \geq \frac{n + 4}{2},$$

as desired. If $r = q$, then $q \geq 3$, and we obtain

$$\omega(f) = -1 + \sum_{i=1}^q \omega(f_i) = -1 + 3q = n - 2 \geq \frac{n + 4}{2},$$
since \(n \geq 10 \) in this case. This completes the proof.

Corollary 8. ([5]) If \(T \) is a tree of order \(n \geq 4 \), then

\[
\gamma_{sR}^2(T) \geq \frac{n+4}{2}.
\]

In [2], one can find the following statement. If \(T \) is a tree of order \(n \geq 2 \), then \(\gamma_{sR}^3(T) \geq \frac{4n+7}{5} \), with equality if and only if \(T = P_2 \). The next examples demonstrates that this statement is not valid.

Example 9. Let \(P = v_1v_2 \ldots v_{2p+1} \) be a path of order \(2p+1 \) with \(p \geq 1 \). Now attach two pendant edges to \(v_1 \) and \(v_{2p+1} \), and three pendant edges to \(v_{2i+1} \) for \(1 \leq i \leq p-1 \). The resulting tree \(T_{5p+2} \) is of order \(5p+2 \). Define the function \(f : V(T_{5p+2}) \to \{-1,1,2\} \) by \(f(v_{2i+1}) = 2 \) for \(0 \leq i \leq p \), \(f(v_{2i}) = -1 \) for \(1 \leq i \leq p \) and \(f(x) = 1 \) otherwise. Then \(f \) is an SR3DF on \(T_{5p+2} \) of weight

\[
\omega(f) = 2(p+1) - p + 3p + 1 = 4p + 3 = \frac{4n(T_{5p+2})+7}{5}.
\]

Therefore \(\gamma_{sR}^3(T_{5p+2}) \leq \frac{4n(T_{5p+2})+7}{5} \). Since \(f(u) + f(v) \geq 3 \) if \(v \) is a leaf and \(u \) its support vertex, it easy to verify that \(\gamma_{sR}^3(T_{5p+2}) = \frac{4n(T_{5p+2})+7}{5} \).

Example 10. Let \(S_\Delta \) be a spider and \(w \) be a vertex of maximum degree \(\Delta \geq 1 \). In addition, let \(v_1, v_2, \ldots, v_\Delta \) be the neighbors of \(w \) and \(u_i \not= w \) be the neighbor of \(v_i \) for \(1 \leq i \leq \Delta \). Now attach \(\Delta+1 \) pendant edges to \(w \) and two pendant edges to \(u_i \) for \(1 \leq i \leq \Delta \). The resulting tree \(H \) is of order \(5\Delta + 2 \). Define the function \(f : V(H) \to \{-1,1,2\} \) by \(f(w) = 2 \), \(f(u_i) = 2 \) for \(1 \leq i \leq \Delta \), \(f(v_i) = -1 \) for \(1 \leq i \leq \Delta \) and \(f(x) = 1 \) otherwise. Then \(f \) is an SR3DF on \(H \) of weight

\[
\omega(f) = 4\Delta + 3 = \frac{4n(H)+7}{5}.
\]

Therefore \(\gamma_{sR}^3(H) = \frac{4n(H)+7}{5} \).

I conjecture that the bound \(\gamma_{sR}^3(T) \geq \frac{4n+7}{5} \) is really valid for each tree \(T \) of order \(n \geq 2 \), however, I only can prove the following weaker bound.

Theorem 8. If \(T \) is a tree of order \(n \geq 2 \), then

\[
\gamma_{sR}^3(T) \geq \gamma_{wsR}^3(T) \geq \frac{3n+6}{4}.
\]

Proof. Clearly, it is enough to prove the right inequality. We proceed by induction on the order \(n \geq 2 \). If \(n = 2 \), then \(\gamma_{wsR}^3(T) = 3 = (3n+6)/4 \). If \(n = 3 \), then \(\gamma_{wsR}^3(T) = 4 \geq (3n+6)/4 \). Let now \(n \geq 4 \) and suppose that if \(T' \) is a tree of order \(n' \) where \(2 \leq n' < n \), then \(\gamma_{wsR}^3(T') \geq (3n'+6)/4 \). Let \(T \) be a tree of order \(n \). Choose
an optimal WSR3DF \(f = (V_-, V_1, V_2) \) on \(T \), and so \(\gamma_{wsR}^3(T) = \omega(f) \). If \(f(x) \geq 1 \) for each vertex \(x \in V(T) \), then \(\omega(f) \geq n + 1 > (3n + 6)/4 \).

Now suppose that there is a vertex \(v \in V(T) \) with \(f(v) = -1 \). If \(|V_-| \geq 2 \), then choose \(u, v \in V_- \) such that \(d(u, v) \) is as large as possible. Suppose that \(T - v \) is the disjoint union of \(r \) trees \(T_1, T_2, \ldots, T_r \). Let \(f_i \) be the restriction of \(f \) on \(T_i \) for \(1 \leq i \leq r \). Clearly, \(f_i \) is a SWR3DF on \(T_i \) for \(1 \leq i \leq r \).

If \(r \geq 3 \), then we deduce from the induction hypothesis that

\[
\omega(f) = -1 + \sum_{i=1}^{r} \omega(f_i) \geq -1 + \sum_{i=1}^{r} \frac{3n_i + 6}{4} \geq -1 + \frac{3(n - 1) + 6r}{4} \geq \frac{3n + 6}{4}.
\]

Let now \(r = 2 \). By the choice of \(u \) and \(v \), we observe that \(V_- \cap V(T_1) = \emptyset \) or \(V_- \cap V(T_2) = \emptyset \), say \(V_- \cap V(T_2) = \emptyset \). Note that \(\omega(f_i) = 4 \) if \(n_i = 2 \). If \(n_2 = 2 \) then we deduce from the induction hypothesis that

\[
\omega(f) = \omega(f_1) + \omega(f_2) - 1 \geq \frac{3n_1 + 6}{4} + 4 - 1.
\]

If \(n_2 \geq 3 \) then, \(\omega(f_2) \geq n_2 + 1 \), and we deduce from the induction hypothesis that

\[
\omega(f) = \omega(f_1) + \omega(f_2) - 1 \geq \frac{3n_1 + 6}{4} + n_2 + 1 - 1 \geq \frac{3n_1 + 6 + 4n_2}{4} = \frac{3(n_1 + n_2) + n_2 + 6}{4} \geq \frac{3n + 6}{4},
\]

and the proof is complete.

Observation 9. Let \(T \) be a tree, and let \(f \) be a WSR4DF on \(T \). If \(v \) is a leaf or a support vertex in \(T \), then \(f(v) = 2 \).

Theorem 10. If \(T \) is a tree of order \(n \geq 4 \), then \(\gamma_{wsR}^4(T) \geq n + 4 \).

Proof. We proceed by induction on the order \(n \geq 4 \). If \(n = 4 \), then by Observation 9, \(\gamma_{wsR}^4(T) = 8 = n + 4 \). This establishes the base case when \(n = 4 \). Let \(n \geq 5 \) and
suppose that if T' is a tree of order n' where $4 \leq n' < n$, then $\gamma^4_{sR}(T') \geq n' + 4$. Let T be a tree of order n. Choose an optimal WSR4DF f on T, and so $\gamma^4_{wsR}(T) = \omega(f)$. Assume first that $f(x) \geq 1$ for each vertex $x \in V(T)$. Since $n \geq 5$, the tree has at least 4 leaves or support vertices v_1, v_2, v_3, v_4. According to Observation 9, we note that $f(v_1) = f(v_2) = f(v_3) = f(v_4) = 2$ and hence $\omega(f) \geq 8 + n - 4 = n + 4$ in this case.

Now assume that there is a vertex $v \in V(T)$ with $f(v) = -1$. Suppose that $T - v$ is the disjoint union of r trees T_1, T_2, \ldots, T_r. Let f_i be the restriction of f on T_i for $1 \leq i \leq r$. Clearly, f_i is a WSR4DF on T_i for $1 \leq i \leq r$. Since $f[v] \geq 4$, we deduce that $r \geq 3$ and each T_i has $n_i \geq 3$ vertices. If $n_i = 3$, then in fact $\omega(f_i) = 6$, and if $n_i \geq 4$, then by the induction hypothesis $\omega(f_i) \geq n_i + 4$. Now assume that $n_1 = n_2 = \ldots = n_q = 3$ for $0 \leq q \leq r$ and $n_i \geq 4$ for $q + 1 \leq i \leq r$. We deduce from the induction hypothesis that

$$\omega(f) = -1 + \sum_{i=1}^{q} \omega(f_i) + \sum_{i=q+1}^{r} \omega(f_i)$$

$$\geq -1 + 6q + \sum_{i=q+1}^{r} (n_i + 4)$$

$$= -1 + 6q + (n - 3q - 1) + 4(r - q)$$

$$= n + 3q - 2 + 4(r - q) \geq n + 4.$$

\[\square \]

Corollary 9. If T is a tree of order $n \geq 4$, then $\gamma^4_{sR}(T) \geq n + 4$.

Note that if $H \in \{K_{1,3}, P_4, P_5, P_6\}$, then $\gamma^4_{wsR}(H) = \gamma^4_{sR}(H) = n(H) + 4$. Corollary 9 is an improvement of the bound $\gamma^4_{sR}(T) \geq n + 2$, given in [2].

References

