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Abstract: Let D be a finite simple digraph with vertex set V(D) and arc set A(D).
A twin signed total Roman dominating function (TSTRDF) on the digraph D is a
function f : V(D) — {—1,1,2} satisfying the conditions that (i) 35, cn— () f(z) =1
and 3 c y+(y) (@) 2 1 for each v € V/(D), where N~ (v) (resp. N7 (v)) consists of all
in-neighbors (resp. out-neighbors) of v, and (ii) every vertex u for which f(u) = —1 has
an in-neighbor v and an out-neighbor w with f(v) = f(w) = 2. A set {f1, f2,..., fa}
of distinct twin signed total Roman dominating functions on D with the property that
Z?zl fi(v) < 1 for each v € V(D), is called a twin signed total Roman dominating
family (of functions) on D. The maximum number of functions in a twin signed total
Roman dominating family on D is the twin signed total Roman domatic number of
D, denoted by d%, (D). In this paper, we initiate the study of the twin signed total
Roman domatic number in digraphs and present some sharp bounds on d;tR(D). In
addition, we determine the twin signed total Roman domatic number of some classes
of digraphs.
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1. Introduction

In this paper we continue the study of signed total Roman dominating functions
in graphs and digraphs. Let G be a finite and simple graph with vertex set V(G),
and let Ng(v) = N(v) be the open neighborhood of the vertex v. A signed total
Roman dominating function (STRDF) on a graph G is defined in [12] as a function
[ V(G) — {-1,1,2} such that }_ .y, f(z) = 1 for each v € V(G), and every
vertex u € V(G) for which f(u) = —1 is adjacent to a vertex v with f(v) = 2.
The weight of an STRDF f is the value w(f) = > cv(q) f(v). The signed total
Roman domination number vs:gr(G) of G is the minimum weight of an STRDF on
G. A set {f1, fa,..., fa} of distinct signed total Roman dominating functions on G
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with the property that Z?:l fi(v) < 1 for each v € V(G), is called a signed total
Roman dominating family (of functions) on G. The maximum number of functions
in a signed total Roman dominating family (STRD family) on G is the signed total
Roman domatic number of G, denoted by dgr(G). This parameter was introduced
and investigated in [11]. Following this idea, we initiate the study of twin signed
total Roman domatic numbers on digraphs.

Let D be a finite simple directed graph with vertex set V(D) and arc set A(D) (briefly
V and A). The integers n = n(D) = |V(D)| and m = m(D) = |A(D)| are the order
and the size of the digraph D, respectively. A digraph without directed cycles of
length 2 is an oriented graph. An oriented graph D is called a tournament when
either (u,v) € A(D) or (v,u) € A(D) for each pair of distinct vertices u,v € V(D).
By D! we denote the digraph obtained by reversing all arcs of D. If (u,v) is an arc of
D, then we also write u — v, and we say that v is an out-neighbor of u and u is an in-
neighbor of v. For every vertex v, we denote the set of in-neighbors and out-neighbors
of v by N~ (v) = Np(v) and N*(v) = Nj(v), respectively. Let N5[v] = N~[v] =
N~ (v)U{v} and Nf[v] = N*[v] = N*(v)U{v}. We write d* (v) = d};(v) for the out-
degree of a vertex v and d~ (v) = dp(v) for its in-degree. The minimum and mazimum
in-degree and minimum and mazimum out-degree of D are denoted by 6= (D) =4,
A=(D) = A=, 6t(D) = 6t and AT(D) = AT, respectively. A digraph D is r-out-
reqular (r-in-regular) if 67(D) = AT(D) = r (6~ (D) = A=(D) = r). In addition,
let § = §(D) = min{6" (D), (D)} and A = A(D) = max{AT(D),A™ (D)} be the
minimum and mazximum degree of D, respectively. A digraph D is called regular or
r-regular if 6(D) = A(D) = r. For a real-valued function f : V — R the weight of f
is w(f) = ey f(v), and for S C V, we define f(S) = > g f(v), so w(f) = f(V).
Consult [7] for the notation and terminology which are not defined here.

A signed total Roman dominating function (abbreviated STRDF) on D is defined in
[13] as a function f: V' — {—1,1,2} such that (i) f(N™(v)) = X, en-(0) f(@) 2 1
for each vertex v € V and (ii) every vertex u for which f(u) = —1 has an in-neighbor
v for which f(v) = 2. The signed total Roman domination number vs;r(D) of D is
the minimum weight of an STRDF on D. A 4 r(D)-function is an STRDF on D of
weight v r(D).

In [2], an STRDF of D is called a twin signed total Roman dominating function
(briefly TSTRDF) if it also is a signed total Roman dominating function of D1,
ie., f(NT(v)) > 1 for every v € V and every vertex u for which f(u) = —1 has an
out-neighbor v for which f(v) = 2. The twin signed total Roman domination number
for a digraph D is v 5(D) = min{w(f) | f is a TSTRDF of D}. A 4% (D)-function
is a twin signed total Roman dominating function on D of weight % (D). As the
assumption §(D) > 1 is necessary, we always assume that when we discuss v}z (D),
all digraphs involved satisfy §(D) > 1. Since every TSTRDF of D is an STRDF on
both D and D! and since the constant function 1 is a TSTRDF of D, we have

maX{'VstR(D)a'YstR(D_l)} < ’YItR(D) <n. (1)
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The corresponding concepts have been defined and studied for twin domination num-
ber [3, 9], twin signed domination number [6], twin signed total domination number
[4], twin minus domination number [5], twin minus total domination number [10], and
twin signed Roman domination number [8].

A set {f1, fo,..., fa} of distinct twin signed total Roman dominating functions on D
with the property that Zle fi(v) <1 foreach v € V(D), is called a twin signed total
Roman dominating family (of functions) on D. The maximum number of functions in
a twin signed total Roman dominating family (TSTRD family) on D is the twin signed
total Roman domatic number of D, denoted by d%,p(D). Since the set consisting of
the TSTRDF with constant value 1 forms an TSTRD family on D, the twin signed
total Roman domatic number is well-defined and

ar(D) =1 (2)

for all digraphs D. Since every TSTRD family of D is an STRD family on both D
and D1, we have

<tr(D) < min{dyr(D), dswr(D)}. 3)

In this paper, we initiate the study of the twin signed total Roman domatic number
in digraphs and present some sharp bounds on d¥, (D). In addition, we determine
the twin signed total Roman domatic number of some classes of digraphs.

An orientation of a graph G is an assignment of orientations to its edges. The as-
sociated digraph G* of a graph G is obtained by replacing each edge of G by a pair
of two mutually opposite oriented edges. Since N. (v) = N&.(v) = Ng(v) for each
v € V(GQ) = V(G*), the following useful observation is valid.

Observation 1. For any graph G, v«r(G) = 75r(G") and dsr(G) = d%r(GY).

We make use of the following results in this paper.

Propsotion A. ([12]) If K, is the complete graph of order n > 3, then yotr(Ky) = 3.
Propsotion B. ([11]) If £ > 0 is an integer, then dsir(Kokt+6) = 3k + 2.

Observations 1, Propositions A and B lead to the next results immediately.
Corollary 1. If K, is the complete digraph of order n > 3, then v}z (K}) = 3.

Corollary 2. If k > 0 is an integer, then d},r(Koy 6) = 3k + 2.

Propsotion C. ([11]) If D is an r-out-reqular digraph of order n with v > 1, then
Ystr(D) > [n/r].
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Inequality (1) and Proposition C imply the next result immediately.

Corollary 3. If D is an r-out-regular or r-in-regular digraph of order n with r > 1, then
Yaer(D) = [n/r].

Propsotion D. ([12]) Let C, be a cycle of order n > 3. Then vysr(Cn) = n/2 when
n =0 (mod 4), vs:r(Cn) = (n+ 3)/2 when n = 1,3 (mod 4) and vstr(Cr) = (n + 6)/2
when n =2 (mod 4).

Propsotion E. ([11]) If C, is a cycle of length n > 3. Then dstr(Cr) = 2, when n =0
(mod 4) and dstr(Cr) =1 whenn # 0 (mod 4).
Corollary 4. Let C;; be the associated digraph of cycle C,, of order n > 3. Then

1. v5r(Cr) = n/2 when n = 0 (mod 4), v5zr(Cr) = (n+3)/2 when n = 1,3 (mod 4)
and v5,z(Cr) = (n 4+ 6)/2 when n = 2 (mod 4).

2. d5,r(C) =2 when n =0 (mod 4) and d},z(C;;) = 1 when n #Z 0 (mod 4).

Propsotion F. ([12]) If P, is a path of order n > 3, then vsir(Pn) = n/2 when n =0
(mod 4), and ystr(Prn) = [(n+ 3)/2] otherwise.

Corollary 5. If P; is the associated digraph of path P, of order n > 3, then v%z(Py) =
n/2 when n =0 (mod 4), and v,z (Py) = [(n + 3)/2] otherwise.

Propsotion G. ([13]) Let K, be the complete bipartite graph where p 1. Then

Ystr(Kp,p) = 2, unless p = 3 in which case ystr(Kp,p) = 4.

v

Propsotion H. ([11]) Let K,, be the complete bipartite graph where p > 1. Then
dstr(Kpp) = p, unless p = 3 in which case dstr(Kpp) = 1.

The next result follows immediately from Observation 1 and Propositions G and H.

Corollary 6. Let K; , be the associated digraph of the complete bipartite graph K ,
where p > 1. Then

1. vir(K; ») =2, unless p = 3 in which case v (K, ,) = 4.

2. dyr(K, ) = p, unless p = 3 in which case d; (K3 3) = 1.
Propsotion I. ([1]) If D is a digraph with §7(D) > 1, then ds:r(D) < 6 (D).
Propsotion J. ([13]) If D is a digraph of order n > 3 with §~ (D) > 1, then

Ystr(D) >4+ 6 (D) —n.
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Propsotion K. ([2]) If D is a digraph of order n > 3 with 6(D) > 1, then

Yar(D) 2 5(1+vV2n+1) —n.

l\.’J\OJ

2. Properties of the twin signed total Roman domatic number

In this section we present basic properties of d¥, (D) and sharp bounds on this
parameter. Using Proposition I and inequality (3), we obtain our first bound on
% (D).

Theorem 2. If D is a digraph with 6(D) > 1, then
dir(D) < 6(D).

Corollary 6 (Item 2) shows that Theorem 2 is sharp. Theorem 2 and inequality (2)
yield the next result immediately.

Corollary 7. For a digraph D with 6(D) =1, d%,zr(D) = 1.

As we observed in (3), d¥, 5 (D) < dgr(D). Next we show that the difference ds;r(D)—
d*, (D) can be arbitrarily large.

Theorem 3. For every positive integer k > 3, there exists a digraph D such that
dstr(D) — d5ir(D) > 3k + 1.

Proof. Let k > 3 be an integer, and let D be the digraph obtained from two copies
of Kgi 6, say G1,G2, by adding two new vertices x and y, arcs going from every
vertex in V(G1) U V(G2) to both 2 and y, and the opposite arcs (x,y) and (y,x).
Since d*(z) = d*(y) = 1, we deduce from Corollary 7 that d¥, (D) = 1.

Let V(G,) = {vi,.. ng+6} for j € {1,2}. For 1 < p < 3k+2 and j = 1,2, define
the functions fl:V(Gy) = {~1,1,2} by fi(v]) = =1 for i € {1,...,6k + 3} and
flwl) =2forie {6k+4,...,9% + 6}, and fi(v vl) = ; 1( H_3) for 2 <p<3k+2
where the indices are taken modulo 9k + 6. Clearly {fl , f2, ey f3k+2} is an STRD
family on the digraph G; for j = 1,2 (see Example 10 [11]). For 1 < p < 3k + 2,
define hy, : V(D) — {=1,1,2} by hy(z) = hy(y) = =1, hyp(u) = fi(u) if u € V(G;) for
j =1,2. Clearly, {h1,h2,...,hskt2} is an STRD family of D and hence dsr(D) >
3k + 2. Thus dgr(D) — d%,zr(D) > 3k + 1, and the proof is complete. O

Theorem 4. If D is a digraph of order n, then

Yetr(D) - dsir(D) < n.
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Moreover, the equality holds if and only if for each each TSTRD family { fi, f2,..., fa} on
D with d = d};z(D), each function f; is a vJ,z(D)-function and E‘::l fi(v) = 1 for each
v e V(D).

Proof. Let {f1, fa,..., fa} be a TSTRD family on D with d = d%,z(D) and let
v € V(D). Then

d
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Corollaries 1 and 2 demonstrate that Theorem 4 is sharp. Using Proposition G
and Corollary 6 for p > 4, we have a further example which shows the sharpness
of Theorem 4. As an application of Theorem 4 for some out-regular or in-regular
digraphs we obtain the next result.

Corollary 8. Let D be an r-out-regular or r-in-regular digraph of order n such that n
is not a multiple of r, then djzr(D) <7 — 1.

Proof. Let n = dr+s with integers d > 1 and 1 < s < r—1. According to Corollary
3, we have

Yser(D) > {g—‘ = [dr:—s“ =d+1.

Now Theorem 4 yields

n
wr(D) < ——
atR( ) “d+1 <r

and therefore d¥, (D) <r — 1. O

Corollary 6 demonstrates that Corollary 8 is not valid in general.

Corollary 9. If D is an oriented graph of order n such that §(D) > 1, then

dun(D) < "2,

Proof. If D is not a tournament or D is non-regular tournament, then 6~ (D) +
3T (D) < n — 2, and hence we deduce from Theorem 2 that

6=(D) +6+(D) _n—2
2 - 2 7

wr(D) <
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Let now D be a d-regular tournament. Then D~ is a §-regular tournament such that
n = 20 + 1. Hence n # 0 (mod ¢) and it follows from Corollary 8 that

n—3<n—2
2 2

wr(D) <6 1=

The next result is an immediate consequence of Corollary 3 and Theorem 4.

Corollary 10. If D is an r-out-reqular or r- in-reqular digraph of order n with r > 1,
then d?;r(D) < 1

Corollary 6 is an example which shows that Corollary 10 is sharp for p > 4. The
upper bound on the product v z(D).d%z(D) leads to an upper bound on the sum
of these two parameters.

Theorem 5. If D is a digraph of order n, then
Yatr(D) + dgr(D) <n+ 1.

Proof. 1t follows from Theorem 4 that

n
Var(D) + d5p(D) < ———=
o " dstR(G)

+dgr(D). (4)
According to (2) and Theorem 2, we have 1 < d¥,;(G) < n — 1. Using these bounds,
and the fact that the function g(z) = = + n/z is decreasing for 1 < x < /n and
increasing for /n < x < n, we observe that

* * n
rYstR(D) + dstR(D) <

< —— +dyp(D) <max{n+1, ——+n—-1} =n+1.
dstR(G) stR { }

n
n—1
O

The complement D of a digraph D is the digraph with vertex set V(D) such that for
any two distinct vertices u and v, the arc (u, v) belongs to D if and only if (u,v) does
not belong to D. Next, we present a so-called Nordhaus-Gaddum type inequality
for the twin signed total Roman domination and twin signed total Roman domatic
numbers of regular digraphs.

Theorem 6. If D is an r-reqular digraph of order n with r > 1, then

4n

wr(D wr(D) > .
’YstR( )+’YstR( ) “—n—-1

4(n—1)
n—2 °

Ifn is even, then 72yn(D) + in(D) >
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Proof.  Since D is r-regular, the complement D is (n — r — 1)-regular. Therefore, if
follows from Corollary 3 that

— 1 1
(D) @) 2 (e L),
WstR( )+’75tR( )_TL r +77,77’71
The conditions » > 1 and n —r — 1 > 1 imply that 1 < r < n — 2. As the function
g(z) =1/x+1/(n — 2z — 1) has its minimum for x = (n — 1)/2 when 1 <z <n — 2,
we obtain

— 1 1 2 2 4n
7‘9’51‘2(D)—|_%tR(D)*71(7"4_71—7‘—1)*n<n—1+n—1) n—1’

and this is the desired bound. If n is even, then the function g has its minimum for
r=xz=(n—2)/2orr=x=n/2, since r is an integer. Hence this leads to

Van(D) +7anD) 2 (b Yz a2y 2y A2l

r n—r—1 n n-—2 n—2
and the proof is complete. O
Theorem 7. Let D be a digraph of order n such that min{5(D),5(D)} > 1. Then
dyr(D) + d5r(D) <n—1.

Furthermore, if dig(D) + dig(D) =n — 1, then D is both in-reqular and out-regular.

Proof. 1t follows from Theorem 2 that

d3r(D) + dyy (D) < min{é™ (D), 6" (D)} + min{é~(D),6"(D)}
< min{6~ (D) + 6~ (D), (D) + 6" (D)}
= min{d~ (D) +n—-1-A"(D),§7(D) +n—1-A"(D)}
= n—1+min{d~ (D) - A~ (D),s"(D) - AT(D)}
<n-1

and the proof of the Nordhaus-Gaddum bound is complete. If D is not in-regular or
out-regular, then A= (D) -6 (D) > 1 or AT(D)—§T(D) > 1, respectively, and hence
the above inequality chain implies the better bound d¥, z(D) + d%,zr(D) <n—2. O

The next result improves the bound of Theorem 7 for r-regular digraphs of order

n>".

Theorem 8. Let D be an r-regular digraph of order n > 7 such that §~ (D), (D) > 1.
Then dstR( ) + dstR( ) < n—2.
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Proof. Since D is r-regular, D is 7-regular such that 7 +7+1 = n. Assume, without
loss of generality, that 7 < r. If » = 1, then n — 1 —» = 7 = 1 that leads to the
contradiction n = 3. Let now r > 2. If n = tr4s with integerst > land 1 < s < r—1,
then Theorem 2 and Corollary 8 lead to d¥,z(D) 4+ d%,zr(D) < (r—1)+7 =n—2
as desired. Thus assume that n = ¢r with an integer t > 2. As 7 < r, we observe
that tr = n =r+7+1 < 2r+1 and so t = 2. Therefore n = 2r and hence
r=n—-r—1=2r—r—1=r—1.

If 7 = 1, then r = 2 and n = 4 which is a contradiction. Therefore, 7 > 2 and thus
r=7+1. If n = k¥ + s with integers K > 1 and 1 < s <7 — 1, then it follows from

Theorem 2 and Corollary 8 that d¥,z(D) + d,zr(D) <r+7 —1=n—2 as desired.
Now assume that n = k7 with an integer k£ > 2. Altogether, we have

n=2r=Fk(r-1)

with » > 3. It is straightforward to verify that this identity is only possible for k = 3
and r = 3 and thus 7 = 2 and n = 6 which is a contradiction. This completes the
proof. O

As an application of Corollary 8, we improve Theorem 7 for r-regular digraphs.

Theorem 9. Let D be an r-reqular digraph of order n such that 6~ (D),6” (D) > 1 and

n#Z0(mod (n—1—7)),n# 0(mod r). Then dstr(D) + dstr(D) < n — 3.

Proof.  Since D is an r-regular, the complement D is (n — 1 — r)-regular According
to Corollary 8 and the hypothesis n # 0 (mod (n — 1 —r)) and n # 0(mod ), we
deduce that d*, (D) +d%p(D) <r—1+(n—1—r—1) = n—3 and this is the desired
bound. O

Corollary 11. If T is a tournament of odd order n > 3, then d%,zr(T) + dir(T) < n—3.

Proof. If T is an r-regular tournament, then T is also an r-regular tournament such
that n = 2r + 1. It is easy to see that n # 0 (mod r) and n # 0 (mod (n — 1 — r)).
According to Theorem 9, d*,5(T) + d*,z(T) < n — 3.

Assume now that 7" is not regular. Then 6~ (7) < (n —3)/2 and 6 (T) < (n — 3)/2,

and we deduce from Theorem 2 that

)+ () <50+ 5@ < (152 4 (252) =n-s

Using Observation 1, Theorems 2, 4, 5 and 7, we obtain the next known results.

Corollary 12. (/11]) Let G be a graph of order n. Then dr(G) < 6(G), vstr(G) -

dstR(G) <mn, '.)’stR(G) + dstR(G) <n+1 and dstR(G) + dstR(G) <n-1.
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