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Abstract: In this paper we initialize the study of independent domination in directed
graphs. We show that an independent dominating set of an orientation of a graph is

also an independent dominating set of the underlying graph, but that the converse is

not true in general. We then prove existence and uniqueness theorems for several classes
of digraphs including orientations of complete graphs, paths, trees, DAGs, cycles, and

bipartite graphs. We also provide the idomatic number for special cases of some of

these families of digraphs.
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1. Introduction

The dominating set problem has its basis in finding efficient communication points for

transmitting information throughout a network [9]. Finding a minimum set of vertices

which dominates the rest of the graph corresponds to finding a smallest possible source

comprised of members of the network from which to spread information throughout

the rest of the network in the most efficient manner possible [24]. It cannot be

understated that, while minimum may and typically does refer to the cardinality of
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68 Independent domination in directed graphs

the dominating set, it could also refer to a minimum dominating set with respect to

any other metric, e.g., a minimum dominating set with respect to the cost of obtaining

and/or maintaining the dominating set, or minimum in the sense of minimizing the

cost of broadcasting information given some cost functional. However, in the context

of this paper, any question about minimum dominating sets will be with respect to

the cardinality.

To reflect the diversity of real world communication (or other) network requirements,

different sets of constraints are often imposed on dominating sets. One such instance

occurs when all members of the dominating set need to be connected, such as in back-

bones of ad hoc (non-time-invariant) networks [6]. Another instance occurs when the

dominating set needs to be independent, such as is the case when transmitting infor-

mation that is at risk of fading [23]. It is this version of the dominating set problem,

that of independent dominating sets, that will be the focus of this paper. Particularly,

as a network may admit only directional flows (i.e., information is transmitted in only

one direction), we will consider the case of independent dominating sets in directed

graphs.

Formally, a dominating set is a subset D ⊆ V (G) of the vertex set V (G) of a graph

G satisfying D ∪ N(D) = V where N(D) is the neighborhood of D. A minimum

dominating set is a solution D̂ ∈ argmin
D∈D(G)

|D| where D(G) denotes the set of all domi-

nating sets of G, i.e., D̂ is a smallest possible dominating set in G. If G is a digraph

then D is a dominating set if D ∪ N+(D) = V (G). An independent dominating set

is a dominating set that is also an independent set. Work on the undirected version

of this topic can be traced back to [5]. More recent graph theoretic results include

showing that the problem of finding a minimum independent dominating set is, in

general, NP-Hard [17], a result which was recently extended to independent rainbow

domination [20]. Several Nordhaus-Gaddum type results on independent domination

were established in [4]. Additional research on bounding the independent domination

numbers of graphs, i.e., the size of a smallest independent dominating set, is vast.

For example, [11] improved bounds on the independent domination number of trees,

[13] established bounds for graphs with given minimum degree, [18] proved results on

independent dominating sets in bipartite graphs, and [21] established general upper

bounds for the independent domination number of graphs. Other results on indepen-

dent dominating sets include results on random cubic graphs [7] and random regular

graphs [8]. The approaches developed to find independent dominating sets in graphs

have led not only to progress in other areas of domination such as dominator colorings

of graphs [12] and digraphs [3], but have also led to applications in decycling graphs

[1] as well as in mathematical chemistry [19]. In order to discuss dominating and

independent dominating sets in digraphs, a few important distinctions pertaining to

notation need to be established. First, all (di)graphs considered are both simple and

finite. The term digraph will be used as a general term to discuss orientations of

graphs. This clarification is vital, as the adjective “directed” will refer to the literal

directed case of a graph, e.g., a directed path Pn = v1v2 . . . vn which has the arc set

A(Pn) = {vivi+1 | 1 ≤ i < n}. Since we are discussing digraphs, D will be reserved
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for referencing digraphs and G will refer to the underlying (undirected) graph of the

digraph D. The standard notation for the vertex set will be used (V (D) = V (G)),

and the edge set E(G) becomes the arc set A(D). Independent dominating sets (and

dominating sets) will be referred to using the notation ID with superscript signifiers

used to distinguish specific (independent) dominating sets. For any vertex v ∈ V (D),

the in-degree and out-degree of v will be represented by d−(v) and d+(v), respec-

tively. The open in-neighborhood of v, the set of vertices with arcs leading into v,

will be denoted by N−(v) = {u ∈ V (D) | uv ∈ A(D)}. The open out-neighborhood

of v is similarly defined as N+(v) = {u ∈ V (D) | vu ∈ A(D)}. The closed in- and

out-neighborhoods of v, the union of the open in- and out-neighborhoods of v with v

itself, are denoted by N−[v] = N−(v) ∪ {v} and N+[v] = N+(v) ∪ {v}, respectively.

The symmetric difference of two sets A and B is denoted A∆B and represents the set

(A∪B) \ (A∩B), i.e., the union minus the intersection. The reversal of a digraph D,

denoted D−, has the same vertex set as D, but has the direction of each arc reversed

from its orientation in A(D). The domatic number, defined as the maximum number

of pairwise disjoint dominating sets [10], is typically denoted by d(G) for some graph

G. Since we are studying independent domination in digraphs, we study a variant

called the idomatic number, defined as the maximum number of pairwise disjoint in-

dependent dominating sets, denoted by id(D) for some digraph D. Idomatic numbers

have been studied in undirected graphs [22] and [25], but remain a novel topic in di-

graphs. Finally, a trivial (di)graph is a (di)graph on one vertex. Any additional uses

of notation may be assumed to come from the standard reference texts on domination

[16] and [15]. For a reference paper specifically dedicated to results on independent

dominating sets in graphs, the reader is referred to [14].

Throughout this paper, all (di)graphs are assumed to be simple, connected, and finite.

The remainder of this paper will begin by asking and answering a natural question

relating independent dominating sets in digraphs to independent dominating sets in

the underlying graph of the digraph. To help illustrate this initial result, we first

study the existence and uniqueness of independent dominating sets in tournaments

(orientations of complete graphs). We then study the existence and uniqueness of

independent dominating sets in orientations of paths, trees, DAGs (directed acyclic

graphs), cycles, and bipartite graphs. Once these results are in place, we build on

them by providing some initial results on the idomatic number of special cases of

some of these families of digraphs. The paper will then conclude with a provision of

possible avenues for furthering this line of research.

2. Independent Dominating Sets in Digraphs

We begin our study by asking a fundamental question about how orienting a graph

might affect independent dominating sets. If orientation was not relevant, then the

study of independent dominating sets and idomatic number of digraphs would be

irrelevant. It may appear obvious (and the following theorem shows that it is true)

that an independent dominating set of a digraph is also an independent dominating
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set of its underlying graph. It turns out, however, that orientation is crucial to deter-

mining whether or not a given independent dominating set of the underlying graph

of a digraph is an independent dominating set in any particular orientation thereof.

Given a graph G and an independent dominating set ID of G, not every orientation

of G will preserve the property that ID remains an independent dominating set.

Theorem 1. The following statements about independent dominating sets are all true:

1: Every independent dominating set ID of a digraph D is an independent dominating
set of the underlying (undirected) graph G.

2: For every graph G there exists some orientation D such that, for any particular inde-
pendent dominating set ID of G, ID is an independent dominating set of D.

3: For every non-trivial graph G, there exists some orientation D such that, for any
particular independent dominating set ID of G, ID is not an independent dominating
set of D.

Proof. 1: ID dominates G since any arc xy ∈ A(D) is also an edge xy ∈ E(G).

ID is independent in G since any edge xy ∈ E(G) that would cause ID to not be

independent in G exists as either the arc xy or the arc yx in A(D) which would

contradict that ID is an independent set in D.

2: Let ID be an independent dominating set of some graph G. Orient all edges

incident with vertices in ID away from ID, towards V (G) \ ID.

3: Since G is non-trivial, every independent dominating set must be a proper subset

of the vertex set, else it is not independent. Let ID be the independent set of G in

question. Let D be an orientation of G formed by orienting all arcs from V (G) \ ID
to ID. The set ID does not dominate V (G) \ ID in D and is therefore not an

independent dominating set in the orientation D.

To help illustrate this result, the following existence and uniqueness theorem for

independent dominating sets of tournaments provides an easy opportunity to visualize

each of the above claims since any independent dominating set of Kn is a single vertex

and every vertex represents an independent dominating set of Kn.

Theorem 2. Let Tn be a tournament. Tn has an independent dominating set ID ⇐⇒
∃ v ∈ V (Tn) such that vu ∈ A(Tn) ∀ u ∈ V (Tn). Furthermore, any independent dominating
set of a tournament must be unique.

Proof. (⇐= ) If vu ∈ A(Tn) ∀ u ∈ V (Tn) \ {v}, then we may take ID = {v} as our

independent dominating set of Tn.

( =⇒ ) Since Tn is a tournament, every maximal independent set consists of a single

vertex. Since Tn admits an independent dominating set ID, it follows that ID = {v}
for some v ∈ V (Tn) which in turn implies that vu ∈ A(Tn) ∀ u ∈ V (Tn) \ {v}.
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(Uniqueness) Since an independent dominating set of a tournament consists of a

single vertex v which dominates all other vertices, no other vertex dominates v, hence

ID = {v} is the unique independent dominating set.

The remainder of this section is dedicated to establishing existence and uniqueness

theorems for several other families of digraphs. Each family considered will be given

its own subsection. We begin this analysis with orientations of paths.

2.1. Paths

Recall our use of the term “directed path” to refer to the path Pn = v1v2 . . . vn which

has the arc set {vivi+1 | 1 ≤ i < n}, and that we use the phrase orientations of paths

as a means to address all orientations of one or more paths.

v1 v2 v3 v4 v5

Figure 1. An example of the directed path of length five.

We begin by providing an existence and uniqueness result specifically for the directed

path.

Lemma 1. Let Pn = v1v2 . . . vn be a directed path. Then the set ID = {vi | i ≡ 1 (mod 2)}
is the unique independent dominating set of Pn.

Proof. By definition of Pn = v1v2 . . . vn and since vi dominates vi+1, the set ID =

{vi | i ≡ 1 (mod 2)} is an independent dominating set of Pn. To show that ID

is unique, it suffices to observe that the vertex v1 must be in every independent

dominating set of Pn and to show that for every independent dominating set ID of

Pn, there can be no two consecutive vertices of Pn that do not belong to ID. This

second claim holds since, if neither vi nor vi+1 belong to a particular independent

dominating set ID, then the vertex vi+1 is neither dominated by any member of ID,

hence ID is not actually a dominating set of Pn.

To determine if every oriented path admits at least one independent dominating set,

it would be useful to know if any vertices have to be a member of every independent

dominating set of an orientation of a path. The following lemma proves that vertices

of a path which have in-degree zero necessarily must be a part of every independent

dominating set of that oriented path. In fact, we can generalize this claim to cover

all digraphs.

Lemma 2. Let D be a digraph. Every vertex v ∈ V (D) with d−(v) = 0 must be in every
independent dominating set of D.
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Proof. Since no vertex dominates v, it immediately follows that v must be in every

independent dominating set of D.

With these initial results in place, we can now prove an existence theorem which

demonstrates that all oriented paths admit an independent dominating set.

Theorem 3. Every oriented path admits an independent dominating set.

Proof. The proof is by induction with basis P1. Let Pn = v1v2 . . . vn and let Pn−1 =

v1v2 . . . vn−1 be the subpath of P comprised of the first n− 1 vertices and first n− 2

arcs of Pn. Since Pn−1 is smaller than Pn, it follows that Pn−1 admits an independent

dominating set, call it ID′.

First consider the case where vn−1vn ∈ A(Pn). If vn−1 ∈ ID′ then ID′ ∪N(ID′) =

V (Pn) and if vn−1 6∈ ID′, then we may take ID = ID′ ∪ {vn} and obtain an in-

dependent dominating set of P . In either case, we have established an independent

dominating set of Pn.

Next, consider the case where vnvn−1 ∈ A(Pn). If vn−1 6∈ ID′, then we may take

ID = ID′ ∪ {vn} as our independent dominating set of Pn, so we may assume that

vn−1 ∈ ID′ for every independent dominating set ID′ of Pn−1. Now if vn−2vn−1 ∈
A(Pn−1), then it must be the case that vn−3vn−2 ∈ A(Pn−1), else vn−2 is neither

dominated by a vertex in ID′ nor in ID′ itself, contradicting the fact that ID′ is an

independent dominating set of Pn−1. Therefore we may take ID = [ID′ \ {vn−1}] ∪
{vn} as our independent dominating set of Pn. This leaves only the case in which

vn−1vn−2 ∈ A(Pn−1).

Beginning with vn and proceeding backwards through Pn, every vertex must have

out-degree one until we reach some vertex vi which has out-degree zero. Per Lemma

1, the directed path from vn to vi only admits dominating sets consisting of vertices

with indices of the same parity (mod 2). If the vertex vi−1 is a member of ID′, then

we can consider the directed path from vn to vi+1, call it P ? and replace P ? ∩ ID′

with the symmetric difference P ?∆[P ? ∩ ID′]. By denoting S = P ? ∩ ID′ and

S? = P ?∆[P ?∩ID′], we arrive at the independent dominating set ID = [ID′\S]∪S?

of Pn. Finally, if vi−1 is not a member of ID′, we may set P ? = vn . . . vi and use the

same argument as before where ID = [ID′ \ S] ∪ S? (the difference is that vi is also

a member of ID in this case). With all cases covered, the inductive step is complete

and we conclude that every oriented path admits an independent dominating set.

2.2. Trees

We next turn our attention to orientations of trees by proving an existence theorem

for all orientations of trees.

Theorem 4. Every oriented tree admits an independent dominating set,
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Figure 2. An example of an arborescence/out-tree (left) and an anti-arborescence/in-tree (right).

Proof. The proof is by contradiction of a minimum counterexample. Let T be a

minimum orientation of a tree, with respect to the cardinality of its vertex set, that

does not admit an independent dominating set. Since T is an orientation of a tree,

it follows that T has at least one vertex with in-degree zero, call it v. Create the

subgraph T ′ of T as the induced subgraph T ′ = T [V (T ) \N+[v]]. Since T ′ is smaller

than T , it follows that T admits an independent dominating set (note that T ′ may

actually be a forest). Choose any independent dominating set of T ′, call it ID.

We can then create an independent set ID? = ID ∪ {v} of T , contradicting that

T is a smallest counterexample to the claim, thereby concluding that no smallest

counterexample exists and completing the proof.

Knowing that all oriented trees admit an independent dominating set, we now show

that arborescences, or out-trees, as well as anti-arborescences, or in-trees, have a

unique independent dominating set. Arborescences and anti-arborescences are simply

those trees in which every induced path is a directed path (see Figure 2). To do so,

we will first present a quick lemma about independent dominating sets and reversal

of orientation, similar to the spirit of the main result from [2].

Lemma 3. Let D be a digraph which admits at least one independent dominating set,
let D− be its reversal, and let ID be an independent dominating set of D. Then the set
V (D) \ ID is a dominating set in D−.

Proof. Note that V (D) \ ID might not be an independent set. It suffices to show

that ∀v ∈ ID, ∃u ∈ V (D) \ ID such that uv ∈ A(D−). This follows directly from

the definition of ID being an independent dominating set, in particular that ∀u ∈
V (D) \ ID, ∃v ∈ ID such that vu ∈ A(D).

We now show that all arborescences and anti-arborescences admit a unique indepen-

dent dominating set.

Lemma 4. Let T be either an arborescence or an anti-arborescence. Then T admits a
unique independent dominating set.

Proof. (Arborescences) The proof is by induction, and our basis is the trivial di-

graph. Let T be an arborescence with root vertex v with |V (T )| = n > 1 and assume
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that T is a minimum counterexample w.r.t |V (T )|. From the previous theorem we

know that T admits at least one independent dominating set. Consider the induced

sub-tree (or possibly sub-forest) T ′ = T [V (T ) \N+[v]]. Since T ′ is smaller that T , T ′

admits a unique independent dominating set, call it ID′ (technically, if T is K1,n−1
then T ′ and ID′ are both empty, but this is not an issue). Since v has in-degree zero,

we know from Lemma 2 that v must be in every independent dominating set of T

and also that N+(v) is not in any independent dominating set of T . This, along with

the topology of T , implies that the set ID = ID′ ∪ {v} is the unique independent

dominating set of T .

(Anti-arborescences) Assume that some anti-arborescence T admits multiple inde-

pendent dominating sets. Consider one independent dominating set of T , call it ID1.

Since V (T )\ID1 is independent (T is a tree), it is also an independent dominating set

in T−, per Lemma 3. Next consider a distinct independent dominating set of T , call

it ID2. The set V (T ) \ ID2, which is not the same as the set V (T ) \ ID1, is also an

independent dominating set of T−. Since we now know that all arborescences admit

a unique independent dominating set, we have derived a contradiction and conclude

that all anti-arborescences must also admit a unique independent dominating set.

2.3. DAGs

We next turn our attention to DAGs. Using the technique used to prove the unique-

ness of independent dominating sets in arborescences, we can extend this result to

DAGs simply by noticing that all DAGs have a sink vertex.

Theorem 5. Every DAG admits an independent dominating set.

Proof. Assume this is false. Let D be a smallest possible DAG (w.r.t. |V (D)|) with

no independent dominating set and let v be a sink of D. Form the smaller DAG D′ =

D \ {v} (note that D′, while certainly a DAG, might not be connected - this is OK).

Since D′ is smaller than D, it follows that D′ admits some independent dominating set

ID. If there exists some vertex u ∈ ID∩N−(v) then we are done as v is dominated by

ID in D. Otherwise the set ID ∪ {v} constitutes and independent dominating set of

D. Thus no matter what we obtain an independent dominating set of D, contradicting

D being a minimum counterexample. Therefore no smallest counterexample exists

and we conclude that every DAG admits an independent dominating set.

2.4. Cycles

Turning our attention to cycles, we begin with what is perhaps an unexpected result.

We have proven the existence of at least one independent dominating set for every

member of every family of digraphs studied thus far. The first result in this section

provides the first example of any digraph which does not admit a single independent

dominating set. In fact, this example of a digraph with no independent dominating

set is the only example found over the course of this paper.
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Lemma 5. Let Cn = v1v2 . . . vnv1 be a directed cycle. Then Cn admits an independent
dominating set if and only if n ≡ 0 (mod 2). Additionally, Cn admits exactly two distinct
independent dominating sets when n ≡ 0 (mod 2).

Proof. Let n ≡ 0 (mod 2). Then each of {vi | i ≡ 0 (mod 2)} and {vi | i ≡ 1 (mod 2)}
constitute independent dominating sets of Cn. Clearly vi and vi+1 cannot both belong

to an independent dominating set since vivi+1 ∈ A(Cn), so the only way a third

independent dominating set could exist in Cn is if neither vi nor vi+1 are in some

independent dominating set. But in this scenario the vertex vi+1 is neither dominated

by any vertex in the independent dominating set nor a member of the independent

dominating set itself, hence the set is not actually a dominating set. Thus, when

n ≡ 0 (mod 2), there are exactly two distinct independent dominating sets of the

directed cycle Cn.

Using the same argument, it follows that there are no independent dominating sets

of the directed cycle Cn when n ≡ 1 (mod 2).

Corollary 1. Not every digraph admits an independent dominating set.

In addition to proving that the directed odd cycle admits no independent dominating

set, we have also shown that the directed even cycle admits exactly two distinct

independent dominating sets. A far stronger positive existence result would be that

all orientations of cycles, aside from the one counterexample presented above, admit

independent dominating sets. This is exactly what we prove next.

Theorem 6. Let Cn be any orientation of a cycle that is not a directed odd cycle. Then
Cn admits an independent dominating set.

Proof. Let Cn = v1v2 . . . vnv1 be any orientation of any cycle that is not a directed

odd cycle. We proceed by removing an arc from Cn, without loss of generality call

it vnv1, and call the resulting path Pn. Since we have explicitly assumed that Cn

is not a directed odd cycle, and since we have fully characterized the independent

dominating sets of the directed even cycle in Lemma 5, we may assume that there

exists at least one vertex with out-degree zero and one vertex of out-degree two in

Cn.

If Cn has the out-degree sequences {0, 2, 0, 2, . . . , 0, 2, 0, 2}, then we may take the set

of vertices of out-degree two as our independent dominating set, so let us assume that

there exists at least one vertex of out-degree one in Cn. Without any loss of generality,

we may further our assumption by asserting that d+(vn) = 2 and d+(v1) = 1.

Now, since Pn is a path, it follow from Theorem 3 that Pn admits an independent

dominating set. Since both v1 and vn have in-degree zero in Pn, we conclude from

Lemma 2 that it must be the case that {v1, vn} ⊆ ID for all independent sets ID of

Pn. Furthermore, we may conclude that there exists some vertex vi ∈ V (Pn) such

that d+(vi) = 0.
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Consider the path Pn−1 = Cn[V (Cn)\{v1}]. It still holds that vn is a member of every

independent dominating set of Pn−1 since vn has in-degree zero in Pn−1. If Pn−1
admits an independent dominating set ID such that v2 ∈ ID, then we are done since

ID constitutes and independent dominating set of Cn since vnv1 ∈ A(Cn). Thus, we

have that there does not exist any independent dominating set of Pn−1 which contains

the vertex v2. This implies that d+Pn−1
(v2) = 0 since if d+Pn−1

(v2) = 1 would imply

that v2 would be in some independent dominating set of Pn−1. Since d+Cn
(v1) = 1,

this in turn implies that d+Cn
(v2) = 0. This implies that v3 must be a member of

every dominating set of Pn−1. Fix some independent dominating set ID of Pn−1.

Since v3 dominates v2 and since vnv1 ∈ A(Cn), it follows that ID is an independent

dominating set of Cn and the proof is complete.

Corollary 2. An orientation of a cycle admits an independent dominating set if and
only if it is not a directed odd cycle.

2.5. Bipartite Graphs

The final family of digraphs we study in this paper is the family of oriented bipar-

tite graphs. Given that bipartite graphs are comprised of two independent sets, they

provide a natural place to begin looking for independent dominating sets. We de-

note bipartite graphs as D = {X,Y } where X and Y are the two partite sets of

D. Interestingly, it is quite easy to show that it is indeed possible for an indepen-

dent dominating set of an oriented bipartite graph does not necessarily have to be

comprised of a single partite set. In general, this phenomenon is possible so long as

there are no arcs from the portion of the independent set in X to the portion of the

independent dominating set in Y . To see this, consider the following example.

x1

x2

y1

y2

Figure 3. An example of an oriented bipartite graph D = {X,Y } which admits an independent set
comprised of members of both X and Y . The set ID = {x1, y2} comprises such an independent
dominating set.

The following lemma gives an immediate example of an oriented bipartite graph which

does not admit an independent dominating set with vertices in each partite set.

Lemma 6. Let Km,n = {X,Y } be a directed complete bipartite graph, i.e., ∀ (x, y) ∈
X × Y , xy ∈ A(Km,n). Then the set X is the unique independent dominating set of Km,n.
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Proof. Since xy ∈ A(Km,n) ∀(x, y) ∈ X × Y , it follows that X dominates Y . Thus

X ∪ N(X) = X ∪ Y = V (Km,n) and so X is a dominating set of Km,n. Since X

is an independent set, not only is X an independent dominating set of Km,n, but

∀x ∈ X @ v ∈ V (Km,n) such that vx ∈ A(Km,n). Thus every member of X must be

in every independent dominating set of Km,n. Since X ∩ ID 6= ∅ for all independent

dominating sets ID of Km,n, and since xy ∈ A(Km,n) ∀y ∈ Y holds for each x ∈ X,

it follows that Y ∩ID = ∅ for all independent dominating sets ID of Km,n. Therefore

we conclude that X is the unique independent dominating set of Km,n.

The conditions above, that the oriented bipartite graph be both complete and di-

rected, can both be dropped with the partite X remaining an independent dominating

set.

Lemma 7. Let D = {X,Y } be an orientation of a bipartite graph in which X dominates
Y , i.e., D has the property that ∀y ∈ Y , ∃x ∈ X such that xy ∈ A(D). Then X is an
independent dominating set of D.

Proof. By definition of D it follows that X is a dominating set of D. Since D =

{X,Y } is bipartite, X is independent.

Note that in the more general case above, it is certainly possible that both partite sets

may dominate the other, in which case both X and Y are independent dominating

sets of D. This is quite interesting because the vertex set V (D) is the union of

two disjoint independent dominating sets. Characterizing the digraphs whose vertex

sets are the union of k disjoint independent dominating sets is an interesting problem

which would significantly generalize this result. However, as we have yet to prove that

all bipartite graphs admit an independent dominating set, we redirect our attention to

this problem and prove a final lemma in preparation for the main existence theorem

of this subsection.

Lemma 8. Let D = {X,Y } be an orientation of a bipartite graph such that no vertex
has in-degree equal to zero. Then D admits an independent dominating set. Furthermore,
any such independent dominating set is not unique.

Proof. Since every vertex has positive in-degree, it follows that ∀y ∈ Y , ∃x ∈ X

such that xy ∈ A(D). Similarly, it follows that ∀x ∈ X, ∃y ∈ Y such that yx ∈ A(D).

Thus we may choose either partite set to be our independent dominating set.

Finally, we are ready to present an existence theorem which states that all bipartite

graphs admit at least one independent dominating set.

Theorem 7. Every oriented bipartite graph D admits an independent dominating set.
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Proof. The proof is by induction on |V (D)|, and the basis is trivial. Assume the

claim is true for all oriented bipartite graphs on fewer than n vertices, and let D =

{X,Y } be an orientation of a bipartite graph on n vertices. From Lemma 8 we are

done if there are no vertices with in-degree zero, so assume that there is at least one

such vertex and call it v. Let S = {v} ∪ N+(v) and create the induced sub-digraph

D′ = D[V (D) \ S]. Since |V (D)| < n, it follows from our inductive hypothesis that

D′ admits an independent dominating set. Choose any independent dominating set

of D′, call it ID. Since N+(v) 6∈ V (D′), and since N+(v) is dominated by v in D,

we may form the independent dominating set ID′ = ID ∪ {v} of D, and the proof is

complete.

3. Idomatic Numbers

The idomatic number of a (di)graph is the maximum number of pairwise disjoint in-

dependent dominating sets. Given the several uniqueness results proven in this paper,

we can already state some results on the idomatic number of certain digraphs. Before

providing specific results on the idomatic number of certain digraphs, we mention

that for all families of digraphs studied in this paper, with the one exception of the

directed odd cycle, we know that the idomatic number id(D) ≥ 1.

Corollary 3. If T is a tournament then the idomatic number is given by

id(T ) =

{
1 if ∃ v ∈ V (T ) s.t. vu ∈ A(T ) ∀ u ∈ V (T ) \ {v}
0 otherwise

Proof. This follows directly from Theorem 2.

Corollary 4. If P is a directed path then the idomatic number is given by id(P ) = 1.

Proof. This follows directly from Lemma 1.

Corollary 5. If Cn is a directed cycle then the idomatic number is given by

id(Cn) =

{
0 if n ≡ 1 (mod 2)

2 if n ≡ 0 (mod 2)

Proof. This follows directly from Lemma 5.

Corollary 6. If T is either an arborescence or an anti-arborescence, then the idomatic
number is given by id(T ) = 1.

Proof. This follows directly from Lemma 4.
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4. Conclusion and Future Directions

In this paper we began the study of independent dominating sets in digraphs. This

is an extremely important first step for the development of routing mechanisms in

directed networks, and can have profound applications in control systems engineer-

ing and other areas dependent upon directed communications. We achieved this by

proving a series of existence and uniqueness results for important families of digraphs

including orientations of complete graphs, paths, trees, DAGs, cycles, and bipartite

graphs. We then studied the idomatic number which characterizes the number of

disjoint independent dominating sets in a (di)graph and provided several results in

the form of corollaries to the uniqueness results.

There are several possible directions in which one may further this line of research.

Providing general bounds on the idomatic number in digraphs would be useful, as

would characterizing those graphs with fixed idomatic numbers. In particular, char-

acterizing all digraphs which have an idomatic number of 1 would be beneficial as

this would bound those digraphs which might admit a unique independent dominat-

ing set. Furthermore, characterizing all digraphs which admit a unique independent

dominating set would be an interesting problem, most notably because these graphs

are a subset of the digraphs with idomatic number 1.

Another interesting direction to explore would be to study the impact of a change in

the orientation of a fixed underlying graph on the domatic number. While one may

find the idomatic number for a particular orientation of a given graph, the idomatic

number for the entire family, i.e., the minimum idomatic number over all possible

orientations of a given graph, is a much more important problem, especially given the

widespread application of independent dominating sets in ad hoc networks. A natural

place to begin this inquiry could be to study the impact of reversals of orientation.
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