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Abstract: The Gallai graph and the anti-Gallai graph of a graph G are edge disjoint
spanning subgraphs of the line graph L(G). The vertices in the Gallai graph are

adjacent if two of the end vertices of the corresponding edges in G coincide and the other

two end vertices are nonadjacent in G. The anti-Gallai graph of G is the complement
of its Gallai graph in L(G). Attributed to Gallai (1967), the study of these graphs got

prominence with the work of Sun (1991) and Le (1996). This is a survey of the studies

conducted so far on Gallai and anti-Gallai of graphs and their associated properties.
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1. Introduction

All the graphs under consideration are simple and undirected, but are not necessarily

finite. The vertex set and the edge set of the graph G are denoted by V (G) and

E(G) respectively. If H is a subgraph of G with V (H) = V (G), then H is a spanning

subgraph of G [21]. If H contains all the edges of G with end vertices in V (H), the

H is an induced subgraph of G; [7] we say that V (H) induces or spans H in G. The

line graph L(G) of G is the graph on E in which x, y ∈ E are adjacent as vertices

if and only if they are adjacent as edges in G [7, 11]. The Gallai graph Γ(G), of a
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graph G is a spanning subgraph of L(G) in which two vertices are adjacent if the

corresponding edges in G are adjacent and do not span a triangle in G [17]. The

anti-Gallai graph ∆(G), of a graph G is a spanning subgraph of L(G) in which two

vertices are adjacent if the corresponding edges in G are adjacent and spans a triangle

in G [21]. The basic properties of Gallai graphs that follow from the definition are;

for any induced subgraph H of G, the Gallai graph of H is an induced subgraph of

the Gallai graph of G and the Gallai graph of G ∗ K1 is isomorphic to the union

of Gallai graph of G and its complement [20]. Although several authors have been

finding many interesting results on Gallai and anti-Gallai graphs after the motivating

work of Van Bang Le [21] in 1996, this construction was first used by Gallai [9] and

then by Sun [30] in their investigations.

The smallest integer k such that G has a k-vertex coloring, is called the chromatic

number of G and is denoted by χ(G). A graph G with χ(G) = k is called k-chromatic;

if χ(G) ≤ k [7]. The greatest integer r such that Kr ⊆ G is the clique number ω(G) of

G, and the greatest integer r such that Kr ⊆ G (induced) is the independence number

[13] α(G) of G. Clearly, α(G) = ω(Ḡ) and ω(G) = α(Ḡ) [7].

The Gallai graph, Γ(G) and the anti-Gallai graph, ∆(G) are edge disjoint subgraphs

with Γ(G) ∪ ∆(G) = L(G). Though the line graph L(G) has forbidden sub graph

characterization, none of the Gallai graphs or the anti-Gallai graphs has the vertex

hereditary property. Hence, they cannot be characterized using forbidden subgraphs

[21]. For a graph G, if some of its iterated Gallai graphs finally becomes the empty

graph, the graph is said to be Gallai-mortal and the characterizations of these graphs

are discussed in [20].

It is known that K1,3 and K3 are the only pair of non-isomorphic graphs having the

same line graph. In [17], it is proved that there exists infinitely many pairs of non-

isomorphic graphs of the same order having isomorphic Gallai and anti-Gallai graphs.

Also, the existence of a finite family of forbidden subgraphs for the Gallai graphs and

anti-Gallai graphs to be P4-free and the characterization based on distance parameters

are discussed in [17]. The theory of simplicial complexes are extensively studied for

its wide range of applications namely in pattern generation and network analysis.

Considerable amount of work on charaterizations of Gallai simplicial complexes and

that of anti-Gallai simplicial complexes are discussed in [2] and [3]. The triangular

line graph remarkably exhibits a similar behaviour as that of an anti-Gallai graph,

which is also obtained by adding a restriction to the line graph. Hence, its results

can also be inspected for further studies. The papers [5], [4] and [8] can be referred

for the properties of triangular line graph and for another interesting area of study

called triadic closure, one may refer to [14, 15].

It is observed that many meaningful results have been proved on some of the major

parameters like chromatic number, clique number, radius and diameter of the graph

with its Gallai and anti-Gallai graphs. However, no much extensive work has been

done on other parameters like connectivity, covering, domination, etc. In this work

the results are named as theorems, lemmas, propositions etc. as they were originally

named by the respective authors.
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2. Chromatic number and clique number

The problems of determining the clique number, and the chromatic number of a Gallai

graph and anti-Gallai graph are NP-complete. However, a formula for the parameters

ω(∆(G)), χ(∆(G)), ω(Γ(G)) and χ(Γ(G)) in terms of that of G is determined. Some

of the major results are presented now.

Theorem 1 ([17]). Given two positive integers a, b, where a > 1, there exists a graph
G such that χ(G) = a and χ(Γ(G)) = b .

Lemma 1 ([17]). The anti-Gallai graph of a graph G cannot be bipartite except for the
triangle free graphs.

Theorem 2 ([17]). Given two positive integers a, b, where b < a, b 6= 2, there exists a
graph G such that χ(G) = a and χ(∆(G)) = b. Further, for any odd number a, there exists
a graph G such that χ(G) = χ(∆(G)) = a.

Proposition 1 ([21]). For every graph G with finite chromatic number, χ(∆(G)) ≤
χ(G). Moreover, if χ(G) is even, then χ(∆(G)) ≤ χ(G) - 1.

Proposition 2 ([21]). The following statements are equivalent.
(i) For all planar graphs G, χ(G) ≤ 4 (the Four Colour Theorem).
(ii) For all planar graphs G, χ(∆(G)) = ω(∆(G)) .

Proposition 3 ([21]). For a graph G whose complement Ḡ has finite chromatic number,
χ(Γ(G)) ≤ χ(Ḡ).

Proposition 4. For every graph G with ω(G) ≥ 1,

ω(∆(G)) =

{
ω(G)− 1 if ω(G) 6= 3,

3 if ω(G) = 3.

Proposition 5. For a graph G whose complement Ḡ has finite chromatic number,
χ(Γ(G)) ≤ χ(Ḡ).

Let ∆o(G) denote G and for every integer t > 1, ∆t(G) denote ∆(∆t−1(G)), the

iterated anti-Gallai graphs.

Corollary 1. For every graph G with finite clique number, ∆ω(G)−1 has no edges or is
the union of vertex-disjoint triangles.
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3. Partial characterizations

3.1. Perfect graphs

The term “perfect graph” was introduced by Claude Berge in 1963. Berge proposed

to call a graph perfect if, for each of its induced subgraphs F the chromatic number of

F equals the largest number of pairwise adjacent vertices in F . This concept was in

fact developed from a 1958 work of Tibor Gallai. It was conjectured that a graph is

perfect if and only if none of its induced subgraphs is an odd hole or the complement

of an odd hole. An odd hole is a chordless cycle whose number of vertices, n ≥ 5 is

odd. This is known as the Strong Perfect Graph Conjecture. However, this conjecture

of Berge was proved in 2002 as the Strong Perfect Graph Theorem. Another special

class of perfect graphs that emerged around 1975-1976 is known as “Raspail graph”.

A graph in which every cycle whose length is odd and at least five has at least one

chord joining two vertices whose distance on the cycle is two is defined as Raspail

graph [30]. All Raspail graphs are perfect is a corollary of the Strong Perfect Graph

Theorem.

Liping Sun has presented two classes of perfect graphs, where one is the Gallai graph

which was used by Gallai in his investigation and the other is the Berge graphs defined

through a forbidden graph on five vertices. As seen in the definition of Gallai graphs,

the two edges form a chordless path with three vertices in G, Liping Sun was keen on

considering the Gallai graphs for the classification and defined a graph G to be Gallai-

perfect if, and only if, the Gallai graph of G contains no odd hole [30]. However, his

study on perfect graphs, led to the following partial-characterizations of Gallai graphs.

Theorem 3 ([30]). Every Gallai-perfect graph is perfect.

Theorem 4 ([30]). If a Gallai-perfect graph G contains an induced dart (see Figure 1),
then G contains a star-cutset or an even pair.

Theorem 5 ([30]). Every diamond-free Raspail graph is Gallai-perfect.

Proposition 6 ([21]). The Perfect Graph Conjecture is true for Gallai graphs of graphs
having a 4-colorable complement.

Theorem 6 ([21]). Anti-Gallai graphs without odd holes are perfect.

Proposition 7 ([21]). The following statements are equivalent for every minimal im-
perfect graph G.

1. G or Ḡ is an odd hole.

2. Γ(G) and Γ(Ḡ) are triangle-free.

3. Γ(G) or Γ(Ḡ) is triangle-free.
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Figure 1. Dart

Figure 2. G1- A clique irreducible graph G2- A clique reducible graph

3.2. Irreducibility

A graph G is clique irreducible if every clique in G of size at least two, has an edge

which does not lie in any other clique of G and it is clique reducible if it is not clique

irreducible [32]. A graph G is clique vertex irreducible if every clique in G has a vertex

which does not lie in any other clique of G and it is clique vertex reducible if it is not

clique vertex irreducible.

A graph G is weakly clique irreducible if every edge lies in an essential clique. Oth-

Figure 3. A clique vertex irreducible graph A clique vertex reducible graph
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erwise, it is weakly clique reducible [31, 33]. For example, from the above figure we

see that the graph G2 is weakly clique irreducible and the graph G1 is weakly clique

reducible.

3.3. Gallai graphs and irreducibility

The Gallai graphs which are clique irreducible or weakly clique irreducible are char-

acterized as follows.

Theorem 7 ([18]). The Gallai graph Γ(G) is clique vertex irreducible if and only if for
every v ∈ V (G), every maximal independent set I in N(v) with |I| > 2 contains a vertex u
such that N(u)-{v} = N(v)-I.

Theorem 8. If Γ(G) is clique vertex reducible, then G contains one of the graphs in
Figure 4 as an induced subgraph.

Figure 4. Forbidden Graphs (Theorem 8)

Theorem 9 ([18]). The Gallai graph Γ(G) is clique irreducible if and only if for every
v ∈ V (G), < N(v) >c is clique irreducible.

Theorem 10 ([18]). The second iterated Gallai graph Γ2(G) is clique irreducible if and
only if for every uv ∈ E(G), either < N(u)−N(v) > and < N(v)−N(u) > are clique vertex
irreducible or one among them is a clique and the other is clique irreducible.

Theorem 11 ([18]). If Γ(G) is clique reducible then G contains one of the graphs in
Figure 5 as an induced subgraph.
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Figure 5. Forbidden Graphs (Theorem 11)

Theorem 12 ([18]). The Gallai graph of a graph G, Γ(G) is weakly clique irreducible
if and only if for every vertex u ∈ V (G), < N(u) >c is weakly clique irreducible.

3.4. Anti-Gallai graphs and irreducibility

The anti-Gallai graphs which are clique irreducible or weakly clique irreducible are

characterized as follows.

Theorem 13 ([18]). The anti-Gallai graph ∆(G) is clique irreducible if and only if
G neither contains K4 nor one of the graphs in Figure 6 (Hajós’ graphs) as an induced
subgraph.

Figure 6. Forbidden Graphs (Theorem 13)

Theorem 14 ([18]). The second iterated anti-Gallai graph ∆2(G) is clique vertex
irreducible if and only if G does not contain K4 as an induced subgraph.
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Theorem 15 ([18]). The nth iterated anti-Gallai graph ∆n(G) is clique vertex irre-
ducible if and only if G does not contain Kn+2 as an induced subgraph.

Theorem 16 ([18]). The anti-Gallai graph ∆(G) is clique irreducible if and only if G
does not contain K4 as an induced subgraph.

Theorem 17 ([18]). The nth iterated anti-Galli graph ∆n(G) is clique irreducible if
and only if G does not contain an induced Kn+3.

Theorem 18 ([19]). The anti-Gallai graph of a graph G, ∆(G) is weakly clique irre-
ducible if and only if G is K4-free.

Corollary 2 ([19]). The anti-Gallai graph of a graph G, ∆(G) is weakly clique irre-
ducible if and only if it is clique irreducible.

3.5. Some miscellaneous results

Proposition 8 ([21]). (i) Let H be a subgraph of the graph G. If H has no short chord,
then Γ(H) is an induced subgraph of Γ(G) and ∆(H) is an induced subgraph of ∆(G).
(ii) Every Ka in Γ(G) stems from an induced star K1,a in G; every Ka(a > 3) in ∆(G)
stems from a Ka+1 in G.
(iii) For all graphs G, Γ(G∗K1) ≈ Γ(G) ∪ Gc and G are an induced subgraphs of ∆(G∗K1).

Lemma 2 ([18]). If G is K4-free then Γ(G) is diamond-free.

Theorem 19 ([26]). There does not exist a graph G such that Γ(G) ∼= ∆(G) ∼= nK1 ∪
mK3 ∪ pH, where H is a bow and p 6= 0.

Theorem 20 ([26]). There does not exists a graph G for which Γ(G) ∼= ∆(G) ∼= nK1

∪ mK3 ∪ pD, where D is a diamond and p 6= 0.

Theorem 21 ([26]). If Γ(G) ∼= ∆(G) ∼= H, then H cannot have a component with
exactly 4 vertices.

Lemma 3 ([26]). There does not exist a graph G for which Γ(∆(G)) ∼= ∆(Γ(G)) ∼= nK1

and n 6= 0.

Theorem 22 ([26]). There does not exist a graph G for which Γ(∆(G)) ∼= ∆(Γ(G)) ∼=
H, where H is diamond free.

Let r and d denote the radius and diameter of a graph, respectively.

Theorem 23 ([17]). Let G be a graph such that Γ(G) is connected. Then r(Γ(G)) >
r(G)− 1 and d(Γ(G)) > d(G)− 1.
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Theorem 24 ([17]). If G is a graph such that ∆(G) is connected and r(G) > 1,
r(∆(G)) > 2(r(G)− 1) and d(∆(G)) > 2(d(G)− 1).

There are no forbidden characterization for the Gallai graphs. However, Gallai graphs

with certain properties can be characterized. The Gallai graphs that are trivially

perfect graphs, 3-sun-free graphs, interval graphs etc. are characterized in [28]. In a

recent work [27], Gallai and anti-Gallai operators of graphs are considered and their

commutativity property is dealt with.

3.6. Anti-Gallai triangle

If the edges ū, v̄ and w̄ induce a triangle in G then the triangle uvw in L(G) is referred

to as an anti-Gallai triangle. All the triangles in ∆(G) need not be an anti-Gallai

triangle and the number of anti-Gallai triangles in L(G) is equal to the number of

triangles in G. Since each edge of an anti-Gallai graph belongs to some anti-Gallai

triangle, the set of all anti-Gallai triangles in L(G) induces ∆(G).

Lemma 4 ([29]). Consider a line graph H ∼= K3. If a triangle uvw in H is an anti-
Gallai triangle, then for all x ∈ V (H)\{u, v, w}, one of the following holds.

1. < u, v, w, x >∼= K4 − e

2. < u, v, w, x > is disconnected.

Lemma 5 ([29]). If a triangle uvw is not an anti-Gallai triangle in a line graph
H ∼= L(G), then there is at most one common neighbor z for an edge of uvw in H such that
< u, v, w, z >∼= K4 − e.

Theorem 25 ([29]). Consider a line graph H ∼= K3, K4 − e, C4 ∨K1 and C4 ∨ 2K1.
A triangle uvw in H is an anti-Gallai triangle if and only if < u, v, w, x >∼= K4 − e or
disconnected for all x ∈ V (H)\{u, v, w}.

Lemma 6 ([29]). An anti-Gallai triangle in a DHL (Distance Hereditary Line) graph
has a vertex of degree two.

3.7. Bipartite Gallai graph

In 1999, Maffray and Reed had characterized graphs whose Gallai graphs are bipartite.

According to them, “a graph G is elementary if and only if Gallai graph of G is

bipartite” [24]. They have also depicted the five wonders, which are the five graphs-

pyramid, lighthouse, mausoleum, garden, colossus in their work. With these they

have formulated one of the main results that the Gallai graph of G is bipartite if and

only if G is claw-free, Berge, and contains none of the five wonders; and if and only

if G is an augmentation of a line-graph of bipartite multigraph.

Later on Joos, Le and Rautenbach extensively characterized certain graphs whose

Gallai graphs are forests or trees, the main results of which are mentioned below.
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Theorem 26 ([12]). The Gallai graph Γ(G) of a graph G is a forest if and only if G is
a {F1, . . . , F9}-free chordal graph.

Figure 7. The graphs F1, . . . , F9 (Theorem 26)

Theorem 27 ([12]). For a graph G without isolated vertices, the following statements
are equivalent:

1. The Gallai graph Γ(G) of G is a tree.

2. Every non-trivial homogeneous set in G is independent, and G is an {F1, . . . , F9}-free
chordal graph.

3. G is either the graph F−8 or G is connected and satisfies the following conditions:

• Every block of G is isomorphic to K2,K3, or a gem.

• Every cut-vertex of G lies in at most two blocks and has degree atmost 3 in G.

• Every block of G that is isomorphic to K3 has exactly two cut-vertices.

• Every block of G that is isomorphic to a gem has exactly one cut-vertex.

4. Semi-characterizations based on graph operations

Graph operations are performed to create new graphs from the original one. Some

unary and binary operations and their effects on Gallai and anti-Gallai graph are

discussed in brief here.
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4.1. Cograph

A graph is cograph (or compliment reducible graph or P4-free graph) if it can be

reduced to an empty graph by successively taking compliments within components.

Theorem 28 ([17]). If G is a connected cograph without a vertex of full degree then
Γ(G) is a cograph if and only if G = (pK2)c, the complement of p copies of K2.

Theorem 29 ([17]). Let G be a graph. Then, Γ(G) is a cograph if and only if G does
not have the graphs in Figure 8 as induced subgraphs.

Figure 8. Forbidden Graphs (Theorem 29)

Theorem 30 ([17]). Let G be a graph. Then, ∆(G) is a cograph if and only if G does
not have the graphs in Figure 9 as induced subgraphs.

Figure 9. Forbidden Graphs (Theorem 30)



104 A survey of the studies on Gallai and anti-Gallai graphs

Theorem 31 ([17]). For a connected cograph G, Γ(G) is a cograph if and only if G ∈ H.

The class H of graphs is defined as follows:

• H1 = {G : G = (pK2)c ∨ (Kq), where p, q ≥ 0}

• Hi = {G : G = (
⋃
Hi−1) ∨Kr, where Hi−1 ∈ Hi−1 and r > 0} for i > 1

• H =
⋃
Hi

Theorem 32. For a connected cograph G, ∆(G) is a cograph if and only if

1. G = G1 ∨G2, where G1 is edgeless and G2 does not contain P4 as a subgraph (which
need not be induced) or

2. G is C4.

4.2. Triangular line graph

The triangular line graph T (G) of a graph G is the graph with vertex set E(G), with

two distinct vertices e and f adjacent in T (G) if and only if there exists a subgraph

H of G with e, f ∈ E(H) and H ∼= K3. Any such subgraph H is called a triangle of

G. Some of its properties are mentioned below.

Proposition 9 ([5]). If G is a graph, then T (G) contains a copy of K4 − e if and only
if G contains a copy of K4.

Theorem 33 ([5]). For a graph G, the triangular line graph T (G) is Eulerian if and
only if T (G) is connected.

Lemma 7 ([16]). Assume that F is a connected non-trivial graph and F is the anti-

Gallai graph of F
′
. Then F

′
is K4-free if and only if every edge of F is contained in exactly

one triangle, or equivalently, every maximal clique of F is a triangle and any two triangles
share at most one vertex.

4.3. Gallai and anti-Gallai total graph

From the notion of total graphs, Gallai graphs and anti-Gallai graphs, two new op-

erators Gallai total graph and anti-Gallai total graph were introduced by Garg et al.

[10]

Let G = (V,E) be a graph. The Gallai total graph, ΓT (G) of G is the graph, where

V (ΓT (G)) = V ∪ E and uv ∈ E(ΓT (G)) if and only if

1. u and v are adjacent vertices in G, or

2. u is incident to v or v is incident to u in G, or

3. u and v are adjacent edges in G which do not span a triangle in G.
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The anti-Gallai total graph, ∆T (G) of G is the graph, where V (∆T (G)) = V ∪E and

uv ∈ E(∆T (G)) if and only if

1. u and v are adjacent vertices in G, or

2. u is incident to v or v is incident to u in G, or

3. u and v are adjacent edges in G and lie on a same triangle in G.

Proposition 10 ([10]). Let ΓT (G) be the Gallai total graph of a graph G = (V,E),
then the degree of v ∈ V (ΓT (G)) is given by,

dΓ(v) =

{
2d(v) if v ∈ V (G)

d(v1) + d(v2)− 2t if v = v1v2 ∈ E(G)

where t denotes the number of triangles containing v in G.

Proposition 11 ([10]). Let G = (V,E) be a (p, q) graph, then |E(ΓT (G))| = 2q + 1
2∑p

i=1 (d(vi))
2 - 3( tr(A3)

6
), where A is the adjacency matrix of G.

Proposition 12 ([10]). Let ∆T (G) be the anti-Gallai total graph of a graph G = (V,E),
then

d∆(v) =

{
(2d(v)) if v ∈ V (G),

2t+ 2 if v = v1v2 ∈ E(G)

where t denotes the number of triangles containing v in G.

Proposition 13 ([10]). Let G = (V,E) be a (p, q) graph, then |E(∆T (G))| = 3q +

3( tr(A3)
6

), where A is the adjacency matrix of G.

Some Eulerian and Hamiltonian properties of Gallai and anti-Gallai total graph are

also discussed in [10].

4.4. Eulerian property

Proposition 14 ([10]). The Gallai total graph ΓT (G) of a graph G is regular if and
only if G is regular and triangle free.

Proposition 15 ([10]). For a connected graph G, the Gallai total graph ΓT (G) has a
spanning Eulerian subgraph.

Proposition 16 ([10]). The Gallai total graph ΓT (G) of G is connected if and only if
G is connected.

Corollary 3. The Γn
T (G) of G is connected if and only if G is connected for all n ≥ 1.
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Theorem 34 ([10]). Let G be a connected graph, then the Gallai total graph ΓT (G) is
Eulerian if and only if all the vertices of G are of the same parity; where parity of a vertex
means parity of its degree.

Corollary 4. If G is Eulerian, then Γn
T (G) is Eulerian for all n ≥ 1, but converse is not

true.

Proposition 17 ([10]). The anti-Gallai total graph ∆T (G) of G is regular if and only
if G is l-triangular and (l+ 1)-regular; where a graph is called l-triangular if each edge of G
lies on l number of triangles in G.

Proposition 18 ([10]). For a connected graph G, the anti-Gallai total graph ∆T (G)
has a spanning Eulerian subgraph.

Proposition 19 ([10]). For a connected graph G, ∆n
T (G) has a spanning Eulerian

subgraph for all n ≥ 1 [10].

Proposition 20 ([10]). The anti-Gallai total graph ∆T (G) of G is connected if and
only if G is connected.

Corollary 5. The ∆n
T (G) of G is connected if and only if G is connected for all n ≥ 1.

Theorem 35 ([10]). Let G be a connected graph, then ∆T (G) of G is Eulerian.

Corollary 6. Let G be a connected graph, then ∆n
T (G) of G is Eulerian.

Corollary 7. If G is Eulerian, then ∆n
T (G) of G is Eulerian, but converse is not true.

4.5. Hamiltonian property

Theorem 36 ([10]). The Gallai total graph ΓT (G) of a non-trivial graph G is Hamilto-
nian if and only if the set of all elements of G can be ordered in such a way that consecutive
elements are neighbors as are the first and last elements, but the two edges are not consecutive
elements, if both the edges are of same triangle.

It is seen in [10] that if G is Hamiltonian, then its total graph is also Hamiltonian.

However, only if G is Hamiltonian and triangle-free, then ΓT (G) is Hamiltonian.

Theorem 37 ([10]). The anti-Gallai total graph ∆T (G) of a non-trivial graph G is
Hamiltonian if and only if the set of all elements of G can be ordered in such a way that
consecutive elements are neighbors as are the first and last elements, but the two edges are
not consecutive elements, if both the edges are not of same triangle.
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4.6. Simplicial complex

The line simplicial complex containing Gallai and anti-Gallai simplicial complexes

as spanning subcomplexes is defined and a relation between Euler characteristics

of line and Gallai simplicial complexes is established in [2]. Also in [1–3, 23, 25],

connectedness of simplicial complexes based on various combinatorial and topological

aspects and the shellability [6] of line and anti-Gallai simplicial complexes associated

to various classes of graphs are studied. Some basic definitions mentioned are as

follows. Let G be a finite simple graph on the vertex set V (G) = [n]. Let E(G) =

{ei,j = {i, j} | i, j ∈ V (G)} be the edge set of G.

The set of line indices γ(G) associated to the graph G is defined as the collection of

subsets of V (G) such that if ei,j and ej,k are adjacent in L(G), then Fi,j,k = {i, j, k} ∈
γ(G) or if ei,j is an isolated vertex in L(G) then Fi,j = {i, j} ∈ γ(G). The line index

is said to be a Gallai index if the incident edges ei,j and ej,k of G do not span a

triangle in G. The set of Gallai indices are denoted by ΩΓ(G). The line index is said

to be an anti-Gallai index if the incident edges ei,j and ej,k of G lie on a triangle in

G. The set of anti-Gallai indices are denoted by Ω
′

Γ(G). The set of line indices γ(G)

contains ΩΓ(G) and Ω
′

Γ(G) as spanning subsets.

Theorem 38 ([2]). Let ∆L(G) and ∆Γ(G) be line and Gallai simplicial complexes of a
finite simple graph G. Then, the Euler characteristic of the line simplicial complex ∆L(G)
is given by χ(∆L(G)) = χ(∆Γ(G)) + |ΩΓ′(G)| , where |ΩΓ′(G)| is the number of anti-Gallai
indices associated to G.

Theorem 39 ([2]). The anti-Gallai simplicial complex ∆Γ′(Wn+1) associated to wheel
graph Wn+1 is shellable.

Proposition 21 ([2]). Let G be a finite simple connected graph. Then the Gallai
simplicial complex ∆Γ(G) of G is one dimensional if and only if ∆Γ(G) = G.

Lemma 8 ([2]). Let G be a simple connected graph, then its Gallai simplicial complex
∆Γ(G) will be connected.

Theorem 40 ([2]). The face ring of Gallai simplicial complex ∆Γ(T ) associated to a
tree T is Cohen-Macaulay.

Theorem 41 ([3]). Let ∆Γ(L∗n) be the Gallai simplicial complex of triangular ladder
graph L∗n with 2n vertices for n ≥ 3. Then, the Euler characteristic of ∆Γ(L∗n) is χ(∆Γ(L∗n))
=

∑N
k=0 = (−1)kfk = 0.

Theorem 42 ([3]). Let ∆Γ(Y3,n) be the Gallai-simplicial complex of prism graph Y3,n,
with 3n vertices for n ≥ 3. Then, the Euler characteristic of ∆Γ(Y3, n) is χ(∆Γ(Y3, n)) =∑n

k=0 = (−1)kfk = 3(n− 1).
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4.7. Gallai-Mortal graph

A graph G is said to be Gallai-mortal if Γt(G) is empty for some t ≥ 0; where Γt(G)

is the iterated Gallai graph of G. Some of its characterizations can be seen in [20].

Also, its main result is as follows.

Theorem 43. A finite graph G is Gallai-mortal if and only if

1. for any integer t ≥ 0, Γt(G) is chordal.

2. G contains an induced path of maximum length.

3. G contains a neighborhood chain of maximum length.

5. Krausz-Type characterizations

The notion of simplices, generalised line graphs, Gallai graphs and anti-Gallai graphs

give rise to k- line graphs, k- Gallai graph and the k-anti-Gallai graph of a graph G

having the k- simplices of G as vertices [21]. For an integer k > 1, the vertices of

the k-Gallai graph Γk(G) represent the k-cliques of G, moreover its two vertices are

adjacent if and only if the corresponding k-cliques of G share a (k−1)-clique but they

are not contained in a common (k+ 1)-clique. For an integer k > 1, the k-anti-Gallai

graph ∆k(G) of a graph G has one vertex for each k-clique of G, and two vertices in

∆k(G) are adjacent if and only if the union of the two k-cliques represented by them

span a (k + 1)-clique in G [16]. The following are the results obtained with respect

to the k- Gallai graphs and the k-anti-Gallai graphs.

Theorem 44 ([21]). Let k > 1 be an integer. A graph G is a k-Gallai graph if and only
if there is a family Gi : i ∈ I of induced subgraphs of G satisfying the following properties.

1. Every vertex of G lies in exactly k members of the family.

2. Every edge of G lies in exactly k − 1 members of the family.

3. |
⋂

i∈J Gi| ≤ 1 for any k-element subset J of I.

4. The family has the k-Helly property.

5. For any k − 1-element subset A of I and any i 6= j ∈ I\A and vertices x 6= y of G
with {x} = Gi ∩

⋂
a∈AGa and {y} = Gj ∩

⋂
a∈AGa, xy ∈ E(G) if and only if Gi ∩

Gj 6= φ holds true.

The following result is an immediate application of Theorem 44.

Remark 1 ([21]). The following statements are equivalent for every graph G.

1. Every induced subgraph of G is a Gallai graph.

2. G has no K1,3 and no K−4 ; K4 − e.
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3. G is a Gallai graph of a triangle-free graph (and thus, G is a line graph).

Lemma 9 ([16]). For every k > 2, every graph G and its k-anti-Gallai graph ∆k(G)
satisfy the following relations:

1. G is Kk+2-free if and only if ∆k(G) is diamond-free.

2. G is Kk+2-free if and only if each maximal clique of ∆k(G) is either an isolated vertex
or a (k+1)-clique. Moreover, any two maximal cliques intersect in at most one vertex.

6. NP-Complete problems

Theorem 45 ([16]). The following problems are NP-complete for every k > 3.

1. Recognizing k-anti-Gallai graphs.

2. Recognizing k-anti-Gallai graphs on the class of connected and diamond-free graphs.

3. Deciding whether a given connected graph is a k-anti-Gallai graph of a Kk+2-free graph.

Corollary 8 ([21]). The problems of determining the clique number and the chromatic
number of a Gallai graphs are NP-complete.

7. Conjectures and open problems

We list some of the conjectures and open problems for further research.

7.1. Conjectures

Conjecture 1 ([22]). Gallai graphs without induced odd holes are perfect.

If the Conjecture is true, it implies Sun’s Theorem [21]. Also, it is easy to see that the

Conjecture implies a theorem of König, which tells that the line graphs of bipartite

graphs are perfect. In [21], the Conjecture is proved for Gallai graphs Γ(G) of graphs

G with χ(G) ≥ 4.

Conjecture 2. Weakly Gallai perfect graphs are perfect.

Conjecture 3 ([22]). A graph G is perfect if and only if, for all induced subgraphs G
′

of G, χ(Γ(G
′
)) ≤ ω(G

′c) and χ(Γ(G
′c)) ≤ ω(G

′
).

7.2. Open problems

Problem 1. Characterize Gallai graphs.

Problem 2. Characterize anti-Gallai graphs.
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Problem 3. Characterize graphs for which Γ(G) ∼= ∆(G) other than those mentioned in
[26].

Problem 4. Characterize graphs for which Γ(∆(G)) ∼= ∆(Γ(G)).

Problem 5. Characterize Gallai and anti-Gallai mortal graphs.

Problem 6. Study Gallai and anti-Gallai periodic graphs.

Problem 7 ([16]). Determine the time complexity of the recognition problem of k-Gallai
graphs for k > 2.

8. Conclusion

Research on Gallai and anti-Gallai graphs has been escalated after Le’s [20–22] studies.

We hope that further studies on Gallai and anti-Gallai graphs can still pave way for

the substantial growth in its research by working on various other parameters and

characterizations.
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