On the extremal total irregularity index of \(n \)-vertex trees with fixed maximum degree

Shamaila Yousaf\(^1,2,\ast\), Akhlaq Ahmad Bhatti\(^1\)

\(^1\)Department of Sciences and Humanities, National University of Computer and Emerging Sciences, Lahore Campus, B-Block, Faisal Town, Lahore, Pakistan

\texttt{shumaila.yousaf@uog.edu.pk}

\(^2\)Department of Mathematics, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan

\texttt{akhlaq.ahmad@nu.edu.pk}

Received: 29 August 2020; Accepted: 7 October 2020
Published Online: 9 October 2020

Abstract: In the extension of irregularity indices, Abdo et. al. [H. Abdo, S. Brandt, D. Dimitrov, The total irregularity of a graph, Discrete Math. Theor. Comput. Sci. \textbf{16} (2014), 201–206] defined the total irregularity of a graph \(G = (V, E) \) as \(\text{irr}_t(G) = \frac{1}{2} \sum_{u,v \in V(G)} |d_u - d_v| \), where \(d_u \) denotes the vertex degree of a vertex \(u \in V(G) \). In this paper, we investigate the total irregularity of trees with bounded maximal degree \(\Delta \) and state integer linear programming problem which gives standard information about extremal trees and it also calculates the index.

Keywords: Irregularity, total irregularity index, maximal degree, molecular trees, integer linear programming problem

AMS Subject classification: 05C09, 05C92

1. Introduction

In the present paper notation \(G = (V, E) \) represent a simple, connected, undirected and finite graph. Chemical compounds are represented by molecular graphs in which atoms represented by nodes (vertices) and covalent bonds are represented by lines (edges). Saturated hydrocarbons and alkanes are examples of molecular graphs. Maximal degree of graph \(G \) is denote by \(\Delta(G) \). In CGT (chemical graph theory), if the maximum degree of a graph is 4, then it is called a molecular graph. If vertex set of \(G \) is \(\{v_1, v_2, \ldots, v_n\} \), then the sequence \(\langle d_{v_1}, d_{v_2}, \ldots, d_{v_n} \rangle \) is called a \(\mathcal{DS} \) (degree

\ast\ Corresponding author

© 2021 Azarbaijan Shahid Madani University
sequence) of G [12, 14]. In addition, the term $D(G) = [z_1^{t_1}, z_2^{t_2}, \ldots, z_p^{t_p}]$ explains that the DS (degree sequence) contains t_i vertices of degree z_i where $i = 1, 2, \ldots, p$. For further basic notation and terminology not explained here, we refer the reader to [11, 12, 14].

If every vertex of a graph (molecular) has the same degree, then it is said to be regular, otherwise the graph is irregular. Many graph invariants (topological indices) are proposed to measure the irregularity [3–6, 13, 15, 16, 19], their application in chemistry, in particular in QSPR and QSAR can be seen in [7, 9, 10].

Abdo et. al. [1] extend the work of Albertson by proposing a new irregularity measure, denoted by $\text{irr}_t(G)$ and defined as

$$\text{irr}_t(G) = \frac{1}{2} \sum_{(u,v) \in V^2(G)} |d_u - d_v|.$$ (1)

Mathematical application of total irregularity index can be seen in [1, 2, 8, 17, 18, 20].

If one of the vertex of a tree is nominated as a root, then the tree is said to be rooted. Parent of a vertex is defined as the vertex that immediately prior to it on the path to the root. If a subtree is connected to a vertex t, then t (vertex) is called parent of a subtree. If w_1 is the parent of w_2, then w_2 is called child vertex. In this paper, we characterize the structure of trees with maximum degree Δ that have maximum irr_t-value.

2. Main Result

To establish the main result, we use the following transformation. We use the notation \mathbb{RT} for rooted tree and t_i the number of vertices of \mathbb{RT} of degree i, for each $i = 1, 2, \ldots, \Delta$.

Transformation 2.1. Suppose that $v \in \mathbb{RT}$ is designated as a root with degree Δ. Suppose that \mathbb{RT} is composed of vertices of maximum degrees (Δ), pendent vertices and in certain cases another vertex v_1, with $2 \leq d_{v_1} \leq \Delta - 1$. Denote by Ω the collection of all vertices of \mathbb{RT} whose degrees are in the interval $[2, \Delta - 1]$. Let $d_{v_1} \geq \ldots \geq d_{v_k}$ be the order of the degrees of vertices in Ω. Construct $\mathbb{RT}' = \mathbb{RT} - v_kw + v_1w$, where v_k is a parent vertex of w.

Lemma 1. Let \mathbb{RT}' be a tree that is obtained after applying Transformation 2.1. It holds that

$$\text{irr}_t(\mathbb{RT}) - \text{irr}_t(\mathbb{RT}') < 0.$$

Proof. After applying Transformation 2.1, the pair (d_{v_1}, d_{v_k}) will be changed by $(d_{v_1} + 1, d_{v_k} - 1)$ and set Ω will be replaced by Ω'. For $i = 1, 2, \ldots, \Delta$, let V_i be the
set of vertices with degree i in \mathbb{RT}. If $A = \bigcup_{i=1}^{\Delta-1} V_i$ and $B = \bigcup_{i=2}^{\Delta} V_i$ then bearing in mind the assumptions that d_{v_1} and d_{v_k} are the second maximum and second minimum degrees of T respectively and that $\sum_{i=2}^{\Delta-1} t_i \geq 2$, we have

$$irr_T(T) - irr_T(\hat{T}) = (d_{v_1} - d_{v_k}) - ((d_{v_1} + 1) - (d_{v_k} - 1))$$

$$+ \sum_{x \in A \setminus \{v_1, v_k\}} ((d_{v_1} - d_x) - (d_{v_1} + 1 - d_x))$$

$$+ t_\Delta \left[(\Delta - d_{v_1}) - (\Delta - (d_{v_1} + 1)) \right]$$

$$+ t_1 \left[(d_{v_k} - 1) - (d_{v_k} - 1 - 1) \right]$$

$$+ \sum_{y \in B \setminus \{v_1, v_k\}} ((d_y - d_{v_k}) - (d_y - (d_{v_k} - 1)))$$

$$= -2 - \left(\sum_{i=1}^{\Delta-1} t_i - 2 \right) + t_\Delta + t_1 - \left(\sum_{i=2}^{\Delta-1} t_i - 2 \right)$$

$$= 2 - 2 \sum_{i=2}^{\Delta-1} t_i < 0.$$

Remark 1. From Transformation 2.1, we have $|\check{\Omega}| \leq |\Omega|$, with (strict) inequality if $d_{v_k} = \Delta - 1$ or $d_{v_1} = 2$. If the cardinality of $\check{\Omega}$ is greater or equal to 2, we select a vertex with maximum degree and a vertex with minimum degree from $\check{\Omega}$ and repeat the Transformation 2.1 continuously to get $|\check{\Omega}| = 1$ or $|\check{\Omega}| = 0$. It holds that \mathcal{DS} of \mathbb{RT} is $[\Delta^{t_\Delta}, 1^{t_1}]$ or $[\Delta^{t_\Delta}, z^{1}, 1^{t_1}]$, $2 \leq z \leq \Delta - 1$.

Theorem 1. Let \mathbb{RT} be a tree with maximal total irregularity index and maximum degree Δ. Then:

(i) If $n = 2 + (\Delta - 1)q$ where $q \in \mathbb{Z}$, then \mathbb{RT} consists of $\frac{n-2}{\Delta-1}$ vertices of degree Δ and $\frac{n(\Delta-2)+2}{\Delta-1}$ pendent vertices.

(ii) If $n = 1 + z + (\Delta - 1)q$ where $q \in \mathbb{Z}$, then \mathbb{RT} consists of $\frac{n-1-z}{\Delta-1}$ vertices of degree Δ and $\frac{(n-1)(\Delta-2)+z}{\Delta-1}$ pendent vertices and one vertex of degree z where $2 \leq z \leq \Delta - 1$.

Proof. Suppose that $v \in \mathbb{RT}$ is designated as a root and $d_v = \Delta$. Denote by t_i the number of vertices of \mathbb{RT} of degree i, for each $i = 1, 2, \ldots, \Delta$. Using Transformation 2.1, Lemma 1 and Remark 1, it follows that \mathbb{RT} has a \mathcal{DS} $[\Delta^{t_\Delta}, 1^{t_1}]$ or $[\Delta^{t_\Delta}, z^{1}, 1^{t_1}]$, $2 \leq z \leq \Delta - 1$.

There will be two cases regarding to the cardinality of $|\Omega|$, in which we find the values of t_Δ, t_1 and z.

Case 1. If $|\Omega| = 0$, then the \mathcal{DS} of \mathbb{RT} is $[\Delta^{t_\Delta}, 1^{t_1}]$ and the following well-known
On the extremal total irregularity index of n-vertex trees

equations

$$\sum_{i=1}^{\Delta} t_i = t_\Delta + t_1 = n \tag{2}$$

and

$$\sum_{i=1}^{\Delta} it_i = \Delta t_\Delta + t_1 = 2(n-1) \tag{3}$$

holds. Solving the equations (2) and (3), we get

$$t_\Delta = \frac{n - 2}{\Delta - 1}, \quad t_1 = \frac{n(\Delta - 2) + 2}{\Delta - 1} \quad \text{for } n = 2 + (\Delta - 1)q.$$

Case 2. If $|V_\alpha| = 1$, then the DS of RT is $[\Delta t_\Delta, z^1, 1^1]$ along with

$$\sum_{i=1}^{\Delta} t_i = t_\Delta + t_1 + 1 = n \tag{4}$$

and

$$\sum_{i=1}^{\Delta} it_i = \Delta t_\Delta + t_1 + z = 2(n-1). \tag{5}$$

Solving the equations (4) and (5), we get

$$t_\Delta = \frac{n - 1 - z}{\Delta - 1}, \quad t_1 = \frac{(n - 1)(\Delta - 2) + z}{\Delta - 1} \quad \text{for } n = 1 + z + (\Delta - 1)q.$$

As a direct result of Theorem 1, we will get the maximum irr_t value for RT trees with maximum degree Δ.

Corollary 1. Let RT be a tree with maximum total irregularity index among the trees with n vertices and maximum degree Δ.

(i) If $n = 2 + (\Delta - 1)q$ where $q \in \mathbb{Z}$, then

$$irr_t(T) = \frac{(n - 2)(\Delta - 2) + 2}{\Delta - 1}.$$
(ii) If \(n = 1 + z + (\Delta - 1)q \) where \(q \in \mathbb{Z} \), then

\[
\text{irr}_t(T) = \frac{1}{\Delta - 1} \left[(n-1)(n-2)(\Delta - 2) + (n-1)\Delta - z(\Delta + 1) + z^2 \right].
\]

where \(2 \leq z \leq \Delta - 1 \).

Proof. (i) If \(n = 2 + (\Delta - 1)q \) where \(q \in \mathbb{Z} \), by Theorem 1, the DS of \(\mathbb{R}^T \) is \([\Delta t^\Delta, 1_{t^1}]\) where \(t_\Delta = \frac{n-2}{\Delta - 1} \) and \(t_1 = \frac{n(\Delta - 2) + 2}{\Delta - 1} \). Thus,

\[
\text{irr}_t(T) = (\Delta - 1) \cdot \frac{n-2}{\Delta - 1} \cdot \frac{n(\Delta - 2) + 2}{\Delta - 1}
\]

or

\[
\text{irr}_t(T) = \frac{(n-2)(n(\Delta - 2) + 2)}{\Delta - 1}. \tag{6}
\]

(ii) Otherwise, \(T \) has DS \([\Delta t^\Delta, z^1, 1_{t^1}]\) with \(t_1 = \frac{(n-1)(\Delta - 2) + z}{\Delta - 1} \) and \(t_\Delta = \frac{n-1-z}{\Delta - 1} \). Thus,

\[
\text{irr}_t(T) = (\Delta - 1) \cdot \frac{n-1-z}{\Delta - 1} \cdot \frac{(n-1)(\Delta - 2) + z}{\Delta - 1} + (\Delta - z) \cdot \frac{n-1-z}{\Delta - 1} + (z-1) \cdot \frac{(n-1)(\Delta - 2) + z}{\Delta - 1}.
\]

Hence,

\[
\text{irr}_t(T) = \frac{1}{\Delta - 1} \left[(n-1)(n-2)(\Delta - 2) + (n-1)\Delta - z(\Delta + 1) + z^2 \right]. \tag{7}
\]

\(\square \)

Theorem 2. Let \(\mathbb{M}T \in \mathbb{R}^T \) be a chemical (molecular) tree with maximum total irregularity index among the trees with \(n \) vertices. Then, we have:

(i) If \(n = 2 + 3q \) where \(q \in \mathbb{Z} \), then the DS of \(\mathbb{M}T \) is \([4 \frac{n-2}{3}, 1 \frac{2n+2}{3}]\). Its total irregularity index is

\[
\text{irr}_t(\mathbb{M}T) = \frac{2(n+1)(n-2)}{3}.
\]
(ii) If \(n = 1 + z + 3q \) where \(q \in \mathbb{Z} \), then the DS of MT is \(\left[4^{\frac{n-1-z}{3}}, z, 1^{\frac{2(n-1)+z}{3}} \right] \), where \(2 \leq z \leq 3 \). Its total irregularity index is

\[
irr_t(MT) = \frac{1}{3}[2n(n - 1) + z(z - 5)].
\]

Proof. For \(2 \leq n \leq 5 \), the \(S_n \) (star graph) maximizes the total irregularity index \([1] \). For \(n = 6 \) and \(\Delta \leq 4 \), the possible DS of MT are \([2^4, 1^2], [3^1, 2^2, 1^3], [3^2, 2^1, 1^3] \) and \([4^1, 2^1, 1^4] \). The last of these DS corresponds to the maximum total irregularity index. Thus, the theorem is satisfied for \(2 \leq n \leq 6 \).

Now, we assume that \(n \geq 7 \). A tree with maximum degree \(\Delta \) is denoted by MT\(\Delta \). Since MT is a chemical (molecular) tree. By Corollary 1(i), \(irr_t(MT_2) = 2n - 4 \).

Further, we consider the following two cases:

Case 1. Consider \(n = 2 + 2q \) where \(q \in \mathbb{Z} \). By Corollary 1(i), we have \(irr_t(MT_3) = \frac{n^2 - 4}{2} \). Since \(n = 2 + 2q \), it follows that \(n \neq 2 + 3q \) where \(q \in \mathbb{Z} \), and by Corollary 1(ii), \(irr_t(MT_4) = \frac{1}{3}[2n(n - 1) + z(z - 5)] \) where \(z = 2 \) or \(z = 3 \). For \(n \geq 7 \), by simplification one can see that \(irr_t(MT_4) > irr_t(MT_3) > irr_t(MT_2) \) is satisfied.

Case 2. Consider \(n \neq 2 + 2q \) where \(q \in \mathbb{Z} \). By Corollary 1(ii), we have \(irr_t(MT_3) = \frac{1}{3}[n^2 - 1 + z(z - 4)] \) where \(z = 2 \) or \(z = 3 \). We distinguish two situations.

Subcase 2.1. Consider \(n = 2 + 3q \) where \(q \in \mathbb{Z} \). By Corollary 1(i), we have \(irr_t(MT_4) = \frac{2(n+1)(n-2)}{3} \). For \(n \geq 7 \), and \(z = 2, 3 \), it holds that \(irr_t(MT_4) > irr_t(MT_3) > irr_t(MT_2) \).

Subcase 2.2. Consider \(n \neq 2 + 3q \) where \(q \in \mathbb{Z} \). By Corollary 1(ii), we have \(irr_t(MT_4) = \frac{1}{3}[2n(n - 1) + z(z - 5)] \). Again, a direct calculation results that \(irr_t(MT_4) > irr_t(MT_3) > irr_t(MT_2) \).

Hence proved. \(\square \)

Alternatively, a complete characterization of Theorem 1 can be obtained by solving the following integer linear programming problem. The number of vertices of tree \(RT \) of degree \(i \) is denoted by \(t_i \), for all \(1 \leq i \leq \Delta \) and the number of edges joining a vertex of degree \(i \) with a vertex of degree \(j \), is denoted by \(m_{ij} \).

Integer Linear Programming Problem:

Let \(T \) be a tree with maximum total irregularity index among all trees with \(n \) vertices and maximum degree \(\Delta \). Then, the trees with maximum total irregularity index are completely represented by solving the maximization problem:

\[
\text{Max } irr_t(T) = \sum_{i,j=1}^{\Delta} \frac{1}{2}|i-j|t_it_j
\]
sub. to \(\sum_{i=1}^{\Delta} t_i = n \)

\[\sum_{i=1}^{\Delta} it_i = 2(n - 1), \]

\[\sum_{i=2}^{\Delta-1} t_i \leq 1, \]

\[\sum_{i,j=1, j \neq i}^{\Delta} m_{ij} + 2m_{ii} = it_i \]

where \(0 \leq t_i \leq n - 1, \ 1 \leq i \leq \Delta \) and \(0 \leq m_{ij} \leq n - 2, \ 1 \leq i, j \leq \Delta. \)

Figure 1. Extremal trees of orders \(n = 5, 6, \ldots, 20, \ \Delta = 6 \) with respect to the total irregularity index.

Concluding Remark: In the present study, we determine that Caterpillar has maximum total irregularity index among all \(n \)-vertex trees having maximum degree \(\Delta \).
Figure 1 represents extremal trees with maximum degree 6. Finally, Integer Linear Programming Problem of extremel trees is also stated.

References

