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Abstract: An outer-independent double Italian dominating function (OIDIDF) on a

graph G with vertex set V (G) is a function f : V (G) −→ {0, 1, 2, 3} such that if f(v) ∈
{0, 1} for a vertex v ∈ V (G) then

∑
u∈N [v] f(u) ≥ 3, and the set {u ∈ V (G)|f(u) = 0}

is independent. The weight of an OIDIDF f is the value w(f) =
∑

v∈V (G) f(v). The

minimum weight of an OIDIDF on a graph G is called the outer-independent double

Italian domination number γoidI(G) of G. We present sharp lower bounds for the
outer-independent double Italian domination number of a tree in terms of diameter,

vertex covering number and the order of the tree.
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1. Introduction

For definitions and notations not given here we refer to [14]. We consider simple

connected graphs G with vertex set V = V (G) and edge set E = E(G). The order

of G is n = n(G) = |V |. The open neighborhood of a vertex v is the set N(v) =

NG(v) = {u ∈ V (G) | uv ∈ E} and its closed neighborhood is the set N [v] = NG[v] =

N(v) ∪ {v}. The degree of vertex v ∈ V is deg(v) = d(v) = dG(v) = |N(v)|. The

maximum degree and minimum degree of G are denoted by ∆ = ∆(G) and δ = δ(G),
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124 Bounds on the outer-independent double Italian domination number

respectively. A leaf is a vertex of degree one, and its neighbor is called a support vertex.

A strong support vertex is a support vertex adjacent to more than one leaf. We denote

the sets of all leaves and all support vertices of G by L(G) and S(G), respectively.

The diameter of a graph G, denoted by diam(G), is the greatest distance between

two vertices of G. A subset D of V (G) is a dominating set in G if
⋃

v∈DN [v] = V (G).

The domination number γ(G) is the minimum cardinality of a dominating set in G. A

set I of vertices is independent if no pair of vertices of I are adjacent. The maximum

cardinality of an independent set in G is called the independent number α(G) of G.

A vertex cover of a graph G is a set D of vertices such that each edge of G has at

least one end point in D. The minimum cardinality of a vertex cover is denoted by

β(G). We write Pn for the path of order n, Cn for the cycle of length n, Kn for the

complete graph of order n and Kp,q for the complete bipartite graph whose partite

sets have cardinalities p and q, respectively. For a subset D of vertices in a graph G,

we denote by G[D] the subgraph of G induced by D. The corona H ◦K1 is the graph

constructed from a copy of H, where for each vertex v ∈ V (H), a new vertex v′ and

a pendant edge vv′ are added. We denote by Sa,b a double star in which one center

is adjacent to a leaves and the other center is adjacent to b leaves.

Cockayne et al. [10] introduced the concept of Roman domination in graphs, and since

then a lot of related variations and generalizations have been studied (See [1, 2, 4, 6–

9, 22]). One of the generalizations of Roman domination, namely Italian domination

has been introduced by Chellali et al. in [5], Klostermeyer and MacGillivray [16], and

Henning and Klostermeyer [15]. An Italian dominating function (IDF) on a graph G

is a function f : V (G) −→ {0, 1, 2} such that every vertex v ∈ V (G) with f(v) = 0 has

at least two neighbors assigned 1 under f or one neighbor assigned 2 under f . The

weight of an IDF f is the value w(f) =
∑

v∈V (G) f(v). The minimum weight of an

IDF on a graph G is called the Italian domination number γI(G) of G. We note that

Italian domination is a generalization of Roman domination. Mojdeh and Volkmann

[17] considered an extension of Italian domination as follows. For a graph G, a double

Italian dominating function (DIDF) is a function f : V −→ {0, 1, 2, 3} having the

property that for every vertex u ∈ V , if f(u) ∈ {0, 1}, then f(N [u]) ≥ 3. The weight

of a DIDF f is the sum w(f) = f(V ) =
∑

v∈V f(v), and the minimum weight of a

DIDF in a graph G is the double Italian domination number, denoted by γdI(G). For

a DIDF f , one can denote f = (V0, V1, V2, V3), where Vi = {v ∈ V : f(v) = i}, for

i = 0, 1, 2, 3. This concept was further studied in [3, 11, 13, 19–21].

In this paper we continue the study of double Italian domination in graphs by con-

sidering those double Italian dominating functions f such that {v ∈ V (G) | f(v) = 0}
is an independent set. A DIDF f = (V0, V1, V2, V3) is called an outer-independent

double Italian dominating function (OIDIDF) if V0 is an independent set. The min-

imum weight of an OIDIDF on a graph G is called the outer-independent double

Italian domination number of G and is denoted by γoidI(G). The definitions lead

to γoidI(G) ≥ γdI(G). We establish various bounds on the outer-independent dou-

ble Italian domination number. In Section 2 we prove some preliminary results as

well as several general bounds for the outer-independent double Italian domination

number. In Section 3, we establish various lower bounds on the outer-independent
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double Italian domination number in a tree in terms of order, diameter and vertex

cover number. We also characterize extremal trees achieving equality for the given

bounds. We make use of the following.

Theorem 1 ([12, 18]). For a graph G of even order n and no isolated vertices, γ(G) =
n
2
if and only if the components of G are the cycle C4 or the corona H ◦K1 for any connected

graph H.

2. Preliminaries and general results

We begin with the following observation.

Observation 2. If f = (V0, V1, V2, V3) is a γoidI -function on a graph G, then
(i) each vertex of V3 (if any), has a private neighbor in V0.
(ii) V1 ∪ V2 ∪ V3 is both an outer independent dominating set and a vertex cover in G.
(iii) If G is connected, then β(G) ≤ γoidI(G) ≤ 3β(G), and if δ ≥ 2, then γoidI(G) ≤ 2β(G).
(iv) If δ(G) > 0, then γoidI(G) ≤ γ(G) + n ≤ 3n

2
, and if δ ≥ 2, then γoidI(G) ≤ n.

Proof. We prove parts (iii) and (iv).

(iii) The inequality β(G) ≤ γoidI(G) follows from (ii). To prove γoidI(G) ≤ 3β(G), let

S be a maximum independent set in G. Then the function f defined with f(u) = 0

if u ∈ S and f(u) = 3 if u 6∈ S is an OIDIDF on G, since G is connected. Thus

γoidI(G) ≤ 3|V (G) − S| = 3(n − α(G)) = 3β(G). Now assume that δ ≥ 2. Let S be

a maximum independent set of G. Then the function f defined by f(u) = 0 if u ∈ S
and f(u) = 2 otherwise, is an OIDIDF on G. So γoidI(G) ≤ w(f) = 2(|V | − |S|) =

2(n− α) = 2β(G).

(iv) Given a minimum dominating set D of G, the function f defined by f(u) = 2 if

u ∈ D and f(u) = 1 otherwise, is an OIDIDF on G, implying that γoidI(G) ≤ |D|+n.

Now the result follows by Ore’s Theorem. If δ ≥ 2, then it is enough to consider a

function which assigns 1 to every vertex of the graph.

Proposition 1. For any graph G with at least one edge, there exists a γoidI(G)-function
f = (V0, V1, V2, V3) such that V0 6= ∅.

Proof. Let f = (V0, V1, V2, V3) be a γoidI(G)-function. If V0 6= ∅, then we have done.

Thus assume that V0 = ∅, and by Observation 2 (i), we may assume that V3 = ∅.
If V1 = ∅, then V (G) = V2, and so replacing f(u) by 1 for one non-isolated vertex

u yields an OIDIDF on G with the weight less than w(f), a contradiction. Thus,

V1 6= ∅. We consider the following two cases.

Case 1. No vertex of V1 is adjacent to a vertex of V2. Then each vertex of V1 is adjacent

to at least two other vertices of V1. If H = G[V1], then we note that δ(H) ≥ 2. Assume

that δ(H) ≥ 3. If v ∈ V1, then the function g defined by g(v) = 0 and g(x) = f(x)

otherwise is an OIDIDF on G of weight less then w(f), a contradiction. If δ(H) = 2,
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then let v ∈ V1 with d(v) = 2. If v has a neighbor u of degree at least three, then let

w 6= u be the other neighbor of v. Then the function g defined by g(v) = 0, g(w) = 2

and g(x) = f(x) otherwise is a desired γoidI(G)-function. In the remaining case H

contains a cycle C as a component. If C = v1v2 . . . v2kv1 is an even cycle, then the

function g with g(v2i−1) = 2, g(v2i) = 0 for 1 ≤ i ≤ k and g(x) = f(x) otherwise is a

desired γoidI(G)-function. If C = v1v2 . . . v2k+1v1 is an odd cycle, then the function g

with g(v2i−1) = 2, g(v2i) = 0 for 1 ≤ i ≤ k, g(v2k+1) = 1 and g(x) = f(x) otherwise

is a desired γoidI(G)-function.

Case 2. There is a vertex v ∈ V1 such that v is adjacent to a vertex w ∈ V2. If

d(w) = 1, then the function g defined by g(v) = 3, g(w) = 0 and g(x) = f(x)

otherwise, is the desired function. Let now that d(w) ≥ 2. Assume that d(u) ≥ 2

for every u ∈ N(w). Then the function g defined by g(w) = 1 and g(x) = f(x) for

x 6= w is an OIDIDF on G of weight less then w(f), a contradiction. Finally assume

that there exists a vertex z ∈ N(w) with d(z) = 1. Then the function g defined by

g(z) = 0, g(w) = 3 and g(x) = f(x) otherwise is a desired γoidI(G)-function.

If Cn is a cycle of length n, then it was shown in [17] that γdI(Cn) = n. Using this

result, the inequality γoidI(Cn) ≥ γdI(Cn), and Observation 2 (iv) (or the proof of

Case 1 in Proposition 1), we obtain the next Observation.

Observation 3. If Cn is a cycle of length n, then γoidI(Cn) = n.

We close this section by giving Nordhaus-Gaddum type inequalities for the outer-

independent double Italian number. We first define a family G of graphs G such

that G is obtained from a complete graph Kp, (p ≥ 4), an empty graph Ks, where

s ≥
⌈

3p
p−3

⌉
and a new vertex u, by joining u to every vertex of Kp and joining each

vertex of Ks to at least three vertices of Kp such that each vertex of Kp is non-

adjacent to at least three vertices of Ks. It is clear from the construction of G that

G ∈ G if and only if G ∈ G.

Theorem 4. Let G be a graph G of order n. Then γoidI(G) + γoidI(G) ≤ 3n + 1, with
equality if and only if G ∈ {K1,K2,K2}.

Proof. Clearly, γoidI(K1) + γoidI(K1) = 4 and γoidI(K2) + γoidI(K2) = 7. Let now

n ≥ 3.

If δ(G) > 0 and δ(G) > 0, then it follows from Observation 2 (iv) that

γoidI(G) + γoidI(G) ≤ 3n

2
+

3n

2
= 3n < 3n+ 1.

Now assume that δ(G) = 0 or δ(G) = 0, say δ(G) = 0. Let I be the set of isolated

vertices of G, and let H = G− I. We deduce from Observation 2 (iv) that

γoidI(G) ≤ 2|I|+ 3n(H)

2
= 2|I|+ 2n(H)− n(H)

2
= 2n− n(H)

2
.



F. Azvin, N. Jafari Rad, L. Volkmann 127

Since n ≥ 3 and G has a vertex of degree n−1, we note that γoidI(G) ≤ 2 + (n−1) =

n+ 1. If n(H) ≥ 2, then the last two inequalities lead to

γoidI(G) + γoidI(G) ≤ 2n− n(H)

2
+ (n+ 1) ≤ 3n < 3n+ 1.

Finally, let n(H) = 0. Then G = Kn and G = Kn. As n ≥ 3, we obtain

γoidI(G) + γoidI(G) ≤ 2n+ n = 3n < 3n+ 1.

Theorem 5. Let G be a graph G of order n ≥ 3. Then γoidI(G) + γoidI(G) ≤ 3n, with
equality if and only if G ∈ {K3,K3}.

Proof. If n = 3, then it easy to check that γoidI(G) + γoidI(G) = 3n = 9 if and only

if G ∈ {K3,K3}. Let now n ≥ 4.

If δ(G) > 0 and δ(G) > 0, then it follows from Observation 2 (iv) that

γoidI(G) + γoidI(G) ≤ γ(G) + n+ γ(G) + n.

If G or G has a component which is neither the cycle C4 nor the corona H ◦K1 for any

connected graph H, then by Theorem 1, γ(G) < n
2 or γ(G) < n

2 , and thus the last

inequality leads to γoidI(G) + γoidI(G) ≤ γ(G) +n+ γ(G) +n ≤ 3n− 1. Next assume

that G or G, say G has a C4 as a component. Then we deduce from Observation 2

(iv) that γoidI(G) ≤ 4 + 3(n−4)
2 and therefore

γoidI(G) + γoidI(G) ≤ 4 +
3(n− 4)

2
+

3n

2
= 3n− 2.

Now assume that G or G, say G has a corona Q = H◦K1 as a component. Let V (H) =

{v1, v2, . . . , vk}. If k ≥ 2, then the function g with g(x) = 2 for x ∈ V (Q) \ V (H),

g(vi) = 1 for 1 ≤ i ≤ k − 1 and g(vk) = 0 is an OIDIDF on Q with weight 3n(Q)
2 − 1.

Again Observation 2 (iv) leads to γoidI(G) + γoidI(G) ≤ 3n − 1. Finally, assume

that G = pK2 for an integer p ≥ 2. Then G is the complete graph minus a perfect

matching, and since n ≥ 4, we observe that δ(G) ≥ 2 and so γoidI(G) ≤ n by

Observation 2 (iv). Hence we obtain

γoidI(G) + γoidI(G) ≤ 3n

2
+ n ≤ 3n− 1.

Now assume that δ(G) = 0 or δ(G) = 0, say δ(G) = 0. Let I be the set of isolated

vertices of G, and let F = G− I. We deduce from Observation 2 (iv) that

γoidI(G) ≤ 2|I|+ 3n(F )

2
= 2|I|+ 2n(F )− n(F )

2
= 2n− n(F )

2
.
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Since n ≥ 4 and G has a vertex of degree n−1, we note that γoidI(G) ≤ 2 + (n−1) =

n+ 1. If n(F ) ≥ 3, then the last two inequalities lead to

γoidI(G) + γoidI(G) ≤ 2n− n(F )

2
+ (n+ 1) < 3n.

If n(F ) = 2, then G is the complete graph minus an edge, and since n ≥ 4, we observe

that δ(G) ≥ 2 and so γoidI(G) ≤ n. As above, we obtain the desired bound. Finally,

let n(F ) = 0. Then G = Kn and G = Kn. As n ≥ 4, we obtain

γoidI(G) + γoidI(G) ≤ 2n+ n− 1 = 3n− 1.

Theorem 6. Let G be a graph of order n. Then

γoidI(G) + γoidI(G) ≥ n− 1,

with equality if and only if G ∈ G.

Proof. If G or G is the empty graph, then clearly γoidI(G) + γoidI(G) > 2n > n− 1.

So assume next that G and G are graphs with at least on edge. Let f = (V0, V1, V2, V3)

be a γoidI(G)-function with V0 6= ∅ by Proposition 1, and let f ′ = (V ′0 , V
′
1 , V

′
2 , V

′
3) be

a γoidI(G)-function. Then

γoidI(G) + γoidI(G) = |V1|+ 2|V2|+ 3|V3|+ |V ′1 |+ 2|V ′2 |+ 3|V ′3 |. (1)

Since V0 is an independent set, it forms a clique in G and thus γoidI(G) ≥ |V0| − 1.

Analogously, we have γoidI(G) ≥ |V ′0 | − 1. Therefore (1) leads to

γoidI(G) + γoidI(G) ≥ n+ |V2|+ 2|V3| − 1 ≥ n− 1 (2)

and

γoidI(G) + γoidI(G) ≥ n+ |V ′2 |+ 2|V ′3 | − 1 ≥ n− 1. (3)

We now prove the equality part. Assume that γoidI(G) + γoidI(G) = n − 1. It

follows from from (2) and (3) that V2 ∪ V3 = V ′2 ∪ V ′3 = ∅. Thus γoidI(G) = |V1|
and γoidI(G) = |V ′1 |. Since V0 and V ′0 are independent sets in G and G, respectively,

we have |V0 ∩ V ′0 | ≤ 1. If V0 ∩ V ′0 = ∅, then |V1| + |V0| + |V ′1 | + |V ′0 | = 2n, and

so γoidI(G) + γoidI(G) + |V0| + |V ′0 | = 2n. Then n − 1 + |V0| + |V ′0 | = 2n and so
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|V0| + |V ′0 | = n + 1 > n, a contradiction. Thus |V0 ∩ V ′0 | = 1. Let V0 ∩ V ′0 = {u},
I = V0 − {u} and J = V ′0 − {u}. Clearly I ∩ J = ∅ and I ⊆ V ′1 and J ⊆ V1. Then

n− 1 = |V1|+ |V ′1 |
≥ |I|+ |J |
= |V0|+ |V ′0 | − 2

= n− |V1|+ n− |V ′1 | − 2

= 2n− (|V1|+ |V ′1 |)− 2

= n− 1.

Thus I = V ′1 and J = V1. Note that J ∪ {u} = V ′0 is an independent set in G and so

G[J ] = Kp is a complete graph in G. The vertex u is adjacent to all vertices of J in G

and I is an independent set in G. Let |I| = s. Then G[I] = Ks. Since f is a γoidI(G)-

function, each vertex from Ks has at least three neighbors in V1 = J = V (Kp). If a

vertex v ∈ V (Kp) = J is adjacent to k ≥ s − 2 vertices in Ks, then v has at most

two neighbors in V (Ks) = I = V ′1 . Then f ′(v) 6= 0 and so f ′(v) = 1 and therefore

v ∈ V ′1 = I. This implies that v ∈ I ∩ J , a contradiction. We deduce that every

vertex in J = V (Kp) has at most s− 3 neighbors in Ks. Now we find the minimum

cardinality of I. Note that each vertex in Kp is adjacent to at most s− 3 vertices in

Ks. Thus there exist at most p(s− 3) edges between Kp and Ks. On the other hand

each vertex in Ks is adjacent to at least 3 vertices in Kp. Then there exist at least 3s

edges between Kp and Ks. Therefore 3s ≤ p(s−3), and thus s ≥ 3p
p−3 . Consequently,

G ∈ G.
Conversely, assume that G ∈ G. Let f and f ′ be the functions on G and G respectively

as follows. f(v) = 1 if v ∈ V (Kp) and f(x) = 0 otherwise, f ′(v) = 1 if v ∈ Ks

and f ′(x) = 0 otherwise. Then f and f ′ are OIDIDF on G and G respectively. So

n−1 ≤ γoidI(G)+γoidI(G) ≤ w(f)+w(f ′) = p+s = n−1. Then γoidI(G)+γoidI(G) =

n− 1.

3. Lower bounds for trees

We first determine the outer independent double Italian domination number of paths.

Proposition 2. For a path Pn, γoidI(P3) = 3 and γoidI(Pn) = n+ 1 if n ≥ 4.

Proof. The proof is straightforward for n ≤ 6, thus assume that n ≥ 7. Let Pn =:

v1v2 . . . vn. For odd n we define a function f by f(v2i−1) = 2, 1 ≤ i ≤ n+1
2 and f(vj) =

0 otherwise, and for even n we define a function f by f(v1) = 1, f(v2i) = 2, 1 ≤ i ≤
n
2 , f(vj) = 0 otherwise. Then f is an OIDIDF on Pn, and so γoidI(Pn) ≤ w(f) = n+1.

Now we use an induction proof on n to show that γoidI(Pn) ≥ n + 1. For the base

step, it is easy to see that γoidI(P7) = 8. Assume that for n′ with 7 ≤ n′ < n, we have

γoidI(Pn′) = n′ + 1. Let f be a γoidI -function for Pn. If f(vn) = 0, then f(vn−1) = 3

and f(vn−2) ≤ 1. If f(vn−2) = 1, then we define the OIDIDF g on Pn by g(vn−2) = 0,
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g(vn−3) = f(vn−3) + 1 and g(x) = f(x) otherwise. Using the induction hypothesis,

we obtain (n − 3) + 1 = γoidI(Pn−3) ≤ w(g) − 3 = w(f) − 3 = γoidI(Pn) − 3. Thus

γoidI(Pn) ≥ n + 1. Thus assume that f(vn−2) = 0. Then the induction hypothesis

implies that (n− 3) + 1 = γoidI(Pn−3) ≤ w(f)− 3 = γoidI(Pn)− 3. Thus γoidI(Pn) ≥
n− 2 + 3 = n+ 1. If f(vn) = 1, then f(vn−1) = 2, and by the induction hypothesis,

(n− 1) + 1 = γoidI(Pn−1) ≤ w(f)− 1 = γoidI(Pn)− 1. Thus assume that f(vn) = 2.

Then f(vn−1) ≤ 1. If f(vn−1) = 1, then we define the function g by g(vn−1) = 0 and

g(vn−2) = f(vn−2) + 1 and g(x) = f(x) otherwise. Using the induction hypothesis,

we obtain (n − 2) + 1 = γoidI(Pn−2) ≤ w(g) − 2 = w(f) − 2 = γoidI(Pn) − 2.

Thus γoidI(Pn) ≥ n + 1. If f(vn−1) = 0, then we again consider Pn−2, and as

before we obtain that γoidI(Pn) ≥ n + 1. If f(vn) = 3, then by Observation 1 (i)

,f(vn−1) = 0. Furthermore, we observe that f(vn−2) ≥ 1. Now the function g defined

by g(vn) = 2 and g(x) = f(x) otherwise is an OIDIDF on Pn of weight less than

w(f), a contradiction.

Lemma 1. If v is a leaf in a tree T , then γoidI(T − v) ≤ γoidI(T ).

Proof. Let v be a leaf of a tree T , f a γoidI(T )-function and u ∈ N(v). If f(v) = 0

then f is an OIDIDF on T−v and so γoidI(T−v) ≤ w(f) = γoidI(T ). If f(v) ∈ {2, 3},
then we define a function g by g(u) = max{f(u), f(v)} and g(x) = f(x) if x 6= u.

Then g |V (T )−{v} is an OIDIDF on T − v and so γoidI(T − v) ≤ w(f) = γoidI(T ).

Thus assume that f(v) = 1. This leads to f(u) = 2. Now the function f |V (T )−{v} is

an OIDIDF on T − v, and so γoidI(T − v) ≤ γoidI(T ).

Let T be the family of trees T such that T is a double star S1,b, where b ≥ 1 or T is

obtained from a double star Sa,b ,a ≥ 1 and b ≥ 1 by subdivision of the central edge

of Sa,b at least once.

Theorem 7. If T is a tree of diameter d 6= 2, then γoidI(T ) ≥ d+2, with equality if and
only if T ∈ T .

Proof. If T is a tree of diameter 1 then γoidI(T ) = 3 and the result is obtained. Now

we consider d ≥ 3. Let P be a diametrical path of T which is a copy of Pd+1. By

Proposition 2, we have γoidI(Pd+1) = d+ 2. Now applying Lemma 1 for finite times

yields that γoidI(T ) ≥ γoidI(Pd+1) = d+ 2.

We next prove the equality part. Assume that γoidI(T ) = d + 2. Let f be

a γoidI(T )-function and let v1v2 . . . vdvd+1 be a diametrical path in T such that∑
x∈{v1,v2,...,vd,vd+1} f(x) is maximum. Let P = T [{v1, v2, . . . , vd, vd+1}]. Note that

P ≡ Pd+1.

Claim 1. f |V (P ) is an OIDIDF for P .

Proof of Claim 1. Suppose that f |V (P ) is not an OIDIDF for P . Then there exists at

least one vertex x ∈ V (P ) such that f(x) ∈ {0, 1} and f(x) + f(y) + f(z) < 3, where

NP (x) = {y, z}. Let X be the set of such vertices of P . Then the function g defined



F. Azvin, N. Jafari Rad, L. Volkmann 131

on P by g(x) = f(x) + 1 if x ∈ X, and g(x) = f(x) otherwise, is an OIDIDF for P ,

implying that γoidI(P ) ≤ w(g) = w(f |V (P ))+ |X|. Therefore w(f |V (P )) ≥ d+2−|X|.
Also every x ∈ X is adjacent to a vertex t ∈ V (T ) − V (P ) and

∑
u∈N [t] f(u) ≥ 2.

Then γoidI(T ) = w(f) ≥ w(f |V (P )) + 2|X|. Therefore w(f |V (P )) ≤ d + 2 − 2|X|,
and so 2|X| ≤ |X|, a contradiction. Thus, f |V (P ) is an OIDIDF for P . ♦
From Claim 1, we deduce that f(v) = 0 for all vertices v ∈ V (T ) − V (P ), and so

any vertex outside P is adjacent to a vertex of P . We show that degT (vi) = 2 for

3 ≤ i ≤ d− 1, and if deg(v2) ≥ 3 and deg(vd) ≥ 3 then d ≥ 4.

Assume that deg(vi) ≥ 3 for some i ∈ {3, ..., d− 1}. Then clearly f(vi) = 3. Next we

show that f(vi−1) = f(vi+1) = 0. Assume that f(vi−1) ≥ 1 and f(vi+1) ≥ 1. Then

changing f(vi) to 2 produce an OIDIDF for P with weight less than γoidI(P ), a con-

tradiction. Assume next, without loss of generality, that f(vi−1) ≥ 1 and f(vi+1) = 0.

Since V0 is an independent set, f(vi+2) ≥ 1 (5 ≤ i + 2 ≤ d + 1). Changing f(vi) to

2 produce an OIDIDF for P with weight less than γoidI(P ), a contradiction. Con-

sequently, f(vi−1) = f(vi+1) = 0. Since V0 is an independent set, f(vi−2) ≥ 1

(1 ≤ i − 2 ≤ d − 3) and f(vi+2) ≥ 1 (5 ≤ i + 2 ≤ d + 1). Then changing f(vi)

to 2 produce an OIDIDF for P with weight less than γoidI(P ), a contradiction. We

conclude that degT (vi) = 2 for i = 3, ...., d − 1. If deg(v2) ≥ 3 and deg(vd) ≥ 3 then

f(v2) = f(vd) = 3. If d ≤ 3, then it can be seen that diam(T ) = 3, γoidI(T ) = 6 and

γoidI(T ) 6= d+ 2, a contradiction. We deduce that T ∈ T .

Conversely, assume that T ∈ T . If T = S1,b, where b ≥ 1, then it is easy to see

that γoidI(T ) = 5 and diam(T ) = 3 and the result follows. Thus assume that T is

obtained from a double star Sa,b ,a ≥ 1 and b ≥ 1 by subdivision of the central edge

uv of Sa,b k ≥ 1 times, and let x1, ..., xk be the new vertices which are obtained by

subdivision of uv, where u is adjacent to x1 and v is adjacent to xk. It is sufficient

to present an OIDIDF of weight d + 2. If k = 1, then d = 4 and the function f

defined by f(u) = f(v) = 3 and f(x) = 0 otherwise is an OIDIDF for T of weight

6, as desired. If k = 2, then d = 5 and the function f defined by f(u) = f(v) = 3,

f(x2) = 1 and f(x) = 0 otherwise is an OIDIDF for T of weight 7, as desired. Thus

assume that k ≥ 3. Clearly, d = k + 3. If k is odd, then the function f defined by

f(u) = f(v) = 3, f(x1) = f(xk) = 0 and f(x2i) = 2 and f(x2i+1) = 0 ,1 ≤ i ≤ k−1
2 is

an OIDIDF for T of weight k+ 5, as desired. If k is even, then the function f defined

by f(u) = f(v) = 3, f(x1) = 1, f(x2i+1) = 2 ,1 ≤ i ≤ k−2
2 and f(x) = 0 otherwise is

an OIDIDF for T of weight k + 5, as desired.

Theorem 8. Let T be a tree of order n ≥ 2. Then γoidI(T ) ≥ 2β(T ) + 1, and this bound
is sharp.

Proof. We use an induction method on the order n = |V (T )|. The base step is easy

to see for n ≤ 4. Thus assume that n ≥ 5. Assume that γoidI(T ′) ≥ 2β(T ′)+1 for any

tree T ′ of order n′ with 4 ≤ n′ < n. Now consider the tree T . If diam(T ) = 2, then T

is a star and so γoidI(T ) = 3 ≥ 2β(T ) + 1. If diam(T ) = 3, then T is a double star in

which γoidI(T ) ∈ {5, 6} and it can be seen that γoidI(T ) ≥ 2β(T ) + 1. Thus assume
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that diam(T ) ≥ 4. Clearly n ≥ 5. If T has a strong support vertex u, and v is a leaf

adjacent to u, then we consider the tree T ′ = T −v. It can be seen that β(T ′) = β(T )

and by Lemma 1, γoidI(T ′) ≤ γoidI(T ). According to the induction hypothesis, we

obtain 2β(T ) + 1 = 2β(T ′) + 1 ≤ γoidI(T ′) ≤ γoidI(T ). Thus assume that T does not

have a strong support vertex. We consider a diametrical path of T . Let r and v be

two leaves with d(r, v) = diam(T ). We root T at r. Let w be the parent of v and x

be the parent of w. Since w is not a strong support vertex, deg(w) = 2. Let f be a

γoidI(T )-function. There are the following two cases depending to the value of f(w).

Case 1. f(w) ≥ 1. Then f(w) + f(v) = 3, and we may assume that f(w) = 3 and

f(v) = 0. If f(x) ≥ 2, then replacing f(w) by 0 and f(v) by 2 yields an OIDIDF on

T with weight less than w(f), a contradiction. Thus f(x) ≤ 1.

Assume that f(x) = 1. Let g be a function defined by g(x) = g(v) = 2, g(w) = 0 and

g(u) = f(u) otherwise. Then g′ = g |V (T ′) is an OIDIDF for T ′ = T − {v, w}. Also

β(T ′) = β(T ) − 1. By the induction hypothesis, 2β(T ′) + 1 ≤ γoidI(T ′) ≤ w(g′) =

w(f)− 2 = γoidI(T )− 2. Then 2(β(T )− 1) + 1 ≤ γoidI(T )− 2, and the result follows.

Next assume that f(x) = 0. Clearly f(t) ≥ 1 for every t ∈ N(x). Assume that

deg(x) ≥ 3. Let g be a function defined by g(x) = 1, g(v) = 2, g(w) = 0 and

g(u) = f(u) otherwise. Then g′ = g |V (T ′) is an OIDIDF for T ′ = T − {v, w}, and as

before we obtain the result. Thus assume that deg(x) = 2. Let y be the father of x.

Since f(x) = 0, we have f(y) ≥ 1. If f(y) ≥ 2, then g |V (T ′), where g is a function

defined by g(x) = 1, g(v) = 2, g(w) = 0 and g(u) = f(u) otherwise, is an OIDIDF

for T − {v, w}, and as before we obtain the result. Thus assume that f(y) = 1.

Assume that deg(y) = 2. Let z be the father of y. Then f(z) ≥ 2, and g |V (T ′),

where g is defined by g(y) = g(w) = 0, g(x) = g(v) = 2 and g(u) = f(u) otherwise,

is an OIDIDF for T − {v, w}, and as before we obtain the result. Thus assume

that deg(y) ≥ 3. Assume that y is a support vertex and y′ is the leaf adjacent

to y. Clearly f(y′) = 2. Then the function g defined by g(y) = 3, g(y′) = 0 and

g(u) = f(u) otherwise, is an OIDIDF on T with w(g) = w(f). Then g′ = g |V (T ′) is

an OIDIDF for T ′ = T −{v, w, x}. Also β(T ′) = β(T )− 1. The induction hypothesis

implies that 2β(T ) − 1 = 2(β(T ) − 1) + 1 = 2β(T ′) + 1 ≤ γoidI(T ′) ≤ w(g′) =

w(f) − 3 = γoidI(T ) − 3 and therefore γoidI(T ) ≥ 2β(T ) + 2 ≥ 2β(T ) + 1. Thus

assume that y is not a support vertex. Let y′ be a child of y different from x. Clearly

deg(y′) ≥ 2. If y′ has a child y′′ which y′′ is a support vertex and y′′′ is the child of

y′′, then y′′′ plays the role of v in the diametrical path, and so we may assume that

deg(y′) = deg(y′′) = 2, f(y′) = f(y′′′) = 0 and f(y′′) = 3. Let g be a function defined

by g(y) = 3, g(u) = f(u) if u 6= y, T1 = T − {v, w, y′′, y′′′} and g1 = g |V (T1). Then

w(g1) = w(f)−4 and we note that β(T1) = β(T )−2. So by the induction hypothesis

2β(T1)+1 ≤ γoidI(T1) ≤ w(g1) = w(f)−4 = γoidI(T )−4. Then 2β(T )+1 ≤ γoidI(T )

as desired. Thus assume that y′ is a support vertex. Let y′′ be the child of y′. Clearly

deg(y′) = 2. Assume that f(y′) = 0. Then f(y′′) = 2. Let T ′′ = T − {y′, y′′}.
Since every vertex cover contains y′ or y′′, β(T ′′) = β(T ) − 1. Also f |V (T ′′) is an

OIDIDF on T ′′. So γoidI(T ′′) ≤ w(f |V (T ′′)) = γoidI(T ) − 2. By the induction

hypothesis γoidI(T ′′) ≥ 2β(T ′′) + 1 = 2β(T ) − 1 and so the result follows. Thus
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assume that f(y′) ≥ 1. Note that f(y′) + f(y′′) = 3. Then the function g defined

by g(y′′) = g(y) = 2, g(y′) = 0 and g(u) = f(u) otherwise is an OIDIDF on T with

w(g) = w(f). Now letting T ′′ = T − {y′, y′′}, g |V (T ′′) is an OIDIDF on T ′′, and as

before the result follows.

Case 2. f(w) = 0. Then f(v) = 2. Then g |V (T ′), where T ′ = T − {v, w}, is an

OIDIDF for T ′ and as before we obtain the result.

To see the sharpness, consider a star or a path Pn with even n.

Theorem 9. If T is a tree of order n ≥ 2 with ` leaves, then γoidI(T ) ≥ n+5−`(T )
2

, with
equality if and only if T is a star of order at least three.

Proof. For the inequality part we use an induction proof on the order. For the base

step of the induction, if n ≤ 3 then ` = 2 and γoidI(T ) = 3 and so the result follows.

Thus assume that n ≥ 4. Assume that γoidI(T ′) ≥ n′+5−`(T ′)
2 for every tree T ′ of

order n′ with 3 ≤ n′ < n, and T is a tree of order n. If diam(T ) = 2, then T is a star

with γoidI(T ) = 3 and `(T ) = n− 1, and so 3 ≥ n+5−(n−1)
2 = 3. If diam(T ) = 3, then

T is a double star with γoidI(T ) ∈ {5, 6} and `(T ) = n − 2. The it can be seen that

γoidI(T ) ≥ n+5−(n−2)
2 . Thus we assume that diam(T ) ≥ 4.

Assume that T has a strong support vertex u, and let v be a leaf adjacent to u. Then

it follows from Lemma 1 and the induction hypothesis that

γoidI(T ) ≥ γoidI(T − v) ≥ n− 1 + 5− (`(T )− 1)

2
=
n+ 5− `(T )

2
.

Thus assume that T does not have a strong support vertex.

Let v1v2 . . . vk be a diametrical path in T , where v1 and vk are leaves and k ≥ 5.

Since T has no strong support vertex, we find that deg(v2) = deg(vk−1) = 2. Let f

be a γoidI(T )-function.

If f(v2) = 2, then f(v1) = 1. Let T ′ = T − v1 and f ′ = f |V (T ′). Then

γoidI(T ′) ≤ w(f ′) = w(f) − 1 = γoidI(T ) − 1. By the induction hypothesis,
n′+5−`(T ′)

2 ≤ γoidI(T ′) ≤ γoidI(T ) − 1. Since `(T ′) = `(T ), we have n−1+5−`(T )
2 ≤

γoidI(T )− 1. Thus n+5−`(T )
2 + 1

2 ≤ γoidI(T ), and therefore the result follows.

If f(v2) = 1, then f(v1) = 2. Then replace f(v2) by 2 and f(v1) by 1, and we obtain

the desired bound as before.

Next assume that f(v2) = 0. Then f(v1) = 2 and f(v3) ≥ 1. Let T ′′ = T − {v1, v2}
and f ′′ = f |V (T ′′). Then f ′′ is an OIDIDF for T ′′. Note that `(T ′′) ≤ `(T ). By the

induction hypothesis, n′′+5−`(T ′′)
2 ≤ γoidI(T ′′) ≤ w(f ′′) = w(f) − 2 = γoidI(T ) − 2.

Then n−2+5−`(T )
2 ≤ γoidI(T )−2. Thus n+5−`(T )

2 +1 ≤ γoidI(T ), and the result follows.

It remains to assume that f(v2) = 3. Then f(v1) = 0. If f(v3) ≥ 2, then we consider

T ′′ and f ′′ as in the previous case, and obtain the result. If f(v3) = 1 then we define

the function g with g(v3) = 2 and g(u) = f(u) otherwise. Let T ′′ = T − {v1, v2} and

g′′ = g |V (T ′′). Then w(g′′) = w(f) − 2, and as before, we obtain the result. Thus

assume that f(v3) = 0. We define the function g with g(v3) = 2 and g(u) = f(u)
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otherwise. Let T ′′ = T − {v1, v2} and g′′ = g |V (T ′′). Then w(g′′) = w(f)− 1 and as

before, we obtain the result.

We now prove the equality part. Clearly for any star of order n ≥ 3 the equality

holds. To show the other side, let T be a tree of order n ≥ 2 with ` leaves and

γoidI(T ) = n+5−`(T )
2 . We use an induction on n to show that T is a star. The base

step it obvious for n ∈ {2, 3}. Thus assume that n ≥ 4. Assume that every tree T ′

of order n′ with 3 ≤ n′ < n and γoidI(T ′) = n′+5−`(T ′)
2 is a star. Let T be a tree of

order n ≥ 4 and γoidI(T ) = n+5−`(T )
2 . Let u be a vertex of T with deg(u) = ∆(T )

and f be a γoidI(T )-function. According to Proposition 2, ∆ ≥ 3.

Claim 1. u is a support vertex.

Proof of Claim 1. Suppose that u is not a support vertex. Then T is not a star.

We first show that every support vertex of T has degree 2. Assume that T has a

support vertex w with deg(w) ≥ 3, and v is a leaf adjacent to w. Let T ′ = T − v.

Then clearly T ′ is not a star. Since T ′ is not a star, it follows from the induction

hypothesis that γoidI(T ′) 6= n′+5−`(T ′)
2 . By the first part of the theorem, γoidI(T ′) >

n′+5−`(T ′)
2 = n−1+5−`(T )+1

2 = n+5−`(T )
2 = γoidI(T ). Thus, γoidI(T ′) > γoidI(T ), a

contradiction to Lemma 1. Thus assume that every support vertex of T has degree

2. Let w be a support vertex, v be a leaf adjacent to w, and x ∈ N(w)− {v}. Let f

be a γoidI(T )-function, T ′ = T − v . Since `(T ′) = `(T ) we obtain from the first part

of the theorem and Lemma 1 that

γoidI(T ′) ≤ γoidI(T ) =
n′ + 1 + 5− `(T ′)

2
=
n′ + 5− `(T ′)

2
+

1

2
≤ γoidI(T ′) +

1

2
.

Thus we obtain that γoidI(T ′) = γoidI(T ).

Suppose that f(w) ≥ 1. If f(x) = 0, then f(t) ≥ 1 for every vertex t ∈ N(x),

since f is an OIDIDF. Then we change f(w) and f(v), if necessary, to f(w) = 2

and f(v) = 1. Then f ′ = f |V (T ′) is an OIDIDF on T ′ with w(f ′) = w(f) − 1.

Then γoidI(T ′) ≤ w(f ′) = w(f) − 1 = γoidI(T ) − 1 < γoidI(T ), a contradiction with

γoidI(T ′) = γoidI(T ). Thus f(x) ≥ 1. If f(w) + f(v) ≥ 3, we can change f(w) and

f(v), if necessary, to f(w) = 2 and f(v) = 1 and as before we get a contradiction. Thus

assume that f(w) = 0. Then f(v) = 2. We note that f(x) ≥ 1. Let T ′′ = T −{v, w}.
Then γoidI(T ′′) ≤ w(f |V (T ′′)) = w(f)−2 = γoidI(T )−2, and so γoidI(T ′′) < γoidI(T ).

Assume that deg(x) ≥ 3. Then `(T ′′) = `(T )− 1. Now we have

γoidI(T ′′) ≤ γoidI(T ) =
n′′ + 2 + 5− `(T ′′)− 1

2
=
n′′ + 5− `(T ′′)

2
+

1

2
≤ γoidI(T ′′)+

1

2
.

This implies that γoidI(T ′′) = γoidI(T ), a contradiction with γoidI(T ′′) < γoidI(T ).

Thus deg(x) = 2 and so `(T ′′) = `(T ). Note that T ′′ is not a star, since u is not

adjacent to a leaf. Thus by the contrapositive direction of the induction hypothesis
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we have γoidI(T ′′) 6= n′′+5−`(T ′′)
2 . We deduce that

γoidI(T ′′) ≤ γoidI(T )

= n+5−`(T )
2

= n′′+2+5−`(T ′′)
2

= n′′+5−`(T ′′)
2 + 1

< γoidI(T ′′) + 1.

Then we obtain that γoidI(T ′′) = γoidI(T ), a contradiction with γoidI(T ′′) < γoidI(T ).

This completes the proof of Claim 1. ♦
Thus u is a support vertex. Let v be a leaf adjacent to u. Let T ′ = T − v. According

to Lemma 1 and the hypothesis,

γoidI(T ′) ≤ γoidI(T ) =
n+ 5− `(T )

2
=
n′ + 1 + 5− (`(T ′) + 1)

2
=
n′ + 5− `(T ′)

2
.

By the first part of the theorem, γoidI(T ′) ≥ n′+5−`(T ′)
2 . Thus, γoidI(T ′) = n′+5−`(T ′)

2 .

By the induction hypothesis T ′ is a star. So u is the center of T ′, and consequently

T is a star.
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