

Research Article

Bounds on the outer-independent double Italian domination number

Farzaneh Azvin¹, Nader Jafari Rad^{1,*}, Lutz Volkmann²

¹Department of Mathematics, Shahed University, Tehran, Iran n.jafarirad@gmail.com

²Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany volkm@math2.rwth-aachen.de

> Received: 22 July 2020; Accepted: 6 October 2020 Published Online: 8 October 2020

Abstract: An outer-independent double Italian dominating function (OIDIDF) on a graph G with vertex set V(G) is a function $f: V(G) \longrightarrow \{0, 1, 2, 3\}$ such that if $f(v) \in \{0, 1\}$ for a vertex $v \in V(G)$ then $\sum_{u \in N[v]} f(u) \ge 3$, and the set $\{u \in V(G) | f(u) = 0\}$ is independent. The weight of an OIDIDF f is the value $w(f) = \sum_{v \in V(G)} f(v)$. The minimum weight of an OIDIDF on a graph G is called the outer-independent double Italian domination number $\gamma_{oidI}(G)$ of G. We present sharp lower bounds for the outer-independent double Italian domination number of a tree in terms of diameter, vertex covering number and the order of the tree.

Keywords: Roman domination, outer-independent double Italian domination, tree.

AMS Subject classification: 05C69

1. Introduction

For definitions and notations not given here we refer to [14]. We consider simple connected graphs G with vertex set V = V(G) and edge set E = E(G). The order of G is n = n(G) = |V|. The open neighborhood of a vertex v is the set N(v) = $N_G(v) = \{u \in V(G) \mid uv \in E\}$ and its closed neighborhood is the set $N[v] = N_G[v] =$ $N(v) \cup \{v\}$. The degree of vertex $v \in V$ is deg $(v) = d(v) = d_G(v) = |N(v)|$. The maximum degree and minimum degree of G are denoted by $\Delta = \Delta(G)$ and $\delta = \delta(G)$,

^{*} Corresponding author

^{© 2021} Azarbaijan Shahid Madani University

respectively. A *leaf* is a vertex of degree one, and its neighbor is called a *support vertex*. A strong support vertex is a support vertex adjacent to more than one leaf. We denote the sets of all leaves and all support vertices of G by L(G) and S(G), respectively. The diameter of a graph G, denoted by diam(G), is the greatest distance between two vertices of G. A subset D of V(G) is a *dominating set* in G if $\bigcup_{v \in D} N[v] = V(G)$. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set in G. A set I of vertices is *independent* if no pair of vertices of I are adjacent. The maximum cardinality of an independent set in G is called the *independent number* $\alpha(G)$ of G. A vertex cover of a graph G is a set D of vertices such that each edge of G has at least one end point in D. The minimum cardinality of a vertex cover is denoted by $\beta(G)$. We write P_n for the path of order n, C_n for the cycle of length n, K_n for the complete graph of order n and $K_{p,q}$ for the complete bipartite graph whose partite sets have cardinalities p and q, respectively. For a subset D of vertices in a graph G, we denote by G[D] the subgraph of G induced by D. The corona $H \circ K_1$ is the graph constructed from a copy of H, where for each vertex $v \in V(H)$, a new vertex v' and a pendant edge vv' are added. We denote by $S_{a,b}$ a double star in which one center is adjacent to a leaves and the other center is adjacent to b leaves.

Cockayne et al. [10] introduced the concept of *Roman domination* in graphs, and since then a lot of related variations and generalizations have been studied (See [1, 2, 4, 6-9, 22). One of the generalizations of Roman domination, namely Italian domination has been introduced by Chellali et al. in [5], Klostermeyer and MacGillivray [16], and Henning and Klostermeyer [15]. An Italian dominating function (IDF) on a graph Gis a function $f: V(G) \longrightarrow \{0, 1, 2\}$ such that every vertex $v \in V(G)$ with f(v) = 0 has at least two neighbors assigned 1 under f or one neighbor assigned 2 under f. The weight of an IDF f is the value $w(f) = \sum_{v \in V(G)} f(v)$. The minimum weight of an IDF on a graph G is called the *Italian domination number* $\gamma_I(G)$ of G. We note that Italian domination is a generalization of *Roman domination*. Mojdeh and Volkmann [17] considered an extension of Italian domination as follows. For a graph G, a double Italian dominating function (DIDF) is a function $f: V \longrightarrow \{0, 1, 2, 3\}$ having the property that for every vertex $u \in V$, if $f(u) \in \{0,1\}$, then $f(N[u]) \ge 3$. The weight of a DIDF f is the sum $w(f) = f(V) = \sum_{v \in V} f(v)$, and the minimum weight of a DIDF in a graph G is the double Italian domination number, denoted by $\gamma_{dI}(G)$. For a DIDF f, one can denote $f = (V_0, V_1, V_2, V_3)$, where $V_i = \{v \in V : f(v) = i\}$, for i = 0, 1, 2, 3. This concept was further studied in [3, 11, 13, 19–21].

In this paper we continue the study of double Italian domination in graphs by considering those double Italian dominating functions f such that $\{v \in V(G) \mid f(v) = 0\}$ is an independent set. A DIDF $f = (V_0, V_1, V_2, V_3)$ is called an *outer-independent* double Italian dominating function (OIDIDF) if V_0 is an independent set. The minimum weight of an OIDIDF on a graph G is called the *outer-independent* double Italian domination number of G and is denoted by $\gamma_{oidI}(G)$. The definitions lead to $\gamma_{oidI}(G) \geq \gamma_{dI}(G)$. We establish various bounds on the outer-independent double Italian domination number. In Section 2 we prove some preliminary results as well as several general bounds for the outer-independent double Italian domination number. In Section 3, we establish various lower bounds on the outer-independent double Italian domination number in a tree in terms of order, diameter and vertex cover number. We also characterize extremal trees achieving equality for the given bounds. We make use of the following.

Theorem 1 ([12, 18]). For a graph G of even order n and no isolated vertices, $\gamma(G) = \frac{n}{2}$ if and only if the components of G are the cycle C_4 or the corona $H \circ K_1$ for any connected graph H.

2. Preliminaries and general results

We begin with the following observation.

Observation 2. If $f = (V_0, V_1, V_2, V_3)$ is a γ_{oidI} -function on a graph G, then (i) each vertex of V_3 (if any), has a private neighbor in V_0 . (ii) $V_1 \cup V_2 \cup V_3$ is both an outer independent dominating set and a vertex cover in G. (iii) If G is connected, then $\beta(G) \leq \gamma_{oidI}(G) \leq 3\beta(G)$, and if $\delta \geq 2$, then $\gamma_{oidI}(G) \leq 2\beta(G)$. (iv) If $\delta(G) > 0$, then $\gamma_{oidI}(G) \leq \gamma(G) + n \leq \frac{3n}{2}$, and if $\delta \geq 2$, then $\gamma_{oidI}(G) \leq n$.

Proof. We prove parts (iii) and (iv).

(iii) The inequality $\beta(G) \leq \gamma_{oidI}(G)$ follows from (ii). To prove $\gamma_{oidI}(G) \leq 3\beta(G)$, let *S* be a maximum independent set in *G*. Then the function *f* defined with f(u) = 0if $u \in S$ and f(u) = 3 if $u \notin S$ is an OIDIDF on *G*, since *G* is connected. Thus $\gamma_{oidI}(G) \leq 3|V(G) - S| = 3(n - \alpha(G)) = 3\beta(G)$. Now assume that $\delta \geq 2$. Let *S* be a maximum independent set of *G*. Then the function *f* defined by f(u) = 0 if $u \in S$ and f(u) = 2 otherwise, is an OIDIDF on *G*. So $\gamma_{oidI}(G) \leq w(f) = 2(|V| - |S|) = 2(n - \alpha) = 2\beta(G)$.

(iv) Given a minimum dominating set D of G, the function f defined by f(u) = 2 if $u \in D$ and f(u) = 1 otherwise, is an OIDIDF on G, implying that $\gamma_{oidI}(G) \leq |D| + n$. Now the result follows by Ore's Theorem. If $\delta \geq 2$, then it is enough to consider a function which assigns 1 to every vertex of the graph.

Proposition 1. For any graph G with at least one edge, there exists a $\gamma_{oidI}(G)$ -function $f = (V_0, V_1, V_2, V_3)$ such that $V_0 \neq \emptyset$.

Proof. Let $f = (V_0, V_1, V_2, V_3)$ be a $\gamma_{oidI}(G)$ -function. If $V_0 \neq \emptyset$, then we have done. Thus assume that $V_0 = \emptyset$, and by Observation 2 (i), we may assume that $V_3 = \emptyset$. If $V_1 = \emptyset$, then $V(G) = V_2$, and so replacing f(u) by 1 for one non-isolated vertex u yields an OIDIDF on G with the weight less than w(f), a contradiction. Thus, $V_1 \neq \emptyset$. We consider the following two cases.

Case 1. No vertex of V_1 is adjacent to a vertex of V_2 . Then each vertex of V_1 is adjacent to at least two other vertices of V_1 . If $H = G[V_1]$, then we note that $\delta(H) \ge 2$. Assume that $\delta(H) \ge 3$. If $v \in V_1$, then the function g defined by g(v) = 0 and g(x) = f(x)otherwise is an OIDIDF on G of weight less then w(f), a contradiction. If $\delta(H) = 2$, then let $v \in V_1$ with d(v) = 2. If v has a neighbor u of degree at least three, then let $w \neq u$ be the other neighbor of v. Then the function g defined by g(v) = 0, g(w) = 2 and g(x) = f(x) otherwise is a desired $\gamma_{oidI}(G)$ -function. In the remaining case H contains a cycle C as a component. If $C = v_1 v_2 \dots v_{2k} v_1$ is an even cycle, then the function g with $g(v_{2i-1}) = 2$, $g(v_{2i}) = 0$ for $1 \leq i \leq k$ and g(x) = f(x) otherwise is a desired $\gamma_{oidI}(G)$ -function. If $C = v_1 v_2 \dots v_{2k+1} v_1$ is an odd cycle, then the function g with $g(v_{2i-1}) = 2$, $g(v_{2i}) = 0$ for $1 \leq i \leq k$, $g(v_{2k+1}) = 1$ and g(x) = f(x) otherwise is a desired $\gamma_{oidI}(G)$ -function.

Case 2. There is a vertex $v \in V_1$ such that v is adjacent to a vertex $w \in V_2$. If d(w) = 1, then the function g defined by g(v) = 3, g(w) = 0 and g(x) = f(x) otherwise, is the desired function. Let now that $d(w) \ge 2$. Assume that $d(u) \ge 2$ for every $u \in N(w)$. Then the function g defined by g(w) = 1 and g(x) = f(x) for $x \ne w$ is an OIDIDF on G of weight less then w(f), a contradiction. Finally assume that there exists a vertex $z \in N(w)$ with d(z) = 1. Then the function g defined by g(z) = 0, g(w) = 3 and g(x) = f(x) otherwise is a desired $\gamma_{oidI}(G)$ -function.

If C_n is a cycle of length n, then it was shown in [17] that $\gamma_{dI}(C_n) = n$. Using this result, the inequality $\gamma_{oidI}(C_n) \geq \gamma_{dI}(C_n)$, and Observation 2 (iv) (or the proof of Case 1 in Proposition 1), we obtain the next Observation.

Observation 3. If C_n is a cycle of length n, then $\gamma_{oidI}(C_n) = n$.

We close this section by giving Nordhaus-Gaddum type inequalities for the outerindependent double Italian number. We first define a family \mathcal{G} of graphs G such that G is obtained from a complete graph K_p , $(p \ge 4)$, an empty graph $\overline{K_s}$, where $s \ge \left\lceil \frac{3p}{p-3} \right\rceil$ and a new vertex u, by joining u to every vertex of K_p and joining each vertex of $\overline{K_s}$ to at least three vertices of K_p such that each vertex of K_p is nonadjacent to at least three vertices of $\overline{K_s}$. It is clear from the construction of G that $G \in \mathcal{G}$ if and only if $\overline{G} \in \mathcal{G}$.

Theorem 4. Let G be a graph G of order n. Then $\gamma_{oidI}(G) + \gamma_{oidI}(\overline{G}) \leq 3n + 1$, with equality if and only if $G \in \{K_1, K_2, \overline{K_2}\}$.

Proof. Clearly, $\gamma_{oidI}(K_1) + \gamma_{oidI}(\overline{K_1}) = 4$ and $\gamma_{oidI}(K_2) + \gamma_{oidI}(\overline{K_2}) = 7$. Let now $n \ge 3$.

If $\delta(G) > 0$ and $\delta(\overline{G}) > 0$, then it follows from Observation 2 (iv) that

$$\gamma_{oidI}(G) + \gamma_{oidI}(\overline{G}) \le \frac{3n}{2} + \frac{3n}{2} = 3n < 3n + 1.$$

Now assume that $\delta(G) = 0$ or $\delta(\overline{G}) = 0$, say $\delta(G) = 0$. Let *I* be the set of isolated vertices of *G*, and let H = G - I. We deduce from Observation 2 (iv) that

$$\gamma_{oidI}(G) \le 2|I| + \frac{3n(H)}{2} = 2|I| + 2n(H) - \frac{n(H)}{2} = 2n - \frac{n(H)}{2}.$$

Since $n \ge 3$ and \overline{G} has a vertex of degree n-1, we note that $\gamma_{oidI}(\overline{G}) \le 2 + (n-1) = n+1$. If $n(H) \ge 2$, then the last two inequalities lead to

$$\gamma_{oidI}(G) + \gamma_{oidI}(\overline{G}) \le 2n - \frac{n(H)}{2} + (n+1) \le 3n < 3n + 1$$

Finally, let n(H) = 0. Then $G = \overline{K_n}$ and $\overline{G} = K_n$. As $n \ge 3$, we obtain

$$\gamma_{oidI}(G) + \gamma_{oidI}(G) \le 2n + n = 3n < 3n + 1.$$

Theorem 5. Let G be a graph G of order $n \ge 3$. Then $\gamma_{oidI}(G) + \gamma_{oidI}(\overline{G}) \le 3n$, with equality if and only if $G \in \{K_3, \overline{K_3}\}$.

Proof. If n = 3, then it easy to check that $\gamma_{oidI}(G) + \gamma_{oidI}(\overline{G}) = 3n = 9$ if and only if $G \in \{K_3, \overline{K_3}\}$. Let now $n \ge 4$.

If $\delta(G) > 0$ and $\delta(\overline{G}) > 0$, then it follows from Observation 2 (iv) that

$$\gamma_{oidI}(G) + \gamma_{oidI}(G) \le \gamma(G) + n + \gamma(G) + n.$$

If G or \overline{G} has a component which is neither the cycle C_4 nor the corona $H \circ K_1$ for any connected graph H, then by Theorem 1, $\gamma(G) < \frac{n}{2}$ or $\gamma(\overline{G}) < \frac{n}{2}$, and thus the last inequality leads to $\gamma_{oidI}(G) + \gamma_{oidI}(\overline{G}) \leq \gamma(G) + n + \gamma(\overline{G}) + n \leq 3n - 1$. Next assume that G or \overline{G} , say G has a C_4 as a component. Then we deduce from Observation 2 (iv) that $\gamma_{oidI}(G) \leq 4 + \frac{3(n-4)}{2}$ and therefore

$$\gamma_{oidI}(G) + \gamma_{oidI}(\overline{G}) \le 4 + \frac{3(n-4)}{2} + \frac{3n}{2} = 3n - 2.$$

Now assume that G or \overline{G} , say G has a corona $Q = H \circ K_1$ as a component. Let $V(H) = \{v_1, v_2, \ldots, v_k\}$. If $k \geq 2$, then the function g with g(x) = 2 for $x \in V(Q) \setminus V(H)$, $g(v_i) = 1$ for $1 \leq i \leq k - 1$ and $g(v_k) = 0$ is an OIDIDF on Q with weight $\frac{3n(Q)}{2} - 1$. Again Observation 2 (iv) leads to $\gamma_{oidI}(G) + \gamma_{oidI}(\overline{G}) \leq 3n - 1$. Finally, assume that $G = pK_2$ for an integer $p \geq 2$. Then \overline{G} is the complete graph minus a perfect matching, and since $n \geq 4$, we observe that $\delta(\overline{G}) \geq 2$ and so $\gamma_{oidI}(\overline{G}) \leq n$ by Observation 2 (iv). Hence we obtain

$$\gamma_{oidI}(G) + \gamma_{oidI}(\overline{G}) \le \frac{3n}{2} + n \le 3n - 1.$$

Now assume that $\delta(G) = 0$ or $\delta(\overline{G}) = 0$, say $\delta(G) = 0$. Let *I* be the set of isolated vertices of *G*, and let F = G - I. We deduce from Observation 2 (iv) that

$$\gamma_{oidI}(G) \le 2|I| + \frac{3n(F)}{2} = 2|I| + 2n(F) - \frac{n(F)}{2} = 2n - \frac{n(F)}{2}.$$

Since $n \ge 4$ and \overline{G} has a vertex of degree n-1, we note that $\gamma_{oidI}(\overline{G}) \le 2 + (n-1) = n+1$. If $n(F) \ge 3$, then the last two inequalities lead to

$$\gamma_{oidI}(G) + \gamma_{oidI}(\overline{G}) \le 2n - \frac{n(F)}{2} + (n+1) < 3n.$$

If n(F) = 2, then \overline{G} is the complete graph minus an edge, and since $n \ge 4$, we observe that $\delta(\overline{G}) \ge 2$ and so $\gamma_{oidI}(\overline{G}) \le n$. As above, we obtain the desired bound. Finally, let n(F) = 0. Then $G = \overline{K_n}$ and $\overline{G} = K_n$. As $n \ge 4$, we obtain

$$\gamma_{oidI}(G) + \gamma_{oidI}(G) \le 2n + n - 1 = 3n - 1.$$

Theorem 6. Let G be a graph of order n. Then

$$\gamma_{oidI}(G) + \gamma_{oidI}(\overline{G}) \ge n - 1$$

with equality if and only if $G \in \mathcal{G}$.

Proof. If G or \overline{G} is the empty graph, then clearly $\gamma_{oidI}(G) + \gamma_{oidI}(\overline{G}) > 2n > n - 1$. So assume next that G and \overline{G} are graphs with at least on edge. Let $f = (V_0, V_1, V_2, V_3)$ be a $\gamma_{oidI}(G)$ -function with $V_0 \neq \emptyset$ by Proposition 1, and let $f' = (V'_0, V'_1, V'_2, V'_3)$ be a $\gamma_{oidI}(\overline{G})$ -function. Then

$$\gamma_{oidI}(G) + \gamma_{oidI}(\overline{G}) = |V_1| + 2|V_2| + 3|V_3| + |V_1'| + 2|V_2'| + 3|V_3'|.$$
(1)

Since V_0 is an independent set, it forms a clique in \overline{G} and thus $\gamma_{oidI}(\overline{G}) \ge |V_0| - 1$. Analogously, we have $\gamma_{oidI}(G) \ge |V'_0| - 1$. Therefore (1) leads to

$$\gamma_{oidI}(G) + \gamma_{oidI}(\overline{G}) \ge n + |V_2| + 2|V_3| - 1 \ge n - 1 \tag{2}$$

and

$$\gamma_{oidI}(G) + \gamma_{oidI}(\overline{G}) \ge n + |V_2'| + 2|V_3'| - 1 \ge n - 1.$$
(3)

We now prove the equality part. Assume that $\gamma_{oidI}(G) + \gamma_{oidI}(\overline{G}) = n - 1$. It follows from from (2) and (3) that $V_2 \cup V_3 = V'_2 \cup V'_3 = \emptyset$. Thus $\gamma_{oidI}(G) = |V_1|$ and $\gamma_{oidI}(\overline{G}) = |V'_1|$. Since V_0 and V'_0 are independent sets in G and \overline{G} , respectively, we have $|V_0 \cap V'_0| \leq 1$. If $V_0 \cap V'_0 = \emptyset$, then $|V_1| + |V_0| + |V'_1| + |V'_0| = 2n$, and so $\gamma_{oidI}(G) + \gamma_{oidI}(\overline{G}) + |V_0| + |V'_0| = 2n$. Then $n - 1 + |V_0| + |V'_0| = 2n$ and so

 $|V_0| + |V'_0| = n + 1 > n$, a contradiction. Thus $|V_0 \cap V'_0| = 1$. Let $V_0 \cap V'_0 = \{u\}$, $I = V_0 - \{u\}$ and $J = V'_0 - \{u\}$. Clearly $I \cap J = \emptyset$ and $I \subseteq V'_1$ and $J \subseteq V_1$. Then

$$n-1 = |V_1| + |V_1'|$$

$$\geq |I| + |J|$$

$$= |V_0| + |V_0'| - 2$$

$$= n - |V_1| + n - |V_1'| - 2$$

$$= 2n - (|V_1| + |V_1'|) - 2$$

$$= n - 1.$$

Thus $I = V'_1$ and $J = V_1$. Note that $J \cup \{u\} = V'_0$ is an independent set in \overline{G} and so $G[J] = K_p$ is a complete graph in G. The vertex u is adjacent to all vertices of J in G and I is an independent set in G. Let |I| = s. Then $G[I] = \overline{K_s}$. Since f is a $\gamma_{oidI}(G)$ -function, each vertex from $\overline{K_s}$ has at least three neighbors in $V_1 = J = V(K_p)$. If a vertex $v \in V(K_p) = J$ is adjacent to $k \ge s - 2$ vertices in $\overline{K_s}$, then v has at most two neighbors in $V(\overline{K_s}) = I = V'_1$. Then $f'(v) \ne 0$ and so f'(v) = 1 and therefore $v \in V'_1 = I$. This implies that $v \in I \cap J$, a contradiction. We deduce that every vertex in $J = V(K_p)$ has at most s - 3 neighbors in $\overline{K_s}$. Now we find the minimum cardinality of I. Note that each vertex in K_p is adjacent to at most s - 3 vertices in $\overline{K_s}$. On the other hand each vertex in $\overline{K_s}$ is adjacent to at least 3 vertices in K_p . Then there exist at least 3s edges between K_p and $\overline{K_s}$. Therefore $3s \le p(s-3)$, and thus $s \ge \frac{3p}{p-3}$. Consequently, $G \in \mathcal{G}$.

Conversely, assume that $G \in \mathcal{G}$. Let f and f' be the functions on G and \overline{G} respectively as follows. f(v) = 1 if $v \in V(K_p)$ and f(x) = 0 otherwise, f'(v) = 1 if $v \in \overline{K_s}$ and f'(x) = 0 otherwise. Then f and f' are OIDIDF on G and \overline{G} respectively. So $n-1 \leq \gamma_{oidI}(G) + \gamma_{oidI}(\overline{G}) \leq w(f) + w(f') = p+s = n-1$. Then $\gamma_{oidI}(G) + \gamma_{oidI}(\overline{G}) =$ n-1.

3. Lower bounds for trees

We first determine the outer independent double Italian domination number of paths.

Proposition 2. For a path P_n , $\gamma_{oidI}(P_3) = 3$ and $\gamma_{oidI}(P_n) = n + 1$ if $n \ge 4$.

Proof. The proof is straightforward for $n \leq 6$, thus assume that $n \geq 7$. Let $P_n =: v_1 v_2 \ldots v_n$. For odd n we define a function f by $f(v_{2i-1}) = 2, 1 \leq i \leq \frac{n+1}{2}$ and $f(v_j) = 0$ otherwise, and for even n we define a function f by $f(v_1) = 1, f(v_{2i}) = 2, 1 \leq i \leq \frac{n}{2}, f(v_j) = 0$ otherwise. Then f is an OIDIDF on P_n , and so $\gamma_{oidI}(P_n) \leq w(f) = n+1$. Now we use an induction proof on n to show that $\gamma_{oidI}(P_n) \geq n+1$. For the base step, it is easy to see that $\gamma_{oidI}(P_7) = 8$. Assume that for n' with $7 \leq n' < n$, we have $\gamma_{oidI}(P_{n'}) = n' + 1$. Let f be a γ_{oidI} -function for P_n . If $f(v_n) = 0$, then $f(v_{n-1}) = 3$ and $f(v_{n-2}) \leq 1$. If $f(v_{n-2}) = 1$, then we define the OIDIDF g on P_n by $g(v_{n-2}) = 0$, $g(v_{n-3}) = f(v_{n-3}) + 1$ and g(x) = f(x) otherwise. Using the induction hypothesis, we obtain $(n-3) + 1 = \gamma_{oidI}(P_{n-3}) \leq w(g) - 3 = w(f) - 3 = \gamma_{oidI}(P_n) - 3$. Thus $\gamma_{oidI}(P_n) \geq n+1$. Thus assume that $f(v_{n-2}) = 0$. Then the induction hypothesis implies that $(n-3) + 1 = \gamma_{oidI}(P_{n-3}) \leq w(f) - 3 = \gamma_{oidI}(P_n) - 3$. Thus $\gamma_{oidI}(P_n) \geq$ n-2+3 = n+1. If $f(v_n) = 1$, then $f(v_{n-1}) = 2$, and by the induction hypothesis, $(n-1) + 1 = \gamma_{oidI}(P_{n-1}) \leq w(f) - 1 = \gamma_{oidI}(P_n) - 1$. Thus assume that $f(v_n) = 2$. Then $f(v_{n-1}) \leq 1$. If $f(v_{n-1}) = 1$, then we define the function g by $g(v_{n-1}) = 0$ and $g(v_{n-2}) = f(v_{n-2}) + 1$ and g(x) = f(x) otherwise. Using the induction hypothesis, we obtain $(n-2) + 1 = \gamma_{oidI}(P_{n-2}) \leq w(g) - 2 = w(f) - 2 = \gamma_{oidI}(P_n) - 2$. Thus $\gamma_{oidI}(P_n) \geq n+1$. If $f(v_{n-1}) = 0$, then we again consider P_{n-2} , and as before we obtain that $\gamma_{oidI}(P_n) \geq n+1$. If $f(v_{n-2}) \geq 1$. Now the function g defined by $g(v_n) = 2$ and g(x) = f(x) otherwise is an OIDIDF on P_n of weight less than w(f), a contradiction.

Lemma 1. If v is a leaf in a tree T, then $\gamma_{oidI}(T-v) \leq \gamma_{oidI}(T)$.

Proof. Let v be a leaf of a tree T, f a $\gamma_{oidI}(T)$ -function and $u \in N(v)$. If f(v) = 0then f is an OIDIDF on T-v and so $\gamma_{oidI}(T-v) \leq w(f) = \gamma_{oidI}(T)$. If $f(v) \in \{2,3\}$, then we define a function g by $g(u) = \max\{f(u), f(v)\}$ and g(x) = f(x) if $x \neq u$. Then $g \mid_{V(T)-\{v\}}$ is an OIDIDF on T-v and so $\gamma_{oidI}(T-v) \leq w(f) = \gamma_{oidI}(T)$. Thus assume that f(v) = 1. This leads to f(u) = 2. Now the function $f \mid_{V(T)-\{v\}}$ is an OIDIDF on T-v, and so $\gamma_{oidI}(T-v) \leq \gamma_{oidI}(T)$.

Let \mathcal{T} be the family of trees T such that T is a double star $S_{1,b}$, where $b \geq 1$ or T is obtained from a double star $S_{a,b}$, $a \geq 1$ and $b \geq 1$ by subdivision of the central edge of $S_{a,b}$ at least once.

Theorem 7. If T is a tree of diameter $d \neq 2$, then $\gamma_{oidI}(T) \geq d+2$, with equality if and only if $T \in \mathcal{T}$.

Proof. If T is a tree of diameter 1 then $\gamma_{oidI}(T) = 3$ and the result is obtained. Now we consider $d \geq 3$. Let P be a diametrical path of T which is a copy of P_{d+1} . By Proposition 2, we have $\gamma_{oidI}(P_{d+1}) = d + 2$. Now applying Lemma 1 for finite times yields that $\gamma_{oidI}(T) \geq \gamma_{oidI}(P_{d+1}) = d + 2$.

We next prove the equality part. Assume that $\gamma_{oidI}(T) = d + 2$. Let f be a $\gamma_{oidI}(T)$ -function and let $v_1v_2 \dots v_d v_{d+1}$ be a diametrical path in T such that $\sum_{x \in \{v_1, v_2, \dots, v_d, v_{d+1}\}} f(x)$ is maximum. Let $P = T[\{v_1, v_2, \dots, v_d, v_{d+1}\}]$. Note that $P \equiv P_{d+1}$.

Claim 1. $f|_{V(P)}$ is an OIDIDF for P.

Proof of Claim 1. Suppose that $f|_{V(P)}$ is not an OIDIDF for P. Then there exists at least one vertex $x \in V(P)$ such that $f(x) \in \{0,1\}$ and f(x) + f(y) + f(z) < 3, where $N_P(x) = \{y, z\}$. Let X be the set of such vertices of P. Then the function g defined

on P by g(x) = f(x) + 1 if $x \in X$, and g(x) = f(x) otherwise, is an OIDIDF for P, implying that $\gamma_{oidI}(P) \leq w(g) = w(f|_{V(P)}) + |X|$. Therefore $w(f|_{V(P)}) \geq d+2-|X|$. Also every $x \in X$ is adjacent to a vertex $t \in V(T) - V(P)$ and $\sum_{u \in N[t]} f(u) \geq 2$. Then $\gamma_{oidI}(T) = w(f) \geq w(f|_{V(P)}) + 2|X|$. Therefore $w(f|_{V(P)}) \leq d+2-2|X|$, and so $2|X| \leq |X|$, a contradiction. Thus, $f|_{V(P)}$ is an OIDIDF for P. \diamondsuit

From Claim 1, we deduce that f(v) = 0 for all vertices $v \in V(T) - V(P)$, and so any vertex outside P is adjacent to a vertex of P. We show that $\deg_T(v_i) = 2$ for $3 \le i \le d-1$, and if $\deg(v_2) \ge 3$ and $\deg(v_d) \ge 3$ then $d \ge 4$.

Assume that $\deg(v_i) \geq 3$ for some $i \in \{3, ..., d-1\}$. Then clearly $f(v_i) = 3$. Next we show that $f(v_{i-1}) = f(v_{i+1}) = 0$. Assume that $f(v_{i-1}) \geq 1$ and $f(v_{i+1}) \geq 1$. Then changing $f(v_i)$ to 2 produce an OIDIDF for P with weight less than $\gamma_{oidI}(P)$, a contradiction. Assume next, without loss of generality, that $f(v_{i-1}) \geq 1$ and $f(v_{i+1}) = 0$. Since V_0 is an independent set, $f(v_{i+2}) \geq 1$ ($5 \leq i+2 \leq d+1$). Changing $f(v_i)$ to 2 produce an OIDIDF for P with weight less than $\gamma_{oidI}(P)$, a contradiction. Consequently, $f(v_{i-1}) = f(v_{i+1}) = 0$. Since V_0 is an independent set, $f(v_{i-2}) \geq 1$ ($1 \leq i-2 \leq d-3$) and $f(v_{i+2}) \geq 1$ ($5 \leq i+2 \leq d+1$). Then changing $f(v_i)$ to 2 produce an OIDIDF for P with weight less than $\gamma_{oidI}(P)$, a contradiction. We conclude that $\deg_T(v_i) = 2$ for i = 3, ..., d-1. If $\deg(v_2) \geq 3$ and $\deg(v_d) \geq 3$ then $f(v_2) = f(v_d) = 3$. If $d \leq 3$, then it can be seen that diam(T) = 3, $\gamma_{oidI}(T) = 6$ and $\gamma_{oidI}(T) \neq d+2$, a contradiction. We deduce that $T \in \mathcal{T}$.

Conversely, assume that $T \in \mathcal{T}$. If $T = S_{1,b}$, where $b \ge 1$, then it is easy to see that $\gamma_{oidI}(T) = 5$ and diam(T) = 3 and the result follows. Thus assume that T is obtained from a double star $S_{a,b}, a \ge 1$ and $b \ge 1$ by subdivision of the central edge uv of $S_{a,b}, k \ge 1$ times, and let $x_1, ..., x_k$ be the new vertices which are obtained by subdivision of uv, where u is adjacent to x_1 and v is adjacent to x_k . It is sufficient to present an OIDIDF of weight d + 2. If k = 1, then d = 4 and the function f defined by f(u) = f(v) = 3 and f(x) = 0 otherwise is an OIDIDF for T of weight 6, as desired. If k = 2, then d = 5 and the function f defined by f(u) = f(v) = 3, $f(x_2) = 1$ and f(x) = 0 otherwise is an OIDIDF for T of weight 7, as desired. Thus assume that $k \ge 3$. Clearly, d = k + 3. If k is odd, then the function f defined by f(u) = f(v) = 3, $f(x_1) = f(x_k) = 0$ and $f(x_{2i}) = 2$ and $f(x_{2i+1}) = 0$, $1 \le i \le \frac{k-1}{2}$ is an OIDIDF for T of weight k + 5, as desired. If k is even, then the function f defined by f(u) = f(v) = 3, $f(x_1) = 1$, $f(x_{2i+1}) = 2$, $1 \le i \le \frac{k-2}{2}$ and f(x) = 0 otherwise is an OIDIDF for T of weight k + 5, as desired.

Theorem 8. Let T be a tree of order $n \ge 2$. Then $\gamma_{oidI}(T) \ge 2\beta(T) + 1$, and this bound is sharp.

Proof. We use an induction method on the order n = |V(T)|. The base step is easy to see for $n \leq 4$. Thus assume that $n \geq 5$. Assume that $\gamma_{oidI}(T') \geq 2\beta(T')+1$ for any tree T' of order n' with $4 \leq n' < n$. Now consider the tree T. If diam(T) = 2, then T is a star and so $\gamma_{oidI}(T) = 3 \geq 2\beta(T)+1$. If diam(T) = 3, then T is a double star in which $\gamma_{oidI}(T) \in \{5, 6\}$ and it can be seen that $\gamma_{oidI}(T) \geq 2\beta(T)+1$. Thus assume

that $diam(T) \ge 4$. Clearly $n \ge 5$. If T has a strong support vertex u, and v is a leaf adjacent to u, then we consider the tree T' = T - v. It can be seen that $\beta(T') = \beta(T)$ and by Lemma 1, $\gamma_{oidI}(T') \le \gamma_{oidI}(T)$. According to the induction hypothesis, we obtain $2\beta(T) + 1 = 2\beta(T') + 1 \le \gamma_{oidI}(T') \le \gamma_{oidI}(T)$. Thus assume that T does not have a strong support vertex. We consider a diametrical path of T. Let r and v be two leaves with d(r, v) = diam(T). We root T at r. Let w be the parent of v and x be the parent of w. Since w is not a strong support vertex, deg(w) = 2. Let f be a $\gamma_{oidI}(T)$ -function. There are the following two cases depending to the value of f(w).

Case 1. $f(w) \ge 1$. Then f(w) + f(v) = 3, and we may assume that f(w) = 3 and f(v) = 0. If $f(x) \ge 2$, then replacing f(w) by 0 and f(v) by 2 yields an OIDIDF on T with weight less than w(f), a contradiction. Thus $f(x) \le 1$.

Assume that f(x) = 1. Let g be a function defined by g(x) = g(v) = 2, g(w) = 0 and g(u) = f(u) otherwise. Then $g' = g \mid_{V(T')}$ is an OIDIDF for $T' = T - \{v, w\}$. Also $\beta(T') = \beta(T) - 1$. By the induction hypothesis, $2\beta(T') + 1 \leq \gamma_{oidI}(T') \leq w(g') = w(f) - 2 = \gamma_{oidI}(T) - 2$. Then $2(\beta(T) - 1) + 1 \leq \gamma_{oidI}(T) - 2$, and the result follows. Next assume that f(x) = 0. Clearly $f(t) \geq 1$ for every $t \in N(x)$. Assume that $deg(x) \geq 3$. Let g be a function defined by g(x) = 1, g(v) = 2, g(w) = 0 and g(u) = f(u) otherwise. Then $g' = g \mid_{V(T')}$ is an OIDIDF for $T' = T - \{v, w\}$, and as before we obtain the result. Thus assume that deg(x) = 2. Let g be the father of x. Since f(x) = 0, we have $f(y) \geq 1$. If $f(y) \geq 2$, then $g \mid_{V(T')}$, where g is a function defined by g(x) = 1, g(v) = 1. Given that f(y) = 1.

Assume that $\deg(y) = 2$. Let z be the father of y. Then $f(z) \ge 2$, and $g|_{V(T')}$, where g is defined by q(y) = q(w) = 0, q(x) = q(v) = 2 and q(u) = f(u) otherwise, is an OIDIDF for $T - \{v, w\}$, and as before we obtain the result. Thus assume that $\deg(y) \geq 3$. Assume that y is a support vertex and y' is the leaf adjacent to y. Clearly f(y') = 2. Then the function g defined by g(y) = 3, g(y') = 0 and g(u) = f(u) otherwise, is an OIDIDF on T with w(g) = w(f). Then $g' = g|_{V(T')}$ is an OIDIDF for $T' = T - \{v, w, x\}$. Also $\beta(T') = \beta(T) - 1$. The induction hypothesis implies that $2\beta(T) - 1 = 2(\beta(T) - 1) + 1 = 2\beta(T') + 1 \le \gamma_{oidI}(T') \le w(g') =$ $w(f) - 3 = \gamma_{oidI}(T) - 3$ and therefore $\gamma_{oidI}(T) \ge 2\beta(T) + 2 \ge 2\beta(T) + 1$. Thus assume that y is not a support vertex. Let y' be a child of y different from x. Clearly $\deg(y') \geq 2$. If y' has a child y'' which y'' is a support vertex and y''' is the child of y'', then y''' plays the role of v in the diametrical path, and so we may assume that $\deg(y') = \deg(y'') = 2$, f(y') = f(y''') = 0 and f(y'') = 3. Let g be a function defined by g(y) = 3, g(u) = f(u) if $u \neq y$, $T_1 = T - \{v, w, y'', y'''\}$ and $g_1 = g|_{V(T_1)}$. Then $w(g_1) = w(f) - 4$ and we note that $\beta(T_1) = \beta(T) - 2$. So by the induction hypothesis $2\beta(T_1) + 1 \le \gamma_{oidI}(T_1) \le w(g_1) = w(f) - 4 = \gamma_{oidI}(T) - 4$. Then $2\beta(T) + 1 \le \gamma_{oidI}(T)$ as desired. Thus assume that y' is a support vertex. Let y'' be the child of y'. Clearly $\deg(y') = 2$. Assume that f(y') = 0. Then f(y'') = 2. Let $T'' = T - \{y', y''\}$. Since every vertex cover contains y' or y'', $\beta(T'') = \beta(T) - 1$. Also $f|_{V(T'')}$ is an OIDIDF on T''. So $\gamma_{oidI}(T'') \leq w(f \mid_{V(T'')}) = \gamma_{oidI}(T) - 2$. By the induction hypothesis $\gamma_{oidI}(T'') \geq 2\beta(T'') + 1 = 2\beta(T) - 1$ and so the result follows. Thus

assume that $f(y') \ge 1$. Note that f(y') + f(y'') = 3. Then the function g defined by g(y'') = g(y) = 2, g(y') = 0 and g(u) = f(u) otherwise is an OIDIDF on T with w(g) = w(f). Now letting $T'' = T - \{y', y''\}$, $g|_{V(T'')}$ is an OIDIDF on T'', and as before the result follows.

Case 2. f(w) = 0. Then f(v) = 2. Then $g|_{V(T')}$, where $T' = T - \{v, w\}$, is an OIDIDF for T' and as before we obtain the result.

To see the sharpness, consider a star or a path P_n with even n.

Theorem 9. If T is a tree of order $n \ge 2$ with ℓ leaves, then $\gamma_{oidI}(T) \ge \frac{n+5-\ell(T)}{2}$, with equality if and only if T is a star of order at least three.

Proof. For the inequality part we use an induction proof on the order. For the base step of the induction, if $n \leq 3$ then $\ell = 2$ and $\gamma_{oidI}(T) = 3$ and so the result follows. Thus assume that $n \geq 4$. Assume that $\gamma_{oidI}(T') \geq \frac{n'+5-\ell(T')}{2}$ for every tree T' of order n' with $3 \leq n' < n$, and T is a tree of order n. If diam(T) = 2, then T is a star with $\gamma_{oidI}(T) = 3$ and $\ell(T) = n-1$, and so $3 \geq \frac{n+5-(n-1)}{2} = 3$. If diam(T) = 3, then T is a double star with $\gamma_{oidI}(T) \in \{5, 6\}$ and $\ell(T) = n-2$. The it can be seen that $\gamma_{oidI}(T) \geq \frac{n+5-(n-2)}{2}$. Thus we assume that $diam(T) \geq 4$.

Assume that T has a strong support vertex u, and let v be a leaf adjacent to u. Then it follows from Lemma 1 and the induction hypothesis that

$$\gamma_{oidI}(T) \ge \gamma_{oidI}(T-v) \ge \frac{n-1+5-(\ell(T)-1)}{2} = \frac{n+5-\ell(T)}{2}$$

Thus assume that T does not have a strong support vertex.

Let $v_1v_2...v_k$ be a diametrical path in T, where v_1 and v_k are leaves and $k \ge 5$. Since T has no strong support vertex, we find that $\deg(v_2) = \deg(v_{k-1}) = 2$. Let f be a $\gamma_{oidI}(T)$ -function.

If $f(v_2) = 2$, then $f(v_1) = 1$. Let $T' = T - v_1$ and $f' = f|_{V(T')}$. Then $\gamma_{oidI}(T') \leq w(f') = w(f) - 1 = \gamma_{oidI}(T) - 1$. By the induction hypothesis, $\frac{n'+5-\ell(T')}{2} \leq \gamma_{oidI}(T') \leq \gamma_{oidI}(T) - 1$. Since $\ell(T') = \ell(T)$, we have $\frac{n-1+5-\ell(T)}{2} \leq \gamma_{oidI}(T) - 1$. Thus $\frac{n+5-\ell(T)}{2} + \frac{1}{2} \leq \gamma_{oidI}(T)$, and therefore the result follows.

If $f(v_2) = 1$, then $f(v_1) = 2$. Then replace $f(v_2)$ by 2 and $f(v_1)$ by 1, and we obtain the desired bound as before.

Next assume that $f(v_2) = 0$. Then $f(v_1) = 2$ and $f(v_3) \ge 1$. Let $T'' = T - \{v_1, v_2\}$ and $f'' = f \mid_{V(T'')}$. Then f'' is an OIDIDF for T''. Note that $\ell(T'') \le \ell(T)$. By the induction hypothesis, $\frac{n''+5-\ell(T'')}{2} \le \gamma_{oidI}(T'') \le w(f'') = w(f) - 2 = \gamma_{oidI}(T) - 2$. Then $\frac{n-2+5-\ell(T)}{2} \le \gamma_{oidI}(T) - 2$. Thus $\frac{n+5-\ell(T)}{2} + 1 \le \gamma_{oidI}(T)$, and the result follows. It remains to assume that $f(v_2) = 3$. Then $f(v_1) = 0$. If $f(v_3) \ge 2$, then we consider T'' and f'' as in the previous case, and obtain the result. If $f(v_3) = 1$ then we define the function g with $g(v_3) = 2$ and g(u) = f(u) otherwise. Let $T'' = T - \{v_1, v_2\}$ and $g'' = g \mid_{V(T'')}$. Then w(g'') = w(f) - 2, and as before, we obtain the result. Thus assume that $f(v_3) = 0$. We define the function g with $g(v_3) = 2$ and g(u) = f(u)

otherwise. Let $T'' = T - \{v_1, v_2\}$ and $g'' = g \mid_{V(T'')}$. Then w(g'') = w(f) - 1 and as before, we obtain the result.

We now prove the equality part. Clearly for any star of order $n \geq 3$ the equality holds. To show the other side, let T be a tree of order $n \geq 2$ with ℓ leaves and $\gamma_{oidI}(T) = \frac{n+5-\ell(T)}{2}$. We use an induction on n to show that T is a star. The base step it obvious for $n \in \{2,3\}$. Thus assume that $n \geq 4$. Assume that every tree T'of order n' with $3 \leq n' < n$ and $\gamma_{oidI}(T') = \frac{n'+5-\ell(T')}{2}$ is a star. Let T be a tree of order $n \geq 4$ and $\gamma_{oidI}(T) = \frac{n+5-\ell(T)}{2}$. Let u be a vertex of T with $\deg(u) = \Delta(T)$ and f be a $\gamma_{oidI}(T)$ -function. According to Proposition 2, $\Delta \geq 3$.

Claim 1. u is a support vertex.

Proof of Claim 1. Suppose that u is not a support vertex. Then T is not a star. We first show that every support vertex of T has degree 2. Assume that T has a support vertex w with deg $(w) \geq 3$, and v is a leaf adjacent to w. Let T' = T - v. Then clearly T' is not a star. Since T' is not a star, it follows from the induction hypothesis that $\gamma_{oidI}(T') \neq \frac{n'+5-\ell(T')}{2}$. By the first part of the theorem, $\gamma_{oidI}(T') > \frac{n'+5-\ell(T')}{2} = \frac{n-1+5-\ell(T)+1}{2} = \frac{n+5-\ell(T)}{2} = \gamma_{oidI}(T)$. Thus, $\gamma_{oidI}(T') > \gamma_{oidI}(T)$, a contradiction to Lemma 1. Thus assume that every support vertex of T has degree 2. Let w be a support vertex, v be a leaf adjacent to w, and $x \in N(w) - \{v\}$. Let f be a $\gamma_{oidI}(T)$ -function, T' = T - v. Since $\ell(T') = \ell(T)$ we obtain from the first part of the theorem and Lemma 1 that

$$\gamma_{oidI}(T') \le \gamma_{oidI}(T) = \frac{n'+1+5-\ell(T')}{2} = \frac{n'+5-\ell(T')}{2} + \frac{1}{2} \le \gamma_{oidI}(T') + \frac{1}{2}.$$

Thus we obtain that $\gamma_{oidI}(T') = \gamma_{oidI}(T)$.

Suppose that $f(w) \geq 1$. If f(x) = 0, then $f(t) \geq 1$ for every vertex $t \in N(x)$, since f is an OIDIDF. Then we change f(w) and f(v), if necessary, to f(w) = 2 and f(v) = 1. Then $f' = f \mid_{V(T')}$ is an OIDIDF on T' with w(f') = w(f) - 1. Then $\gamma_{oidI}(T') \leq w(f') = w(f) - 1 = \gamma_{oidI}(T) - 1 < \gamma_{oidI}(T)$, a contradiction with $\gamma_{oidI}(T') = \gamma_{oidI}(T)$. Thus $f(x) \geq 1$. If $f(w) + f(v) \geq 3$, we can change f(w) and f(v), if necessary, to f(w) = 2 and f(v) = 1 and as before we get a contradiction. Thus assume that f(w) = 0. Then f(v) = 2. We note that $f(x) \geq 1$. Let $T'' = T - \{v, w\}$. Then $\gamma_{oidI}(T'') \leq w(f \mid_{V(T'')}) = w(f) - 2 = \gamma_{oidI}(T) - 2$, and so $\gamma_{oidI}(T'') < \gamma_{oidI}(T)$. Assume that $\deg(x) \geq 3$. Then $\ell(T'') = \ell(T) - 1$. Now we have

$$\gamma_{oidI}(T'') \le \gamma_{oidI}(T) = \frac{n'' + 2 + 5 - \ell(T'') - 1}{2} = \frac{n'' + 5 - \ell(T'')}{2} + \frac{1}{2} \le \gamma_{oidI}(T'') + \frac{1}{2}$$

This implies that $\gamma_{oidI}(T'') = \gamma_{oidI}(T)$, a contradiction with $\gamma_{oidI}(T'') < \gamma_{oidI}(T)$. Thus deg(x) = 2 and so $\ell(T'') = \ell(T)$. Note that T'' is not a star, since u is not adjacent to a leaf. Thus by the contrapositive direction of the induction hypothesis we have $\gamma_{oidI}(T'') \neq \frac{n''+5-\ell(T'')}{2}$. We deduce that

$$\begin{aligned} \gamma_{oidI}(T'') &\leq \gamma_{oidI}(T) \\ &= \frac{n+5-\ell(T)}{2} \\ &= \frac{n''+2+5-\ell(T'')}{2} \\ &= \frac{n''+5-\ell(T'')}{2} + 1 \\ &< \gamma_{oidI}(T'') + 1. \end{aligned}$$

Then we obtain that $\gamma_{oidI}(T'') = \gamma_{oidI}(T)$, a contradiction with $\gamma_{oidI}(T'') < \gamma_{oidI}(T)$. This completes the proof of Claim 1. \diamond

Thus u is a support vertex. Let v be a leaf adjacent to u. Let T' = T - v. According to Lemma 1 and the hypothesis,

$$\gamma_{oidI}(T') \le \gamma_{oidI}(T) = \frac{n+5-\ell(T)}{2} = \frac{n'+1+5-(\ell(T')+1)}{2} = \frac{n'+5-\ell(T')}{2}$$

By the first part of the theorem, $\gamma_{oidI}(T') \geq \frac{n'+5-\ell(T')}{2}$. Thus, $\gamma_{oidI}(T') = \frac{n'+5-\ell(T')}{2}$. By the induction hypothesis T' is a star. So u is the center of T', and consequently T is a star.

References

- H. Abdollahzadeh Ahangar, M. Chellali, and V. Samodivkin, *Outer independent Roman dominating functions in graphs*, Int. J. Computer Math. **94** (2017), no. 12, 2547–2557.
- [2] H. Abdollahzadeh Ahangar, M. Chellali, and S.M. Sheikholeslami, Outer independent double Roman domination, Appl. Math. Compu. 364 (2020), ID: 124617.
- [3] F. Azvin and N. Jafari Rad, Bounds on the double Italian domination number of a graph, Discuss. Math. Graph Theory, (in press).
- [4] R.A. Beeler, T.W. Haynes, and S.T. Hedetniemi, *Double Roman domination*, Discrete Appl. Math. **211** (2016), 23–29.
- [5] M. Chellali, T.W. Haynes, S.T. Hedetniemi, and A. McRae, Roman {2}domination, Discrete Appl. Math. 204 (2016), 22–28.
- [6] M. Chellali, N. Jafari Rad, S.M. Sheikholeslami, and L. Volkmann, A survey on roman domination parameters in directed graphs, AKCE J. Graphs Combin., (in press).
- [7] _____, Varieties of Roman domination II, J. Combin. Math. Comb. Comput., (to appear).
- [8] _____, Roman domination in graphs, In: Topics in Domination in Graphs, Eds. T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Springer International Publishing, 2020.

- [9] _____, Varieties of Roman domination, In: Structures of Domination in Graphs, Eds. T.W. Haynes, S.T. Hedetniemi and M.A. Henning, Springer International Publishing, 2020.
- [10] E.J. Cockayne, P.A. Dreyer Jr, S.M. Hedetniemi, and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), no. 1-3, 11–22.
- [11] W. Fan, A. Ye, F. Miao, Z. Shao, V. Samodivkin, and S.M. Sheikholeslami, Outer-independent Italian domination in graphs, IEEE Access 7 (2019), 22756– 22762.
- [12] J.F. Fink, M.S. Jacobson, L.F. Kinch, and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar. 16 (1985), no. 4, 287–293.
- [13] G. Hao, L. Volkmann, and D.A. Mojdeh, Total double Roman domination in graphs, Commun. Comb. Optim. 5 (2020), no. 1, 27–39.
- [14] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
- [15] M.A. Henning and W.F. Klostermeyer, Italian domination in trees, Discrete Appl. Math. 217 (2017), 557–564.
- [16] W. Klostermeyer and G. MacGillivray, Roman, Italian, and 2-domination, J. Combin. Math. Combin. Comput. 108 (2019), 125–146.
- [17] D.A. Mojdeh and L. Volkmann, Roman {3}-domination (double Italian domination), Discrete Appl. Math. 283 (2020), 555–564.
- [18] C. Payan and N.H. Xuong, Domination-balanced graphs, J. Graph Theory 6 (1982), no. 1, 23–32.
- [19] A. Poureidi and N. Jafari Rad, On algorithmic complexity of double Roman domination, Discrete Appl. Math. 285 (2020), 539–551.
- [20] _____, On the algorithmic complexity of Roman {2}-domination (Italian domination), Iran J. Sci. Technol. Trans. Sci 44 (2020), 791–799.
- [21] Z. Shao, D.A. Mojdeh, and L. Volkmann, Total Roman {3}-domination in graphs, Symmetry 12 (2020), no. 2, ID: 268.
- [22] L. Volkmann, Double Roman domination and domatic numbers of graphs, Commun. Comb. Optim. 3 (2018), no. 1, 71–77.