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Abstract: An outer-independent double Italian dominating function (OIDIDF) on a
graph G with vertex set V(G) is a function f : V(G) — {0,1, 2, 3} such that if f(v) €
{0,1} for a vertex v € V/(G) then 37, ¢ n[y) f(u) > 3, and the set {u € V(G)|f(u) = 0}
is independent. The weight of an OIDIDF f is the value w(f) = >_, v/ (g f(v). The
minimum weight of an OIDIDF on a graph G is called the outer-independent double
Italian domination number ~,;47(G) of G. We present sharp lower bounds for the
outer-independent double Italian domination number of a tree in terms of diameter,
vertex covering number and the order of the tree.
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1. Introduction

For definitions and notations not given here we refer to [14]. We consider simple
connected graphs G with vertex set V = V(G) and edge set E = E(G). The order
of G is n = n(G) = |V|. The open neighborhood of a vertex v is the set N(v) =
Ng(v) ={u e V(G) | wv € E} and its closed neighborhood is the set Nv] = Ng[v] =
N(v) U{v}. The degree of vertex v € V is deg(v) = d(v) = dg(v) = |[N(v)|. The
mazimum degree and minimum degree of G are denoted by A = A(G) and § = 6(G),
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respectively. A leaf is a vertex of degree one, and its neighbor is called a support vertez.
A strong support vertez is a support vertex adjacent to more than one leaf. We denote
the sets of all leaves and all support vertices of G by L(G) and S(G), respectively.
The diameter of a graph G, denoted by diam(G), is the greatest distance between
two vertices of G. A subset D of V(G) is a dominating set in G if |, p N[v] = V(G).
The domination number v(G) is the minimum cardinality of a dominating set in G. A
set I of vertices is independent if no pair of vertices of I are adjacent. The maximum
cardinality of an independent set in G is called the independent number a(G) of G.
A wvertex cover of a graph G is a set D of vertices such that each edge of G has at
least one end point in D. The minimum cardinality of a vertex cover is denoted by
B(G). We write P, for the path of order n, C), for the cycle of length n, K, for the
complete graph of order n and K, , for the complete bipartite graph whose partite
sets have cardinalities p and g, respectively. For a subset D of vertices in a graph G,
we denote by G[D] the subgraph of G induced by D. The corona H o K; is the graph
constructed from a copy of H, where for each vertex v € V(H), a new vertex v’ and
a pendant edge vv’ are added. We denote by S, ; a double star in which one center
is adjacent to a leaves and the other center is adjacent to b leaves.

Cockayne et al. [10] introduced the concept of Roman domination in graphs, and since
then a lot of related variations and generalizations have been studied (See [1, 2, 4, 6
9, 22]). One of the generalizations of Roman domination, namely Italian domination
has been introduced by Chellali et al. in [5], Klostermeyer and MacGillivray [16], and
Henning and Klostermeyer [15]. An Italian dominating function (IDF) on a graph G
is a function f : V(G) — {0, 1, 2} such that every vertex v € V(G) with f(v) = 0 has
at least two neighbors assigned 1 under f or one neighbor assigned 2 under f. The
weight of an IDF f is the value w(f) = >_,cy /() f(v). The minimum weight of an
IDF on a graph G is called the [talian domination number ~;(G) of G. We note that
Italian domination is a generalization of Roman domination. Mojdeh and Volkmann
[17] considered an extension of Italian domination as follows. For a graph G, a double
Italian dominating function (DIDF) is a function f : V. — {0,1,2,3} having the
property that for every vertex u € V' if f(u) € {0,1}, then f(N[u]) > 3. The weight
of a DIDF f is the sum w(f) = f(V) = >, ¢y f(v), and the minimum weight of a
DIDF in a graph G is the double Italian domination number, denoted by v47(G). For
a DIDF f, one can denote f = (Vp, V1, V2, V3), where V; = {v € V : f(v) = i}, for
i =0,1,2,3. This concept was further studied in [3, 11, 13, 19-21].

In this paper we continue the study of double Italian domination in graphs by con-
sidering those double Italian dominating functions f such that {v € V(G) | f(v) =0}
is an independent set. A DIDF f = (Vp, Vi, Vo, V3) is called an outer-independent
double Italian dominating function (OIDIDF) if V; is an independent set. The min-
imum weight of an OIDIDF on a graph G is called the outer-independent double
Italian domination number of G and is denoted by v,47(G). The definitions lead
t0 Yoiar (G) > var(G). We establish various bounds on the outer-independent dou-
ble Ttalian domination number. In Section 2 we prove some preliminary results as
well as several general bounds for the outer-independent double Italian domination
number. In Section 3, we establish various lower bounds on the outer-independent
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double Italian domination number in a tree in terms of order, diameter and vertex
cover number. We also characterize extremal trees achieving equality for the given
bounds. We make use of the following.

Theorem 1 ([12, 18]). For a graph G of even order n and no isolated vertices, v(G) =
5 if and only if the components of G are the cycle Cy or the corona H o K1 for any connected
graph H.

2. Preliminaries and general results

We begin with the following observation.

Observation 2. If f = (Vo, V1, V2, V3) is a veiar-function on a graph G, then

(i) each vertex of V3 (if any), has a private neighbor in ;.

(ii) V1 U V2 U V3 is both an outer independent dominating set and a vertex cover in G.

(iii) If G is connected, then B(G) < v0ia1(G) < 38(G), and if § > 2, then Y5141 (G) < 28(G).
(iv) If 6(G) > 0, then Yoiar (G) < ¥(G) +n < 22, and if § > 2, then Yoiar (G) < n.

Proof. We prove parts (iii) and (iv).

(iii) The inequality B(G) < viar (G) follows from (ii). To prove Year(G) < 35(G), let
S be a maximum independent set in G. Then the function f defined with f(u) =0
ifue Sand f(u)=3if u g S is an OIDIDF on G, since G is connected. Thus
Yoid1 (G) < 3|V(G) — S| = 3(n — a(G)) = 35(G). Now assume that § > 2. Let S be
a maximum independent set of G. Then the function f defined by f(u) =0ifu € S
and f(u) = 2 otherwise, is an OIDIDF on G. So Yeiar(G) < w(f) = 2(|V| —|9]) =
2(n — a) = 258(G).

(iv) Given a minimum dominating set D of G, the function f defined by f(u) = 2 if
u € D and f(u) = 1 otherwise, is an OIDIDF on G, implying that v,;4:(G) < |D|+n.
Now the result follows by Ore’s Theorem. If 4 > 2, then it is enough to consider a
function which assigns 1 to every vertex of the graph. O

Proposition 1. For any graph G with at least one edge, there exists a Yoiar (G)-function
f= Vo, Vi, Va,V3) such that Vo # 0.

Proof. Let f = (Vo, V1, Va, V3) be a Yoiar (G)-function. If V # 0, then we have done.
Thus assume that Vy = 0, and by Observation 2 (i), we may assume that V3 = 0.
If Vi = 0, then V(G) = Va, and so replacing f(u) by 1 for one non-isolated vertex
u yields an OIDIDF on G with the weight less than w(f), a contradiction. Thus,
V1 # (. We consider the following two cases.

Case 1. No vertex of V; is adjacent to a vertex of V5. Then each vertex of V; is adjacent
to at least two other vertices of V;. If H = G[V}], then we note that 6(H) > 2. Assume
that §(H) > 3. If v € V4, then the function g defined by g(v) = 0 and g(z) = f(x)
otherwise is an OIDIDF on G of weight less then w(f), a contradiction. If §(H) = 2,
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then let v € V; with d(v) = 2. If v has a neighbor u of degree at least three, then let
w # u be the other neighbor of v. Then the function g defined by g(v) =0, g(w) = 2
and g(x) = f(z) otherwise is a desired 7,iqr(G)-function. In the remaining case H
contains a cycle C as a component. If C = vjvy...v9,v1 is an even cycle, then the
function g with g(va;—1) =2, g(ve;) =0 for 1 <4 < k and g(z) = f(x) otherwise is a
desired 741 (G)-function. If C = v1vs ... vop41v; is an odd cycle, then the function g
with g(va;—1) = 2, g(ve;) =0 for 1 < i <k, g(vog+1) = 1 and g(z) = f(z) otherwise
is a desired 7,;q7 (G)-function.

Case 2. There is a vertex v € Vj such that v is adjacent to a vertex w € V,. If
d(w) = 1, then the function g defined by g(v) = 3, g(w) = 0 and g(z) = f(z)
otherwise, is the desired function. Let now that d(w) > 2. Assume that d(u) > 2
for every u € N(w). Then the function g defined by g(w) = 1 and g(x) = f(z) for
x # w is an OIDIDF on G of weight less then w(f), a contradiction. Finally assume
that there exists a vertex z € N(w) with d(z) = 1. Then the function g defined by
g(2) =0, g(w) = 3 and g(x) = f(x) otherwise is a desired 7,;q7(G)-function. O

If C, is a cycle of length n, then it was shown in [17] that v47(Cy) = n. Using this
result, the inequality voiar(Cr) > Yar(Cr), and Observation 2 (iv) (or the proof of
Case 1 in Proposition 1), we obtain the next Observation.

Observation 3. If C, is a cycle of length n, then v;ar(Crn) = n.

We close this section by giving Nordhaus-Gaddum type inequalities for the outer-
independent double Italian number. We first define a family G of graphs G such
that G is obtained from a complete graph K, (p > 4), an empty graph K, where

s > {p‘o’fpg—‘ and a new vertex u, by joining u to every vertex of K, and joining each

vertex of K, to at least three vertices of K, such that each vertex of K, is non-
adjacent to at least three vertices of K,. It is clear from the construction of G that
G € G if and only if G € G.

Theorem 4. Let G be a graph G of order n. Then Yoidr (G) + Yoiar (G) < 3n + 1, with
equality if and only if G € {K1, K2, K2}.

Proof.  Clearly, Yoiar (K1) + Yoiar (K1) = 4 and Yoiar(K2) + Yoiar (K2) = 7. Let now
n > 3.
If §(G) > 0 and 6(G) > 0, then it follows from Observation 2 (iv) that

— 3n  3n
Yoidl (G) + Yoiar (G) < - + 5 = 3n < 3n+ 1.

Now assume that 6(G) = 0 or §(G) = 0, say §(G) = 0. Let I be the set of isolated
vertices of G, and let H = G — I. We deduce from Observation 2 (iv) that

Yoidr (G) SQ”H‘@ :2|I|+2n(H)—@ :2n—@-
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Since n > 3 and G has a vertex of degree n — 1, we note that 7,47 (G) <2+ (n—1) =
n+ 1. If n(H) > 2, then the last two inequalities lead to

— H
Yoid1 (G) + Yoiar (G) < 2n — % +(n+1)<3n<3n+1.

Finally, let n(H) = 0. Then G = K,, and G = K,,. As n > 3, we obtain
Yoidl (G) + Yoiar (G) < 2n+n =3n < 3n + 1.

O

Theorem 5. Let G be a graph G of order n > 3. Then yoiar(G) + Yoiar (G) < 3n, with
equality if and only if G € {K3, K3}.

Proof. If n = 3, then it easy to check that voia1(G) + Yoiar (G) = 3n = 9 if and only
if G € {K3, K3}. Let now n > 4.

If 6(G) > 0 and 6(G) > 0, then it follows from Observation 2 (iv) that
Yoidr (G) + Yoiar (G) < ¥(G) +n +4(G) +n.

If G or G has a component which is neither the cycle C; nor the corona H o K for any
connected graph H, then by Theorem 1, v(G) < % or 4(G) < %, and thus the last
inequality leads t0 Vpiar (G) + Yoidr (G) < v(G) +n+v(G) +n < 3n— 1. Next assume
that G or G, say G has a C4 as a component. Then we deduce from Observation 2

(iv) that v,ar(G) < 4 + w and therefore

Yoidr (G) + Yoiar (G) < 4+ ?)(HT_ZL) + 3771 =3n—2.

Now assume that G or G, say G has a corona (Q = HoK as a component. Let V(H) =
{v1,va,...,v}. If k > 2, then the function g with g(z) = 2 for x € V(Q) \ V(H),
g(v;)) =1for 1 <i<k—1and g(vg) =0 is an OIDIDF on @Q with weight % -1
Again Observation 2 (iv) leads to Yoiar(G) + Yoiar(G) < 3n — 1. Finally, assume
that G = pK, for an integer p > 2. Then G is the complete graph minus a perfect

matching, and since n > 4, we observe that 6(G) > 2 and so 7u41(G) < n by
Observation 2 (iv). Hence we obtain

— 3
Yoidr (G) + Voidr (G) < ?n +n<3n—1
Now assume that 6(G) = 0 or §(G) = 0, say 6(G) = 0. Let I be the set of isolated
vertices of G, and let F' = G — I. We deduce from Observation 2 (iv) that

Yoidr (G) §2|I|+T=2|l|+2n(F)—T:2n— 5
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Since n > 4 and G has a vertex of degree n — 1, we note that 7,47 (G) <2+ (n—1) =
n+ 1. If n(F) > 3, then the last two inequalities lead to

— F
Yoidl (G) + Yoidar (G) < 2n — % +(n+1) < 3n.

If n(F) = 2, then G is the complete graph minus an edge, and since n > 4, we observe
that 6(G) > 2 and so %zdI(G) < n. As above, we obtain the desired bound. Finally,
let n(F) = 0. Then G = K,, and G = K,,. As n > 4, we obtain

Yoiar (G) + Yoiar (G) < 2n+n —1=3n— 1.

Theorem 6. Let G be a graph of order n. Then
Yoidr (G) + Yoiar (G) > n — 1,
with equality if and only if G € G.

Proof. If G or G is the empty graph, then clearly o1 (G) + Yoidr (@) > >n—1.
So assume next that G and G are graphs with at least on edge. Let f = (V, Vi, Va, V3)
be a Yoiqa1 (G)-function with Vy # 0 by Proposition 1, and let f' = (V, V{, V5, Vy) be
a Yoiar (G)-function. Then

Yoid1 (G) + Yoiar (G) = |Va| + 2| Va| + 3| V3| + V]| + 2|V3| + 3| V3]. (1)

Since Vj is an independent set, it forms a clique in G' and thus v,;47(G) > [Vo| — 1.
Analogously, we have 7,47 (G) > |Vj| — 1. Therefore (1) leads to

Yoidl (G) + Yoiar (G) > n+ [Vo| +2|V5| =1 >n—1 (2)

and
Yoid1 (G) + Yoiar (G) > n + |Va| +2|V{| —1>n— 1. (3)

We now prove the equality part. Assume that Yeiar(G) + Yoiar(G) = n — 1. It
follows from from (2) and (3) that Vo U Vs = VJ U VY = 0. Thus v,41(G) = |V1]
and 7,47 (G) = |V{|. Since V and Vj are independent sets in G and G, respectively,
we have [Vo N Vy| < 1. If Vo nVy = 0, then [Vi| + [Vo| + |V{| + |V§| = 2n, and
80 Yoidl (G) + Yoiar (G) + [Vo| + |VJ| = 2n. Then n — 1 + |Vo| + |V{| = 2n and so
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Vol +|Vg] = n+ 1 > n, a contradiction. Thus [Vo N Vy| = 1. Let Vo N Vy = {u},
I=Vy—{u}and J=Vy —{u}. Clearly INJ =0 and I CV{ and J C V;. Then

Vil + V7]

1]+ [J]
Vol + Vgl — 2
n—|Vi|+n—|V{| -2
= 2n—(Wi[+|V]]) -2
= n—1.

n—1

vl

Thus I = V{ and J = V;. Note that J U {u} = V{ is an independent set in G and so
G[J] = K, is a complete graph in G. The vertex u is adjacent to all vertices of J in G
and [ is an independent set in G. Let |I| = s. Then G[I] = K. Since f is a Va1 (G)-
function, each vertex from K has at least three neighbors in V; = J = V(K,). If a
vertex v € V(K,) = J is adjacent to k > s — 2 vertices in K, then v has at most
two neighbors in V(K;) = I = V{. Then f’(v) # 0 and so f/'(v) = 1 and therefore
v € V/ = I. This implies that v € I N J, a contradiction. We deduce that every
vertex in J = V(K,) has at most s — 3 neighbors in K. Now we find the minimum
cardinality of I. Note that each vertex in K, is adjacent to at most s — 3 vertices in
K. Thus there exist at most p(s — 3) edges between K, and K. On the other hand
each vertex in K is adjacent to at least 3 vertices in K. Then there exist at least 3s
edges between K, and K. Therefore 3s < p(s — 3), and thus s > ;%3. Consequently,
Geg.

Conversely, assume that G € G. Let f and f’ be the functions on G and G respectively
as follows. f(v) = 1if v € V(K,) and f(z) = 0 otherwise, f'(v) = 1if v € K
and f’(z) = 0 otherwise. Then f and f’ are OIDIDF on G and G respectively. So
n—1 < 0ia1(G)+70ia1 (G) < w(f)+w(f') = p+s = n—1. Then Yoia1(G)+70ia1 (G) =
n—1. O

3. Lower bounds for trees

We first determine the outer independent double Italian domination number of paths.
Proposition 2. For a path P, Yoiar(Ps) = 3 and Voiar(Pn) =n+ 1 if n > 4.

Proof. The proof is straightforward for n < 6, thus assume that n > 7. Let P, =:
V103 . .. v,. For odd n we define a function f by f(vy;—1) =2,1 <i < % and f(v;) =
0 otherwise, and for even n we define a function f by f(v1) =1, f(ve;) =2,1 < i <
%, f(vj) = 0 otherwise. Then f is an OIDIDF on P,, and 50 Yoiar (Pn) < w(f) = n+1.
Now we use an induction proof on n to show that Vear(Pn) > n + 1. For the base
step, it is easy to see that v,;4r(P7) = 8. Assume that for n’ with 7 < n’ < n, we have
Yoidr (Pnr) =n' + 1. Let f be a vyqr-function for P,. If f(v,) =0, then f(v,—1) =3
and f(vp—2) < 1. If f(v,—2) = 1, then we define the OIDIDF g on P, by g(v,—2) =0,



130 Bounds on the outer-independent double Italian domination number

g(vn—3) = f(vn—3) + 1 and g(z) = f(z) otherwise. Using the induction hypothesis,
we obtain (n — 3) + 1 = Yeiar (Pn—3) < w(g) — 3 = w(f) — 3 = Yoiar (Pn) — 3. Thus
Yoidi (Pn) > n+ 1. Thus assume that f(v,—2) = 0. Then the induction hypothesis
implies that (n —3) + 1 = Yeiar (Pn—3) < w(f) — 3 = Yoiar(Pn) — 3. Thus veiar(Pn) >
n—2+3=n+1.1If f(v,) =1, then f(v,—1) =2, and by the induction hypothesis,
(n—=1)+1=9ar(Pn-1) < w(f) — 1 = vpiar(Py) — 1. Thus assume that f(v,) = 2.
Then f(v,—1) < 1. If f(v,—1) =1, then we define the function ¢ by g(v,—1) = 0 and
g(Un—2) = f(vp—2) + 1 and g(z) = f(z) otherwise. Using the induction hypothesis,
we obtain (n — 2) + 1 = Yoiar(Po—2) < w(g) — 2 = w(f) — 2 = Yoiar(Pn) — 2.
Thus Yeiar(Pn) > n+ 1. If f(v,—1) = 0, then we again consider P,_5, and as
before we obtain that veqr(P,) > n+ 1. If f(v,) = 3, then by Observation 1 (i)
,f (vn—1) = 0. Furthermore, we observe that f(v,_2) > 1. Now the function g defined
by g(v,) = 2 and g(z) = f(z) otherwise is an OIDIDF on P, of weight less than
w(f), a contradiction. O

Lemma 1. Ifv is aleaf in a tree T, then voiar (T — v) < Yosar (T').

Proof.  Let v be a leaf of a tree T, f a Yoiar(T)-function and v € N(v). If f(v) =0
then f is an OIDIDF on T —v and s0 Yeiar (T —v) < w(f) = Yeiar (T). If f(v) € {2,3},
then we define a function g by g(u) = max{f(u), f(v)} and g(z) = f(z) if z # u.
Then g |y (r)y—{v} is an OIDIDF on T' — v and s0 Yeiar (T — v) < w(f) = Yoiar(T).
Thus assume that f(v) = 1. This leads to f(u) = 2. Now the function f |y (1)_f} is
an OIDIDF on T — v, and 80 Yoiar (T — v) < Yoiar(T). O

Let T be the family of trees T such that 7" is a double star Sy, where b > 1 or T is
obtained from a double star S, 5,6 > 1 and b > 1 by subdivision of the central edge
of S, at least once.

Theorem 7. IfT is a tree of diameter d # 2, then Voiar(T) > d+ 2, with equality if and
only if T € T.

Proof. IfT is a tree of diameter 1 then ,;47(T") = 3 and the result is obtained. Now
we consider d > 3. Let P be a diametrical path of 7" which is a copy of P;y;. By
Proposition 2, we have 7,41 (Pa+1) = d + 2. Now applying Lemma 1 for finite times
yields that Yoiar (1) > Yoiar (Pat1) = d + 2.

We next prove the equality part. Assume that V(7)) = d + 2. Let f be
a Yoiar (T)-function and let vyvs...v4v441 be a diametrical path in 7' such that
D re{vrvrvawass) /(@) 18 maximum. Let P = T'[{vi,va,...,va,va41}]. Note that
P = Pd+1.

Claim 1. f |y (p) is an OIDIDF for P.

Proof of Claim 1. Suppose that f |y (p) is not an OIDIDF for P. Then there exists at
least one vertex x € V(P) such that f(z) € {0,1} and f(x) + f(y) + f(z) < 3, where
Np(x) ={y, z}. Let X be the set of such vertices of P. Then the function g defined
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on P by g(x) = f(z)+1if 2z € X, and g(x) = f(z) otherwise, is an OIDIDF for P,
implying that yoiar(P) < w(g) = w(f|v(py) +|X|. Therefore w(f|y(py) > d+2—|X].
Also every z € X is adjacent to a vertex t € V(T)) — V(P) and 3_,cnpy f(u) = 2.
Then i1 (T) = w(f) > w(f |v(py) + 2|X|. Therefore w(f |vpy) < d+2—2|X]|,
and so 2| X| < |X], a contradiction. Thus, f |y (py is an OIDIDF for P.

From Claim 1, we deduce that f(v) = 0 for all vertices v € V(T') — V(P), and so
any vertex outside P is adjacent to a vertex of P. We show that degp(v;) = 2 for
3<i<d-1,and if deg(ve) > 3 and deg(vq) > 3 then d > 4.

Assume that deg(v;) > 3 for some i € {3,...,d — 1}. Then clearly f(v;) = 3. Next we
show that f(v;—1) = f(v;+1) = 0. Assume that f(v;—1) > 1 and f(v;41) > 1. Then
changing f(v;) to 2 produce an OIDIDF for P with weight less than 7,;4r(P), a con-
tradiction. Assume next, without loss of generality, that f(v;—1) > 1 and f(v;4+1) = 0.
Since Vp is an independent set, f(v;y2) > 1 (56 <i+4+2 < d+ 1). Changing f(v;) to
2 produce an OIDIDF for P with weight less than v,;47(P), a contradiction. Con-
sequently, f(v;—1) = f(vix1) = 0. Since Vj is an independent set, f(v;—2) > 1
(1 <i—-2<d-3)and f(viye) > 1 (5 <i+2 < d+1). Then changing f(v;)
to 2 produce an OIDIDF for P with weight less than 7,47 (P), a contradiction. We
conclude that degy(v;) =2 for i = 3,....,d — 1. If deg(v2) > 3 and deg(vq) > 3 then
f(v2) = f(vg) = 3. If d < 3, then it can be seen that diam(T) = 3, Yoiar(T) = 6 and
Yoidl (T') # d + 2, a contradiction. We deduce that T' € T.

Conversely, assume that 7' € 7. If T = Sy, where b > 1, then it is easy to see
that veiar(T) = 5 and diam(T) = 3 and the result follows. Thus assume that T is
obtained from a double star S, 3,0 > 1 and b > 1 by subdivision of the central edge
uv of Sgp kK > 1 times, and let xy, ..., x; be the new vertices which are obtained by
subdivision of uv, where u is adjacent to x1 and v is adjacent to xy. It is sufficient
to present an OIDIDF of weight d + 2. If £ = 1, then d = 4 and the function f
defined by f(u) = f(v) = 3 and f(x) = 0 otherwise is an OIDIDF for T of weight
6, as desired. If kK = 2, then d = 5 and the function f defined by f(u) = f(v) = 3,
f(z2) =1 and f(x) = 0 otherwise is an OIDIDF for T' of weight 7, as desired. Thus
assume that k > 3. Clearly, d = k 4+ 3. If k is odd, then the function f defined by
flu) = f(v) =3, f(z1) = f(zx) = 0 and f(22;) =2 and f(z241) =0 ,1 <i<E2Lis
an OIDIDF for T of weight k4 5, as desired. If k is even, then the function f defined
by f(u) = f(v) =3, f(z1) =1, f(z2i41) =2 ,1 <i < 552 and f(z) = 0 otherwise is
an OIDIDF for T of weight k + 5, as desired. O

Theorem 8. Let T be a tree of order n > 2. Then voiar(T) > 28(T) + 1, and this bound
is sharp.

Proof. We use an induction method on the order n = |[V(T')|. The base step is easy
to see for n < 4. Thus assume that n > 5. Assume that v,,q47(T") > 258(7") +1 for any
tree T” of order n’ with 4 < n/ < n. Now consider the tree T. If diam(T) = 2, then T
is a star and 0 Yoiar(T) =3 > 28(T) + 1. If diam(T') = 3, then T is a double star in
which vpi41(T) € {5,6} and it can be seen that ve;qar(T) > 28(T) + 1. Thus assume
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that diam(T) > 4. Clearly n > 5. If T has a strong support vertex u, and v is a leaf
adjacent to u, then we consider the tree 7" = T —v. It can be seen that S(T") = 8(T)
and by Lemma 1, Yoiar(T") < Yoiar(T). According to the induction hypothesis, we
obtain 28(T) +1=28(T") + 1 < voiar(T") < Yoiar(T). Thus assume that T' does not
have a strong support vertex. We consider a diametrical path of T. Let r and v be
two leaves with d(r,v) = diam(T). We root T at r. Let w be the parent of v and x
be the parent of w. Since w is not a strong support vertex, deg(w) = 2. Let f be a
Yoiar (T)-function. There are the following two cases depending to the value of f(w).

Case 1. f(w) > 1. Then f(w)+ f(v) = 3, and we may assume that f(w) = 3 and
f(w) =0. If f(x) > 2, then replacing f(w) by 0 and f(v) by 2 yields an OIDIDF on
T with weight less than w(f), a contradiction. Thus f(z) < 1.

Assume that f(x) = 1. Let g be a function defined by g(z) = g(v) = 2, g(w) = 0 and
g(u) = f(u) otherwise. Then g’ = g |y 7+ is an OIDIDF for T" = T — {v, w}. Also
B(T") = B(T) — 1. By the induction hypothesis, 28(T") + 1 < vpia1(T") < w(g’) =
W(f) =2 = Yoiar(T) — 2. Then 2(8(T) — 1) + 1 < Ypiar(T) — 2, and the result follows.
Next assume that f(z) = 0. Clearly f(t) > 1 for every t € N(x). Assume that
deg(x) > 3. Let g be a function defined by g(z) = 1, g(v) = 2, g(w) = 0 and
g(u) = f(u) otherwise. Then ¢’ = g |y (7+) is an OIDIDF for 7" = T' — {v,w}, and as
before we obtain the result. Thus assume that deg(z) = 2. Let y be the father of x.
Since f(x) = 0, we have f(y) > 1. If f(y) > 2, then g |y (7+), where g is a function
defined by g(x) = 1, g(v) = 2, g(w) = 0 and g(u) = f(u) otherwise, is an OIDIDF
for T — {v,w}, and as before we obtain the result. Thus assume that f(y) = 1.
Assume that deg(y) = 2. Let z be the father of y. Then f(z) > 2, and g |y (7,
where ¢ is defined by g(y) = g(w) = 0, g(z) = g(v) = 2 and g(u) = f(u) otherwise,
is an OIDIDF for T — {v,w}, and as before we obtain the result. Thus assume
that deg(y) > 3. Assume that y is a support vertex and gy’ is the leaf adjacent
to y. Clearly f(y') = 2. Then the function g defined by ¢(y) = 3,¢9(y’) = 0 and
g(u) = f(u) otherwise, is an OIDIDF on T with w(g) = w(f). Then ¢’ = g |y (7 is
an OIDIDF for 77" =T — {v,w,z}. Also (T") = B(T) — 1. The induction hypothesis
implies that 26(T) — 1 = 2(A(T) — 1) + 1 = 28(T") + 1 < iar(T") < wlg) =
w(f) — 3 = Yoiar(T) — 3 and therefore voiqr(T) > 26(T) + 2 > 26(T) + 1. Thus
assume that y is not a support vertex. Let ' be a child of y different from x. Clearly
deg(y’) > 2. If ¢ has a child y” which y” is a support vertex and y” is the child of
y”, then 3"’ plays the role of v in the diametrical path, and so we may assume that
deg(y') =deg(y”) =2, f(v') = f(¥y"") =0 and f(y"”) = 3. Let g be a function defined
by g(y) =3, g(u) = f(u) f u#y, Ty =T — {v,w,y",y"'} and g1 = g |y (r,). Then
w(g1) = w(f)—4 and we note that 5(71) = B(T) — 2. So by the induction hypothesis
28(T1) +1 < voiar(T1) < w(g1) = w(f) =4 = Yoiar(T') —4. Then 23(T) +1 < voiq1(T)
as desired. Thus assume that ¢’ is a support vertex. Let y” be the child of y’. Clearly
deg(y’) = 2. Assume that f(y') = 0. Then f(y”) = 2. Let T =T — {y',y"}.
Since every vertex cover contains y' or y”, B3(T") = B(T) — 1. Also f |y is an
OIDIDF on T". So voiar(T") < w(f |[vr»)) = Yoiar(T) — 2. By the induction
hypothesis voiar(T") > 28(T") + 1 = 28(T) — 1 and so the result follows. Thus



F. Azvin, N. Jafari Rad, L. Volkmann 133

assume that f(y’) > 1. Note that f(y') + f(y”) = 3. Then the function g defined
by g(y") = g(y) = 2, g(y') = 0 and g(u) = f(u) otherwise is an OIDIDF on T with
w(g) = w(f). Now letting T = T — {y', 4"}, g |v(r) is an OIDIDF on T", and as
before the result follows.

Case 2. f(w) = 0. Then f(v) = 2. Then g [y (g/), where T" = T — {v,w}, is an
OIDIDF for 7" and as before we obtain the result.

To see the sharpness, consider a star or a path P, with even n. O

Theorem 9. IfT is a tree of order n > 2 with £ leaves, then Yoiar (T) > %Z(T), with
equality if and only if T' is a star of order at least three.

Proof. For the inequality part we use an induction proof on the order. For the base
step of the induction, if n < 3 then £ = 2 and v,;4;(7) = 3 and so the result follows.
Thus assume that n > 4. Assume that v,qr(T7) > 7”5%5(71/) for every tree T" of
order n/ with 3 <n’ < n, and T is a tree of order n. If diam(T) = 2, then T is a star
with Yo7 (T) = 3 and £(T) =n—1, and so 3 > %("_1) = 3. If diam(T') = 3, then
T is a double star with 7,47 (T) € {5,6} and ¢(T) = n — 2. The it can be seen that
Yoidr (T') > M Thus we assume that diam(T) > 4.

Assume that T has a strong support vertex u, and let v be a leaf adjacent to u. Then
it follows from Lemma 1 and the induction hypothesis that

Yoiar (T) > yoiar(T — ) > "2 (UT) =1 _nt 52—€(T).

Thus assume that T' does not have a strong support vertex.

Let vivs...v; be a diametrical path in T, where vy and vy are leaves and k > 5.

Since T has no strong support vertex, we find that deg(ve) = deg(vg—1) = 2. Let f

be a Yyiqr (T)-function.

If f(v2) = 2, then f(vi) = 1. Let 7" = T — v and f' = f [y). Then

Yoidl (T") < w(f) = w(f) =1 = veiar(T) — 1. By the induction hypothesis,

n5-U(T") < Yoiar (T") < Yoiar(T) — 1. Since £(T") = £(T'), we have n=1+5—4(T) <
2 2

Yoiar (T) — 1. Thus % + % < Yoiar(T'), and therefore the result follows.

If f(vy) =1, then f(v1) = 2. Then replace f(vy) by 2 and f(v1) by 1, and we obtain

the desired bound as before.

Next assume that f(ve) = 0. Then f(v1) =2 and f(v3) > 1. Let T =T — {v1,v9}

and f" = f |y (rn). Then f” is an OIDIDF for T”. Note that £(T") < ¢(T). By the

induction hypothesis, 926070 < o L (T") < w(f") = w(f) — 2 = Yosar (T) — 2.

Then %_Z(T) < Yoiar (T)—2. Thus %—i—l < Yoiar (T), and the result follows.

It remains to assume that f(ve) = 3. Then f(vy) = 0. If f(vs) > 2, then we consider

T" and f” as in the previous case, and obtain the result. If f(vs) =1 then we define

the function g with g(vs) = 2 and g(u) = f(u) otherwise. Let T =T — {v1,v2} and

9" = g lvry. Then w(g”) = w(f) — 2, and as before, we obtain the result. Thus

assume that f(v3) = 0. We define the function g with g(vs) = 2 and g(u) = f(u)
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otherwise. Let T" = T — {v1,v2} and ¢" = g |y (7). Then w(g”) = w(f) — 1 and as
before, we obtain the result.

We now prove the equality part. Clearly for any star of order n > 3 the equality
holds. To show the other side, let T' be a tree of order n > 2 with /¢ leaves and
Yoiar (T) = %Z(T). We use an induction on n to show that T is a star. The base
step it obvious for n € {2,3}. Thus assume that n > 4. Assume that every tree T’
of order n’ with 3 < n’ < mn and 47 (T') = % is a star. Let T be a tree of
order n > 4 and 7,47 (T) = %E(T). Let u be a vertex of T' with deg(u) = A(T)

and f be a Yo7 (T)-function. According to Proposition 2, A > 3.

Claim 1. u is a support vertex.

Proof of Claim 1. Suppose that u is not a support vertex. Then T is not a star.
We first show that every support vertex of T' has degree 2. Assume that T has a
support vertex w with deg(w) > 3, and v is a leaf adjacent to w. Let TV =T — v.
Then clearly T’ is not a star. Since T’ is not a star, it follows from the induction

hypothesis that ve;qr(T") # %. By the first part of the theorem, v,;qr(T") >

n+5§€(T) _ 7L—1+5;€(T)+1 _ n+5;Z(T) _ 'VoidI(T)- Thus, ’YoidI(T/) > VOidl(TL a

contradiction to Lemma 1. Thus assume that every support vertex of T has degree

2. Let w be a support vertex, v be a leaf adjacent to w, and x € N(w) — {v}. Let f
be a Yoiqr (T)-function, 7" =T — v . Since £(T") = £(T') we obtain from the first part
of the theorem and Lemma 1 that

n +1+5—4T n' +5—0(T 1 1
Yoiar (T") < Yoiar (T') = 5 ) = 5 ) t3 < Yoiar (T") + 5

Thus we obtain that Yeiar (T") = Yoiar (T)-

Suppose that f(w) > 1. If f(z) = 0, then f(¢t) > 1 for every vertex t € N(z),
since f is an OIDIDF. Then we change f(w) and f(v), if necessary, to f(w) = 2
and f(v) = 1. Then f" = f |y(g) is an OIDIDF on T" with w(f’) = w(f) — 1.
Then voiar(T") < w(f’) = w(f) =1 = Yoiar(T) — 1 < Yoiar(T), a contradiction with
Yoidl (T") = Yoiar(T). Thus f(z) > 1. If f(w) + f(v) > 3, we can change f(w) and
f(v), if necessary, to f(w) = 2 and f(v) = 1 and as before we get a contradiction. Thus
assume that f(w) = 0. Then f(v) = 2. We note that f(x) > 1. Let T =T — {v, w}.
Then voiar (T") < w(f [vrry) = w(f) =2 = Yoiar (T) =2, and 50 Yoiar (T") < Yoiar(T)-
Assume that deg(xz) > 3. Then £(T") = ¢(T) — 1. Now we have

n +24+5-0T")-1 n"+5-01T") 1 1
Yoidl (T") < Yoiar (T') = 5 ) = 5 ( )+§ < ’YoidJ(T//)+§-

This implies that Ye;ar(T") = Yoiar(T), a contradiction with Yeiar (T") < Yoiar(T).
Thus deg(xz) = 2 and so ¢(T") = ¢(T). Note that 7" is not a star, since u is not
adjacent to a leaf. Thus by the contrapositive direction of the induction hypothesis
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we have Yoiar (T") # %. We deduce that

Yoidl (T") < Yoiar (T')
_ n+5—£(T)

2
n”+2+5—£(T”)

2
. n//+5—Z(TN)
=5 — *+l1

< Yoiar(T") + 1.

Then we obtain that voar (T") = Yoiar (T'), a contradiction with Yoi;ar (T") < Voiar (T)-
This completes the proof of Claim 1. <

Thus u is a support vertex. Let v be a leaf adjacent to u. Let T = T — v. According
to Lemma 1 and the hypothesis,

n+5—UT) _ w4145 (UT)+1) ' +5-(T)

o1 Tl<oi T)= = =
le( )77dl() 5 D) D)

By the first part of the theorem, v,;47(T") > M. Thus, Yeiar(T') = M.
By the induction hypothesis T” is a star. So u is the center of 7", and consequently

T is a star. O
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