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Abstract: Let A and B be two disjoint subsets of the vertex set V of a graph G.

The set A is said to dominate B, denoted by A → B, if for every vertex u ∈ B there
exists a vertex v ∈ A such that uv ∈ E(G). For any graph G, a partition π = {V1,
V2, . . . , Vp} of the vertex set V is an upper domatic partition if Vi → Vj or Vj → Vi
or both for every Vi, Vj ∈ π, whenever i 6= j. The upper domatic number D(G) is
the maximum order of an upper domatic partition. In this paper, we study the upper

domatic number of powers of graphs and examine the special case when power is 2.

We also show that the upper domatic number of kth power of a graph can be viewed
as its k-upper domatic number.
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1. Introduction

Let G = (V,E) be a graph of order n = |V (G)| and size m = |E(G)|. Throughout

this paper, we consider only finite, simple and undirected graphs. For definitions and

notations, we refer [3, 5, 7]. The distance between two vertices x and y in a graph

G, d(x, y) is the length of a shortest x− y path in the graph G. The eccentricity of a

vertex v ∈ V (G) is the maximum distance from v to any vertex in G. The radius of G,

rad(G) is the minimum eccentricity among all the vertices of G whereas the diameter

of G, diam(G) is the maximum eccentricity among all the vertices of G. The open

neighborhood of a vertex v ∈ V , N(v) is the set of all vertices that are adjacent to v,

while the closed neighborhood of a vertex v ∈ V , is N [v] = N(v) ∪ {v}. The degree
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54 The upper domatic number of powers of graphs

of a vertex v is the cardinality of N(v). The maximum and minimum degrees of the

vertices in G is denoted by ∆(G) and δ(G) respectively. A clique in a graph G is a

subgraph where any two vertices are adjacent to each other. The maximum number

of vertices in a clique of a graph G is called the clique number of the graph G, ω(G).

For two disjoint subsets A and B of the vertex set V of a graph G, the set A is said

to dominate B, denoted by A → B, if for every vertex u ∈ B there exists a vertex

v ∈ A such that u and v are adjacent. A subset S of the vertex set of G is said to be

a dominating set of a graph G, if S → V (G)\S.

E. J. Cockayne and S. T. Hedetniemi initiated a study on partitioning the vertex set

into maximum number of dominating sets in [1]. A partition π = {V1, V2, . . . , Vp} is

a domatic partition if each Vi ∈ π is a dominating set. The maximum order of such

a partition is called the domatic number. Based on the domination between any two

sets in the partition, T. W. Haynes and others studied another generalisation of the

domatic number, called the upper domatic number [4]. For a graph G, a partition

π = {V1, V2, . . . , Vp} of the vertex set V is an upper domatic partition if Vi dominates

Vj or Vj dominates Vi or both for every Vi, Vj ∈ π, whenever i 6= j. The upper domatic

number D(G) is the maximum order of an upper domatic partition of G. Any upper

domatic partition of order D(G) is referred to as a D-partition of G.

In the present study, we explore the upper domatic number of powers of graphs. For

any positive integer k, the kth power of a graph G is the graph Gk having vertex

set V (Gk) = V (G) such that two vertices u, v ∈ V (Gk) are adjacent if and only if

d(u, v) ≤ k in G.

One immediate observation is that we can interpret D(Gk) using the concept of k-

domination. Given two subsets A and B of the vertex of a graph G, the set A is

said to k-dominate B, denoted by A
k−→ B, if for every vertex u ∈ B there exists a

vertex v ∈ A such that d(u, v) ≤ k. A subset S of the vertex set of G is said to be

a k-dominating set of a graph G, if every vertex in V (G) is at a distance at most k

from a vertex in S. The k-upper domatic partition is a vertex partition π = {V1, V2,

. . . , Vp}, where for any Vi, Vj ∈ π, the set Vi
k−→ Vj or Vj

k−→ Vi or both, when i 6= j.

The maximum order of a k-upper domatic partition of a graph G is called the k-upper

domatic number, Dk(G). Any k-upper domatic partition of order Dk(G) is referred

to as a Dk-partition of G. The following theorem shows that for any graph G, the

value of Dk(G) is the same as that of D(Gk).

Theorem 1. The k-upper domatic number of a graph G is equal to the upper domatic
number of the kth power of G.

Proof. Let πk = {V1, V2, . . . , Vp} be a Dk-partition of G. Then by the definition

of k-upper domatic partition, Vi
k−→ Vj or Vj

k−→ Vi for all Vi, Vj ∈ π, where i 6= j.

Without loss of generality, let us assume that Vi
k−→ Vj . Then, for every vertex u in Vj

there is a vertex v ∈ Vi, such that d(u, v) ≤ k implying that uv ∈ E(Gk) and Vi → Vj
in Gk. Therefore, πk is an upper domatic partition in Gk and D(Gk) ≥ Dk(G).

Similarly, assume that π = {V1, V2, . . . , Vq} is a D-partition of Gk. Then by definition



L.C. Samuel, M. Joseph 55

of upper domatic partition, for each pair of distinct vertex subsets Vi and Vj belonging

to π, either Vi → Vj or Vj → Vi. Assume without loss of generality that Vi → Vj .

Then every vertex in Vj is adjacent to some vertex in Vi of Gk. Further, every vertex

in Vj is at a distance at most k from a vertex in Vi in G. Hence, π is a k-upper

domatic partition of G, thus proving the theorem.

2. Bounds of D(Gk)

First we examine the bounds of D(Gk). The first result is a lower bound for D(Gk)

when k < diam(G).

Proposition 1. If G is a connected graph, then D(Gk) ≥ k + 1 whenever 1 ≤ k <
diam(G).

Proof. Since diam(G) ≥ k+ 1, there exists a path (v1, v2, . . . , vk+1) in G. Then the

vertex partition π = {{v1}, {v2}, . . . , {vk}, V (G)\{v1, v2, . . . , vk}} is an upper domatic

partition of Gk with order k + 1. Therefore, D(Gk) ≥ k + 1.

Next, we characterize graphs G such that D(Gk) = n in terms of diameter of graph

G.

Proposition 2. Let G be a connected graph of order n and diameter diam(G). Then
D(Gk) = n if and only if k ≥ diam(G), where k is a positive integer.

Proof. If diam(G) ≤ k, then for each vertex u ∈ V (G) and any v ∈ V (G)\{u},
d(u, v) ≤ k. Thus, in Gk the vertex u will dominate every vertex v ∈ V (G)\{u} and

D(Gk) = n.

Conversely, if D(Gk) = n, then by the definition of upper domatic number, for all

u, v ∈ V (G), the vertices u and v are adjacent in Gk, and further d(u, v) ≤ k in G,

implying that diam(G) ≤ k.

Since D(Gk) = n whenever k ≥ diam(G), we primarily focus on k ≤ diam(G). Now we

examine the relation between the upper domatic number of a graph and its subgraph.

Theorem 2. [4] For a graph G and a subgraph H, if H has D-partition with a dominating
set, then D(G) ≥ D(H).

Proposition 3. For a graph G, if H is its spanning subgraph, then D(G) ≥ D(H).

Proof. Let π = {V1, V2, . . . , Vp} be the D-partition of H. If Vi → Vj in H for

Vi, Vj ∈ π, then Vi → Vj in G as well. Therefore, the partition π is an upper domatic

partition of G.
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If we consider two positive integers k1 and k2, where k1 < k2, then Gk1 is a spanning

subgraph of Gk2 which leads to the following result.

Proposition 4. For any graph G and positive integers k1 and k2, if k1 < k2, then
D(Gk1) ≤ D(Gk2).

An example for a graph with the property that D(Gk1) = D(Gk2) when k1 < k2 is

that of G = P4. It can be verified that D(P 2
4 ) = D(P4) = 3.

Proposition 4 gives a relation between upper domatic numbers of kth powers of a

graph, for different values of k. The following result is an upper bound for D(G) in

terms of maximum degree of the graph [4].

Theorem 3. [4] If G is a graph with maximum degree ∆(G), then D(G) ≤ ∆(G) + 1.

In Proposition 4, we have seen that for k1 < k2, D(Gk1) ≤ D(Gk2). For any graph

G, if k1 < diam(G), then there exists a k2 such that D(Gk1) < D(Gk2). We provide

a value for k2, where the inequality is strong.

Theorem 4. For a graph G, if k < diam(G), then D(Gk) < D(G2k+1).

Proof. Let G be a graph and k < diam(G). If 2k + 1 ≥ diam(G), then by Proposi-

tion 2, D(G2k+1) = n > D(G). Let us consider that 2k+1 < diam(G). By Theorem 3,

we know that D(Gk) ≤ ∆(Gk) + 1. Let u be a vertex of maximum degree in Gk. For

any two vertices v, w ∈ N(u), the distance between v and w is at most 2k in G. Since

diam(G) > 2k + 1, there exists at least one vertex, say x, at distance k + 1 from u.

The vertices in N [u] ∪ {x} induces a clique of order ∆(Gk) + 2 in G2k+1, implying

that D(G2k+1) ≥ ∆(Gk) + 2 > D(Gk).

Theorem 5. For a graph G, D(Gk) ≥ ∆(Gb
k
2 c) + 1.

Proof. The result is obvious if k ≥ diam(G). Taking k < diam(G), let u be the

vertex in Gb
k
2 c with maximum degree. The distance between any two vertices in

the open neighbourhood of u is at most k. Hence, N [u] induces a clique in Gk and

D(Gk) ≥ ∆(Gb
k
2 c) + 1.

The bounds for the upper domatic number of a graph in terms of the clique number

is obtained in [6].

Theorem 6. [6] If ω(G) is the clique number of a graph G of order n, then ω(G) ≤

D(G) ≤ n+ ω(G)

2
.

Characterization of graphs for a given value of D(G) can be found in [4].
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Theorem 7. [4] For any graph G of order n,

1. D(G) = 1 if and only if G = Kn,

2. D(G) = 2 if and only if G is a galaxy with at least one edge,

3. D(G) ≥ 3 if and only if G contains a K3 or a P3.

We now characterise the graphs whose kth power have upper domatic number equal

to one for any k.

Theorem 8. For any graph G and positive integer k, D(Gk) = 1 if and only if G is Kn.

Proof. It is obvious that D(Kn
k
) = 1. Conversely, if D(Gk) = 1 and G 6= Kn, then

D(G) ≥ 2. But by Proposition 4, D(Gk) ≥ D(G), which contradicts the assumption

that G 6= Kn.

Now we proceed to characterise the graphs with D(Gk) = 2 when k ≥ 2.

Theorem 9. For any positive integer k ≥ 2, D(Gk) = 2 if and only if G = n1K2 ∪n2K1,
where n1 is a positive integer and n2 is a non-negative integer.

Proof. It can be easily observed that D(Kk
2 ) = 2 for any value of k. Hence D(Gk) =

2, where k is any positive integer. Conversely, if G 6= n1K2∪n2K1, then by Theorem 8,

G 6= nK1. Hence G contains at least a path P3 with vertices u1, u2, u3. When k ≥ 2,

π = {{u1}, {u2}, V (G)\{u1, u2}} is an upper domatic partition of Gk, implying that

D(Gk) ≥ 3, which is a contradiction.

Corollary 1. If G is a connected graph of order greater than 2 then D(Gk) ≥ 3 for
k ≥ 2.

In Proposition 1, we observed that k + 1 is a lower bound for the upper domatic

number of kth power of a graph when 1 ≤ k ≤ n− 1. We now give a characterization

of connected graphs with D(Gk) = k+ 1. The following theorem that gives the exact

value of D(P k
n ) is required for further discussion.

Theorem 10. [6] The upper domatic number of the kth power of path Pn is

D(P k
n ) =


k + 1, if n = k + 1,

l + k + 1, if k + 2 ≤ n ≤ 3k

2k + 1, if n ≥ 3k + 1.

where l =
⌊

n−k−1
2

⌋
,

Theorem 11. For any positive integer k > 1, G is a connected graph with D(Gk) = k+1
if and only if G = Pk+2 or G is of order k + 1.
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Proof. If G is a connected graph of order k+1, then diam(G) ≤ k, so that D(Gk) =

k + 1. On the other hand, when G = Pk+2, D(Gk) = k + 1 by Theorem 10.

Conversely, assume that G is a connected graph of order n such that D(Gk) = k+ 1.

It is immediate that n ≥ k + 1. We wish to prove that G is of order k + 1 when

G 6= Pk+2. If possible let n > k+1. Then diam(G) = k+1, otherwise D(Gk) ≥ k+2,

contradicting the assumption. Consider the diametral path of G say P which is of

order k+2. Let V (P ) = {v1, v2, . . . , vk+2} where vi is adjacent to vi+1, 1 ≤ i ≤ k+1.

The graph G being connected, there exists a vertex v /∈ V (P ) which is adjacent

to vi, 1 ≤ i ≤ k + 2. Suppose v is adjacent to vi, 2 ≤ i ≤ k + 1. Then v is at

most at distance k from v1 or vk+2 and consequently the kth power of G[V (P )∪ {v}]
contains a clique of order k + 2, suggesting that D(Gk) ≥ k + 2 by Theorem 6. If v

is adjacent to one of the end vertices of P say v1, then V (P ) ∪ {v} contains a Pk+3.

Then
{
{v1}, {v2} . . . {vk+1}, {v, vk+2}

}
is a D-partition of cardinality k + 2. Hence

by Theorem 2, D(Gk) ≥ k + 2, contradicting the assumption that D(Gk) = k + 1.

Thus, G is of order k + 1 if G 6= Pk+2.

As a special case of Theorem 11, when k = 2 we have the following result.

Corollary 2. Let G be a connected graph. Then, D(G2) = 3 if and only if G ∈
{P3,K3, P4}.

The following characterization of graphs with D(G2) ≥ 4 immediately follows from

Corollary 2.

Corollary 3. D(G2) ≥ 4 if and only if G contains H ∈ {K1,3, C4, P5} whenever G is a
connected graph.

3. Upper domatic number of square of graphs

We now explore few properties of upper domatic number of square of graphs. As seen

in Proposition 4, the value of upper domatic number of square of a graph is at least

as much as the upper domatic number of the graph. Moreover, the difference between

these values of a graph can be arbitrarily large. For a ≥ 2 and b ≥ 1, let G be the

graph of order a+b, with a clique of order a and b pendant vertices adjacent to a single

vertex in the clique. It can be easily verified that D(G) = a, while D(G2) = a + b,

for a ≥ 2 and b ≥ 1. It is evident from the previous example that there exists graph

G, such that D(G) < D(G2). Similarly, there are graphs for which its upper domatic

number coincides with the upper domatic number of its square. In [4], Haynes et al.

proved that ∆(G) + 1 is an upper bound for the upper domatic number of a graph

and called a graph G with D(G) = ∆(G) + 1 upper domatically full. We next show

that a graph whose upper domatic number coincides with the upper domatic number

of its square is upper domatically full.
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Figure 1. The graph G.

Theorem 12. For a graph G, if D(G) = D(G2), then G is upper domatically full.

Proof. Consider the vertex v ∈ V (G) of maximum degree and let v1, v2, . . . , v∆(G)

be the vertices adjacent to v. Then, the set of vertices {v, v1, v2, . . . , v∆(G)} forms

a clique in G2, proving that ω(G2) ≥ ∆(G) + 1. Hence, by Theorem 6, D(G2) ≥
ω(G2) ≥ ∆(G) + 1. Since ∆(G) + 1 is an upper bound for D(G), it follows that

D(G) ≤ ∆(G) + 1 ≤ D(G2), thus completing the proof.

Corollary 4. If G is a graph with maximum degree ∆(G), then D(G2) ≥ ∆(G) + 1.

Theorem 13. For a connected graph G of order n ≥ 4 and minimum degree δ(G) ≥ 2,
the upper domatic number of G2 is at least four.

Proof. Since δ(G) ≥ 2, G contains a cycle. If the graph G contains a Ct, where

t ≥ 4, then D(G2) ≥ 4. If the graph G contains no cycle of order at least 4, then

G contains contains a triangle. Since n ≥ 4, G contains K1,3 and by Corollary 4,

D(G2) ≥ 4.

A Nordhaus–Gaddum type bounds for the upper domatic number of square of a graph

is presented next.

Theorem 14. For a graph G of n vertices, n+ 1 ≤ D(G2) +D(G
2
) ≤ 2n.

Proof. By Corollary 4, D(G2) ≥ ∆(G) + 1 and D(G
2
) ≥ ∆(G) + 1. Let v be

the vertex of maximum degree in G. The degree of vertex v in G is n − ∆(G) − 1.

Therefore, D(G
2
) ≥ n−∆(G). Hence, D(G2) +D(G

2
) ≥ n+ 1.

The corona G ◦H of two graphs G and H is defined as the graph obtained by taking

one copy of G and n copies of H, and joining the ith vertex of G with every vertex in

the ith copy of H, where n is the order of G.
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Theorem 15. If G is a graph of order n, then D((G ◦ K1)2) ≤ n + 1. Moreover,
D((G ◦K1)2) = n+ 1 if and only if diam(G) ≤ 2.

Proof. Let G be a graph of order n, then in a D-partition of (G ◦K1)2 there is at

most one set containing only pendant vertices of the corona. If there are two sets say,

X and Y containing only pendant vertices of the corona, then X does not dominate

Y in (G ◦K1)2 and vice versa, as the distance between any two pendant vertices is

at least three. Therefore, D((G ◦K1)2) ≤ n+ 1.

If D((G ◦ K1)2) = n + 1 and diam(G) ≥ 3, then by the same arguments there is

exactly one set containing only pendant vertices of the corona, suggesting that in a

D-partition π of (G ◦ K1)2 there are n sets containing vertices from V (G). If the

n sets contain only vertices from V (G), then D(G2) = n and diam(G) ≤ 2. Hence,

some sets contain vertices from both V (G) and pendant vertices. Consider vertices u

and v of G which are at diametral distance. Let A,B ∈ π such that u ∈ A, v ∈ B.

Without loss of generality assume that A → B. Since d(u, v) ≥ 3, A contains a

pendant vertex. If C ∈ π is the set containing only pendant vertices of the corona,

then A→ C. Further, the vertices of C are adjacent either to u or to a vertex in N(u).

However, these vertices in C are at a distance greater than two from v. Therefore,

B does not dominate C in (G ◦K1)2 and vice versa. Thus, diam(G) ≤ 2 whenever

D((G ◦K1)2) = n+ 1. The converse can be proved easily.

Now, we determine the upper domatic number of powers of some common classes of

graphs. It is not difficult to obtain the value of D(Gk) when G is complete graph Kn

and complete bipartite graph Kr,s. The upper domatic number of powers of cycles

was determined in [6].

Theorem 16. [6] The upper domatic number of the kth power of cycle Cn is

D(Ck
n) =


n, if 2k ≤ n ≤ 2k + 1,

l+k+1, if 2k + 1 < n ≤ 3k

2k + 1, if n ≥ 3k + 1.

where l =
⌊

n−k−1
2

⌋
,

4. Generalized petersen graph

For the integers a ≥ 3 and 1 ≤ b ≤
⌊
a− 1

2

⌋
, the generalized petersen

graph denoted as P (a, b) is a connected graph with the vertex set V (P (a, b)) =

{u1, u2, . . . , ua, v1, v2, . . . , va} and the edge set E(G) = {uiu(i+1), uivi, viv(i+b)| for 1 ≤
i ≤ a} where the indices are taken modulo a. The generalized petersen graph is a

3-regular graph of order 2a.

Theorem 17. The upper domatic number of a generalized petersen graph is four.
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Proof. Let P (a, b) be a generalized petersen graph. By the definition of generalized

petersen graphs, the set {u1, u2, . . . , ua} induces a cycle. Since the upper domatic

number of a cycle is three and the set {v1, v2, . . . , va} is a dominating set of P (a, b),

D(P (a, b)) ≥ 4. Moreover, P (a, b) is a 3-regular graph and D(G) ≤ ∆(G)+1. Hence,

D(G) = 4.

We require the following results about P (a, 1), which can be verified in order to

determine the upper domatic number of P (a, 1)k, for k ≥ 2.

Proposition 5. For the generalized petersen graph P (a, 1),

1. diam(P (a, 1)) =
⌊a

2

⌋
+ 1

2. ∆(P (a, 1)k) =


4k − 1, if 1 ≤ k ≤ diam(P (a, 1))− 2,

2a− 3, if a is odd and k =diam(P (a, 1))− 1,

2a− 2, if a is even and k =diam(P (a, 1))− 1,

2a− 1, if k =diam(P (a, 1)).

3. ω(P (a, 1)k) =


2k, if 1 ≤ k ≤ diam(P (a, 1))− 2,

a, if k =diam(P (a, 1))− 1,

2a, if k =diam(P (a, 1)).

Theorem 18. For a ≥ 3, the upper domatic number of kth power of P (a, 1) is

D(P (a, 1)k) =



2a, if k = d+ 1,⌊
3a

2

⌋
, if k = d,

k + a, if
a

3
≤ k < d,

4k, if 1 ≤ k < a

3
,

where d =
⌊a

2

⌋
.

Proof. It is important to note that a vertex ui ∈ V (P (a, 1)) is at a distance at most

k from each of the vertex for 1 ≤ j ≤ k in the set {u(i+j), u(i−j), v(i+j−1), v(i−j+1)},
where the indices are taken modulo a. For different values of k, we consider the

following cases.

Case 1: If k = d+ 1 = diam(P (a, 1)), then D(P (a, 1)k) = 2a by Proposition 2.

Case 2: If k = d, then we partition the vertices of P (a, 1)k into

⌊
3a

2

⌋
sets in the

following manner.

Vi =


{ui}, if 1 ≤ i ≤ a,
{vi−a, vi+d−a}, if a+ 1 ≤ i ≤ a+ d− 1,

{vd, va}, if i = a+ d and a is even,

{vd, va−1, va}, if i = a+ d and a is odd.
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Since the vertices {u1, u2, . . . , ua} induces a clique of order a, the sets V1, V2, . . . , Va
dominates each other. The sets Va+1, Va+2, . . . , Va+d are dominating sets of P (a, 1)k.

Therefore, D(P (a, 1)k) ≥
⌊

3a

2

⌋
. But considering the clique number of P (a, 1), by

Theorem 6, we have D(P (a, 1)k) =

⌊
3a

2

⌋
.

Case 3: If
a

3
≤ k < d, then we provide the following upper domatic partition of order

k + a.

Vi =


{ui}, if 1 ≤ i ≤ k,
{vi−k}, if k + 1 ≤ i ≤ 2k,

{ui−k, va+2k−i+1}, if 2k + 1 ≤ i ≤ k + a.

The sets V1, V2, . . . , V2k induces a clique of P (a, 1)k and the sets V2k+1, V2k+2, . . . , Vk+a

are dominating sets of P (a, 1)k, indicating that D(P (a, 1)k) ≥ k + a. By Theorem 6

we have D(P (a, 1)k) ≤
⌊

2a+ 2k

2

⌋
= a+ k. Therefore, D(P (a, 1)k) = k + a.

Case 4: If 1 ≤ k <
a

3
, then a vertex partition of a subgraph of P (a, 1)k is given

below.

Vi =


{ui}, if 1 ≤ i ≤ k,
{vi−k}, if k + 1 ≤ i ≤ 2k,

{ui−k, va+2k−i+1}, if 2k + 1 ≤ i ≤ 3k,

{vi−2k, ua+3k−i+1}, if 3k + 1 ≤ i ≤ 4k.

Similar to Case 3, when 1 ≤ k <
a

3
, the set {u1, u2, . . . , uk, v1, v2, . . . , vk} induces

a clique of order 2k. Hence, the sets V1, V2, . . . , V2k dominates each other. More-

over, the sets V2k+1, V2k+2, . . . , V4k are dominating sets of P (a, 1)k, implying that

D(P (a, 1)k) ≥ 4k. But ∆(P (a, 1)k) = 4k − 1. Hence, Theorem 3 implies that

D(P (a, 1)k) = 4k.

5. Hypercubes

The n-hypercube graph, denoted by Qn, is the graph whose vertex set comprises

all the 2n symbols a1, a2, . . . , an where ai ∈ {0, 1} and two vertices are adjacent if

and only if their symbols differ in exactly one coordinate. In [4], the upper domatic

number of a hypercube was discussed.

Theorem 19. [4] For a n-hypercube, D(Qn) = n.

Note that for any two vertices u and v in a n-hypercube, if d(u, v) ≤ k, then their

symbols differ in at most k positions. The diameter of a n-hypercubes is n. Now, we
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explore the maximum degree and clique number of kth power of n-hypercubes. The

following result can be easily extended from [2].

Theorem 20. For the n-hypercubes Qn,

1. ∆(Qk
n) =

k∑
i=1

(
n
i

)
,

2. ω(Qk
n) =


k
2∑

i=0

(
n
i

)
, if k is even,

2

k−1
2∑

i=0

(
n−1
i

)
, if k is odd.

Theorem 21. For positive integers n ≥ k, D(Qk
n+1) ≥ D(Qk

n) + k.

Proof. In order to prove this theorem, we first show that a domatic partition of

order k can be obtained from the vertices of Qk−1
n , for 1 ≤ k ≤ n. Let v be a vertex of

Qk−1
n . The sets in the domatic partition is defined as Vi = {u ∈ V (Qn) | d(u, v) = i

(mod k)}, where 0 ≤ i ≤ k − 1. Since, for any vertex u ∈ V (Qk−1
n ) there exists a

diametral path of Qk−1
n starting from v and containing u, every set Vi is a dominating

set. After all, Qn+1 contains two vertex disjoint Qns as induced subgraphs say H1

and H2. Let π1 be a D-partition of Hk
1 and π2 be the domatic partition of Hk−1

2 .

Every set in π2 being a dominating set of Hk−1
2 , any set in π2 dominates each vertex

of H1 in Qk
n+1. Hence the partition π = π1 ∪ π2 of order D(Qk

n) + k is an upper

domatic partition of Qk
n+1.

Theorem 22. Let n and k be positive integers. Then D(Qk+1
n+1) ≥ 2D(Qk

n).

Proof. Let π = {V1, V2, . . . , Vp} be a D-partition of Qk
n. We define V ′i as the set of

vertices obtained by concatenating symbol zero before the symbol of every vertex in

Vi. Similarly, V ′′i is the set of vertices obtained by concatenating symbol one before

the symbol of every vertex in Vi. The partition π′ = {V ′1 , V ′2 , . . . , V ′p , V ′′1 , V ′′2 , . . . , V ′′p }
is an upper domatic partition of Qk+1

n+1, therefore, D(Qk+1
n+1) ≥ 2D(Qk

n).

From the recursive relation in Theorem 22, one can easily deduce the following lower

bound for the upper domatic number of kth power of n-hypercube.

Corollary 5. If G is a n-hypercube, then D(Qk
n) ≥ (n− k + 2)2k−1.

Theorem 23. For any positive integer k, D(Qk
k) = 2k.

Proof. This theorem immediately follows from the fact that diameter of an n-

hypercube is n and its order is 2n.
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Theorem 24. If n ≥ 2 and k = n− 1, then D(Qk
n) = 3× 2n−2.

Proof. We first show that D(Qk
n) ≥ 3 × 2n−2, when k = n − 1. This follows

immediately from Corollary 5. The clique number of Qk
n is

n−1
2∑

i=0

(
n
i

)
when n is odd

and 2

n−2
2∑

i=0

(
n−1
i

)
when n is even. It is well known that

n∑
i=0

(
n
i

)
= 2n and

(
n
i

)
=
(

n
n−i
)
.

Therefore the clique number of Qk
n when k is n− 1 is 2n−1. By Theorem 6, D(Qk

n) ≤
2n−1 + 2n

2
= 3× 2n−2. Hence, D(Qk

n) = 3× 2n−2.

Theorem 25. If k ≥ 1 and n = 2k + 1, then D(Qk
n) = 2n−1.

Proof. For a vertex v in Qk
n having the symbol (a1, a2, . . . , an), let v be the vertex

whose symbol is obtained by toggling the value of ai at the position i. Here n is odd

and k =
⌊n

2

⌋
. Any vertex whose symbol differs at a maximum of k positions from

that of v is at a distance at most k from v and the vertices whose binary code differs

at a minimum of k + 1 positions from that of v is at a distance at most k from v.

Therefore, for any v ∈ Qn, the set {v, v} forms a dominating set of Qk
n and the vertex

set of Qk
n can be partitioned into 2n−1 disjoint dominating sets. Hence, D(Qk

n) ≥ 2n−1

when k ≥ 1 and n = 2k + 1. By Theorem 20, ∆(Qk
n) =

k∑
i=1

(
n
i

)
= 2n−1 − 1. But by

Theorem 3, D(Gk) ≤ ∆(Gk)+1. Thus, D(Qk
n) = 2n−1 when k ≥ 1 and n = 2k+1.
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