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Abstract: Let k ≥ 1 be an integer, and let G be a finite and simple graph with

vertex set V (G). A signed total Italian k-dominating function (STIkDF) on a graph G

is a function f : V (G) → {−1, 1, 2} satisfying the conditions that
∑

x∈N(v) f(x) ≥ k

for each vertex v ∈ V (G), where N(v) is the neighborhood of v, and each vertex u
with f(u) = −1 is adjacent to a vertex v with f(v) = 2 or to two vertices w and

z with f(w) = f(z) = 1. The weight of an STIkDF f is ω(f) =
∑

v∈V (G) f(v).

The signed total Italian k-domination number γkstI(G) of G is the minimum weight

of an STIkDF on G. In this paper we initiate the study of the signed total Italian k-

domination number of graphs, and we present different bounds on γkstI(G). In addition,
we determine the signed total Italian k-domination number of some classes of graphs.

Some of our results are extensions of well-known properties of the signed total Roman
k-domination number γkstR(G), introduced and investigated by Volkmann [8, 10].

Keywords: Signed total Italian k-dominating function, Signed total Italian k-

domination number, Signed total Roman k-dominating function, Signed total Roman

k-domination number.
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1. Terminology and introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi

and Slater [4]. Specifically, let G be a graph with vertex set V (G) = V and edge

set E(G) = E. The integers n = n(G) = |V (G)| and m = m(G) = |E(G)| are the

order and the size of the graph G, respectively. The open neighborhood of a vertex

v is NG(v) = N(v) = {u ∈ V (G)|uv ∈ E(G)}, and the closed neighborhood of v is

NG[v] = N [v] = N(v) ∪ {v}. The degree of a vertex v is dG(v) = d(v) = |N(v)|. The

minimum and maximum degree of a graph G are denoted by δ(G) = δ and ∆(G) = ∆,

respectively. For a set X ⊆ V (G), its open neighborhood is the set NG(X) = N(X) =
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v∈X N(v), and its closed neighborhood is the set NG[X] = N [X] = N(X) ∪X. The

complement of a graph G is denoted by G. A leaf of a graph G is a vertex of degree

1, while a support vertex of G is a vertex adjacent to a leaf. Denote by S(G) the

set of support vertices of G. An edge incident with a leaf is called a pendant edge.

Let Pn, Cn and Kn be the path, cycle and complete graph of order n. A complete

bipartite graph with partite sets X and Y , where |X| = p and |Y | = q is denoted by

Kp,q. Specifically, K1,q is called a star. Let S(r, s) be the double star with exactly

two adjacent vertices u and v that are not leaves such that u is adjacent to r ≥ 1

leaves and v is adjacent to s ≥ 1 leaves. A spider graph is a tree with one vertex of

degree at least 3 and all others of degree at most two.

All along this paper we will assume that k is a positive integer. In this paper

we continue the study of signed total Roman and signed total Italian dominating

functions in graphs and digraphs. For a subset S ⊆ V (G) of vertices of a graph G

and a function f : V (G) −→ R, we define f(S) =
∑

x∈S f(x).

If k ≥ 1 is an integer, then Volkmann [10] defined the signed total Roman k-dominating

function (STRkDF) on a graph G as a function f : V (G) −→ {−1, 1, 2} such that

f(N(v)) =
∑

x∈N(v) f(x) ≥ k for every v ∈ V (G), and every vertex u for which

f(u) = −1 is adjacent to a vertex v for which f(v) = 2. The weight of an STRkDF f

on a graph G is ω(f) =
∑

v∈V (G) f(v). The signed total Roman k-domination number

γkstR(G) of G is the minimum weight of an STRkDF on G. The special case k = 1 was

introduced and investigated by Volkmann [8] and [7]. A γkstR(G)-function is a signed

total Roman k-dominating function on G of weight γkstR(G). Amjadi and Soroudi

[1], Dehgardi and Volkmann [3] and Volkmann [9] studied the signed total Roman

domination number in digraphs.

A signed total Italian k-dominating function (STIkDF) on a graph G is defined as a

function f : V (G) −→ {−1, 1, 2} having the property f(N(v)) ≥ k for every v ∈ V (G),

and each vertex u with f(u) = −1 is adjacent to a vertex v with f(v) = 2 or to two

vertices w and z with f(w) = f(z) = 1. Note that in the case k ≥ 2, the second

condition is superfluous. The weight of an STIkDF f is ω(f) =
∑

v∈V (G) f(v). The

signed total Italian k-domination number γkstI(G) of G is the minimum weight of an

STIkDF on G. The special case k = 1 was introduced and investigated by Volkmann

[6]. A γkstI(G)-function is a signed total Italian k-dominating function on G of weight

γkstI(G). For an STIkDF f on G, let Vi = Vi(f) = {v ∈ V (G) : f(v) = i} for

i = −1, 1, 2. A signed total Italian k-dominating function f : V (G) −→ {−1, 1, 2} can

be represented by the ordered partition (V−1, V1, V2) of V (G).

The signed total Italian k-domination number exists when δ ≥ k
2 . The definitions lead

to γkstI(G) ≤ γkstR(G). Therefore each lower bound of γkstI(G) is also a lower bound of

γkstR(G). Note that the signed total Italian k-domination number is the total version

of the weak signed Roman k-domination number, see Volkmann [11, 12].

For an integer q ≥ 1, Kulli [5] called a subset D of vertices of a graph G a total

q-dominating set if every vertex x ∈ V (G) has at least q neighbors in D. The total

q-domination number γtq(G) is the minimum cardinality of a total q-dominating set
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of G. The special case q = 1 is the usual total domination number γt(G), introduced

by Cockayne, Dawes and Hedetniemi [2].

Our purpose in this work is to initiate the study of the signed total Italian k-

domination number. We present basic properties and sharp bounds on γkstI(G).

In particular, we show that many lower bounds on γkstR(G) are also valid for

γkstI(G). Some of our results are extensions of well-known properties of the signed

total Roman k-domination number and the signed total Italian domination number

γstI(G) = γ1stI(G), given by Volkmann [6, 8, 10].

2. Preliminary results

In this section we present basic properties of the signed total Italian k-dominating

functions and the signed total Italian k-domination numbers.

Proposition 1. Let k ≥ 1 be an integer, and let G be a graph of order n with δ(G) ≥
dk/2e. If f = (V−1, V1, V2) is an STIkDF on G, then

(a) |V−1|+ |V1|+ |V2| = n.

(b) ω(f) = |V1|+ 2|V2| − |V−1|.

(c) If δ(G) ≥ d(k + s)/2e with s ∈ {0, 1}, then V1 ∪ V2 is a total d(k + s)/2e-dominating
set of G.

Proof. Since (a) and (b) are immediate, we only prove (c). Suppose on the contrary,

that there exists a vertex v with at most d(k + s)/2e − 1 neighbors in V1 ∪ V2. Then

v has at least

δ(G)− (d(k + s)/2e − 1) ≥ d(k + s)/2e − (d(k + s)/2e − 1) = 1

neighbors in V−1. Hence the definition implies the contradiction

k ≤ f(N(v)) ≤ 2(d(k + s)/2e − 1)− 1 ≤ 2(k + s+ 1)

2
− 3 = k + s− 2 ≤ k − 1.

Consequently, V1 ∪ V2 is a total d(k + s)/2e-dominating set of G.

Corollary 1. If G is a graph of order n and minimum degree δ ≥ d k+s
2
e with s ∈ {0, 1},

then γk
stI(G) ≥ 2γ

td k+s
2
e − n.

Proof. Let f = (V−1, V1, V2) be a γkstI(G)-function. Then it follows from Proposition

1 that

γkstI(G) = |V1|+ 2|V2| − |V−1| = 2|V1|+ 3|V2| − n ≥ 2|V1 ∪ V2| − n ≥ 2γtd k+s
2 e
− n.
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The graphs qK2 and qK3 show that Corollary 1 is sharp for k = 1 and k = 2. The

proof of the next proposition is identically with the proof of Proposition 2 in [10] and

is therefore omitted.

Proposition 2. Let k ≥ 1 be an integer, and let G be a graph of order n with minimum
degree δ ≥ k/2 and maximum degree ∆. If f = (V−1, V1, V2) is an STIkDF on G, then

(i) (2∆− k)|V2|+ (∆− k)|V1| ≥ (δ + k)|V−1|.

(ii) (2∆ + δ)|V2|+ (∆ + δ)|V1| ≥ (δ + k)n.

(iii) (∆ + δ)ω(f) ≥ (δ −∆ + 2k)n+ (δ −∆)|V2|.

(iv) ω(f) ≥ (δ − 2∆ + 2k)n/(2∆ + δ) + |V2|.

3. Bounds on the signed total Italian k-domination number

We start with a general upper bound, and we characterize all extremal graphs.

Theorem 1. Let G be a graph of order n with δ(G) ≥ d k
2
e. Then γk

stI(G) ≤ 2n, with
equality if and only if k is even, δ(G) = k

2
, and each vertex of G is adjacent to a vertex of

minimum degeree.

Proof. Define the function g : V (G) −→ {−1, 1, 2} by g(x) = 2 for each vertex

x ∈ V (G). Since δ(G) ≥ dk2 e, the function g is an STIkDF on G of weight 2n and

thus γkstI(G) ≤ 2n.

Now let k be even, δ(G) = k
2 , and assume that each vertex of G is adjacent to a vertex

of minimum degeree. Let f be an STIkDF on G, and let x ∈ V (G) be an arbitray

vertex. Then x has a neighbor v with d(v) = k
2 . Therefore the condition f(N(v)) ≥ k

implies f(x) = 2. Thus f is of weight 2n, and we obtain γkstI(G) = 2n.

Conversely, assume that γkstI(G) = 2n. If k = 2p + 1 is odd, then δ(G) ≥ p + 1.

Define the function h : V (G) −→ {−1, 1, 2} by h(w) = 1 for an arbitrary vertex w

and h(x) = 2 for each vertex x ∈ V (G) \ {w}. Then

h(N(v)) =
∑

x∈N(v)

f(x) ≥ 2(p+ 1)− 1 = 2p+ 1 = k

for each vertex v ∈ V (G). Thus the function h is an STIkDF on G of weight 2n− 1,

and we obtain the contradiction γkstI(G) ≤ 2n− 1.

Let now k even, and assume that there exists a vertex w such that d(x) ≥ k
2 +1 for each

x ∈ N(w). Define the function h1 : V (G) −→ {−1, 1, 2} by h1(w) = 1 and h1(x) = 2

for each vertex x ∈ V (G)\{w}. Then h1(N(w)) ≥ k, h1(N(x)) ≥ 2(k
2 +1)−1 = k+1

for each x ∈ N(w) and h1(N(y)) ≥ k for each y 6∈ N [w]. Hence the function h1 is

an STIkDF on G of weight 2n − 1, a contradiction to the assumption γkstI(G) = 2n.

This completes the proof.
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The proof of Theorem 1 also leads to the next result.

Theorem 2. Let G be a graph of order n with δ(G) ≥ d k
2
e. Then γk

stR(G) ≤ 2n, with
equality if and only if k is even, δ(G) = k

2
, and each vertex of G is adjacent to a vertex of

minimum degeree.

Let k ≥ 2 be an even integer. If H is a k
2 -regular graph of order n, then Theorems 1

and 2 imply that γkstI(H) = γkstR(H) = 2n. The next corollaries follow from Theorems

1 and 2 immediately.

Corollary 2. Let G be a connected graph of order n ≥ 2 with δ(G) = 1. Then
γ2
stI(G) = 2n if and only if n = 2.

Corollary 3. Let G be a connected graph of order n ≥ 2 with δ(G) = 1. Then
γ2
stR(G) = 2n if and only if n = 2.

Observation 3. If G is a graph of order n with δ(G) ≥ k, then γk
stI(G) ≤ γk

stR(G) ≤ n.

Proof. Define the function f : V (G) −→ {−1, 1, 2} by f(x) = 1 for each vertex

x ∈ V (G). Since δ(G) ≥ k, the function f is an STRkDF on G of weight n and thus

γkstI(G) ≤ γkstR(G) ≤ n.

As an application of Proposition 2 (iii), we obtain a lower bound on the signed total

Italian k-domination number for r-regular graphs.

Corollary 4. If G is an r-regular graph of order n with r ≥ k
2
, then

γk
stI(G) ≥ kn

r
.

Example 1. If H is a k-regular graph of order n, then it follows from Corollary 4 that
γk
stI(H) ≥ n and thus γk

stI(H) = n, according to Observation 3.

Example 1 shows that Observation 3 and Corollary 4 are both sharp.

Theorem 4. If G is a graph of order n with δ(G) ≥ k
2
, then

γk
stI(G) ≥ k + 2 + δ(G)− n.

If in addition δ(G)− k is odd, then γk
stI(G) ≥ k + 3 + δ(G)− n.
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Proof. Let f be a γkstI(G)-function. Then there exists a vertex w with f(w) ≥ 1. It

follows from the the definitions that

γkstI(G) =
∑

x∈V (G)

f(x) = f(w) +
∑

x∈N(w)

f(x) +
∑

x∈V (G)−N [w]

f(x)

≥ 1 + k − (n− d(w)− 1) = k + 2 + d(w)− n ≥ k + 2 + δ(G)− n.

Now assume that δ(G) − k is odd. If there exists a vertex w with f(w) = 2 or a

vertex v with f(v) = 1 and d(v) ≥ δ(G) + 1, then the inequality chain above leads to

γkstI(G) ≥ k+ 3 + δ(G)−n. So assume that f(x) ∈ {−1, 1} for each vertex x ∈ V (G),

and each vertex y with f(y) = 1 has degree d(y) = δ(G). Let now u be a vertex of

minimum degree with f(u) = 1. Since δ(G)− k is odd, we observe that∑
x∈N(u)

f(x) ≥ k + 1

and thus

γkstI(G) =
∑

x∈V (G)

f(x) = f(u) +
∑

x∈N(u)

f(x) +
∑

x∈V (G)−N [u]

f(x)

≥ 1 + k + 1− (n− d(u)− 1) = k + 3 + d(u)− n = k + 3 + δ(G)− n.

This completes the proof.

Example 2. If k ≥ 1 and n ≥ 2 are integers such that 2n− 2 ≥ k, then it holds:

(i) If k ≥ n, then γk
stI(Kn) = k + 2.

(ii) If k ≤ n− 1 and n− k is odd, then γk
stI(Kn) = k + 1.

(iii) If k ≤ n− 1 and n− k is even, then γk
stI(Kn) = k + 2.

Proof. Let f be a γkstI(Kn)-function.

(i) Since k ≥ n, there exists a vertex w with f(w) ≥ 2. This implies γkstI(Kn) =

f(w) + f(N(w)) ≥ 2 + k.

For γkstI(Kn) ≤ k + 2, let the function g : V (Kn) −→ {−1, 1, 2} assign to 2n− k − 2

vertices the value 1 and to the remaining k+ 2− n vertices the value 2. Then g is an

STIkDF on Kn of weight ω(g) = k+2 and so γkstI(Kn) ≤ k+2. Thus γkstI(Kn) = k+2

in this case.

(ii) Since there exists a vertex w with f(w) ≥ 1, we note that γkstI(Kn) = f(w) +

f(N(w)) ≥ 1 + k.

For γkstI(Kn) ≤ k + 1, let the function g : V (Kn) −→ {−1, 1, 2} assign to n+k+1
2

vertices the value 1 and to the remaining n−k−1
2 vertices the value -1. Then g is an

STIkDF on Kn of weight ω(g) = k+1 and so γkstI(Kn) ≤ k+1. Thus γkstI(Kn) = k+1

in the second case.
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(iii) If there exists a vertex w with f(w) = 2, then it follws that γkstI(Kn) = f(w) +

f(N(w)) ≥ 2 + k. If f(x) ∈ {−1, 1} for all x ∈ V (Kn), then f(N(x)) is even when

n is odd and f(N(x)) is odd when n is even. Since f(N(x)) ≥ k, whe observe that

f(N(x)) ≥ k + 1 when n − k is even. If w is a vertex with f(w) = 1, we therefore

deduce that γkstI(Kn) = f(w) + f(N(w)) ≥ 1 + k + 1 = k + 2.

For γkstI(Kn) ≤ k + 2, let the function g : V (Kn) −→ {−1, 1, 2} assign to n+k+2
2

vertices the value 1 and to the remaining n−k−2
2 vertices the value -1. Then g is an

STIkDF on Kn of weight ω(g) = k+2 and so γkstI(Kn) ≤ k+2. Thus γkstI(Kn) = k+2

in the last case.

Example 2 (ii) and (iii) show that Theorem 4 is sharp for k ≤ n−1. If ∆(G) ≥ δ(G)+3,

then the next lower bound is an improvement of Theorem 4.

Proposition 3. If G is a graph of order n with δ(G) ≥ k
2
, then

γk
stI(G) ≥ k + ∆(G)− n.

Proof. Let w ∈ V (G) be a vertex of maximum degree, and let f be a γkstI(G)-

function. Then the definitions imply

γkstI(G) =
∑

x∈V (G)

f(x) =
∑

x∈N(w)

f(x) +
∑

x∈V (G)−N(w)

f(x)

≥ k +
∑

x∈V (G)−N(w)

f(x) ≥ k − (n−∆(G))

= k + ∆(G)− n,

and the proof of the desired lower bound is complete.

Corollary 5. Let G be a graph of order n, minimum degree δ ≥ k
2

and maximum degree
∆. If δ < ∆, then

γk
stI(G) ≥

⌈
2δ + 3k − 2∆

2∆ + δ
n

⌉
.

Proof. Multiplying both sides of the inequality in Proposition 2 (iv) by ∆ − δ and

adding the resulting inequality to the inequality in Proposition 2 (iii), we obtain the

desired lower bound.

Since γkstR(G) ≥ γkstI(G), Corollary 5 leads to the next known lower bound immedi-

ately.

Corollary 6. ([10]) Let G be a graph of order n, minimum degree δ ≥ k
2

and maximum
degree ∆. If δ < ∆, then

γk
stR(G) ≥

⌈
2δ + 3k − 2∆

2∆ + δ
n

⌉
.
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Examples 12 and 13 in [10] demonstrate that Corollary 6 is sharp and therefore

Corollary 5 too. The special case k = 1 of Corollaries 4 and 5 can be found in [6].

A set S ⊆ V (G) is a 2-packing of the graph G if N [u]∩N [v] = ∅ for any two distinct

vertices u, v ∈ S. The 2-packing number ρ(G) of G is defined by

ρ(G) = max{|S| : S is a 2− packing of G}.

Analogously to Theorem 14 in [10], one can prove the next lower bound on the signed

total Italian k-domination number.

Theorem 5. If G is a graph of order n with δ(G) ≥ k
2
, then

γk
stI(G) ≥ ρ(G)(k + δ(G))− n.

Corollary 7. ([10]) If G is a graph of order n with δ(G) ≥ k
2
, then

γk
stR(G) ≥ ρ(G)(k + δ(G))− n.

In [10], the author presented an infinite family of graphs achieving equality in Corol-

lary 7. Thus Corollary 7 and Theorem 5 are sharp. Using Corollary 4, one can prove

the following Nordhaus-Gaddum type inequality analogously to Theorem 15 in [10].

Theorem 6. If G is an r-regular graph of order n such that r ≥ k
2

and n− r−1 ≥ k
2
−1,

then

γk
stI(G) + γk

stI(G) ≥ 4kn

n− 1
.

If n is even, then γk
stI(G) + γk

stI(G) ≥ 4k(n− 1)/(n− 2).

Let k ≥ 2 be an even integer, and let H and H be k-regular graphs of order n = 2k+1.

By Example 1, we have γkstI(H) = γkstI(H) = n. Consequently,

γkstI(H) + γkstI(H) = 2n =
4kn

n− 1
.

Thus the Nordhaus-Gaddum bound of Theorem 6 is sharp for even k.

Theorem 7. Let G be connected graph of order n ≥ 3 and let S(G) be the set of its
support vertices. Then γ2

stI(G) ≤ γ2
stR(G) ≤ n+ |S(G)|.

Proof. Define the function f : V (G) −→ {−1, 1, 2} by f(x) = 2 when x is a support

vertex and f(x) = 1 otherwise. If v is a leaf, then v is ajacent to a support vertex and

so f(N(v)) = 2. If v is not a leaf, then d(v) ≥ 2 and thus f(N(v)) ≥ 2. Therefore f is

an STR2DF on G of weight n+ |S(G)| and hence γ2stI(G) ≤ γ2stR(G) ≤ n+ |S(G)|.
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Example 3. For n ≥ 4, we have γ2
stR(Pn) = γ2

stI(Pn) = n+ 2.

Proof. Let Pn = v1v2 . . . vn, and let f be a γ2stI(Pn)-function. According to Theorem

7, we have γ2stI(Pn) ≤ γ2stR(Pn) ≤ n + 2. Conversely, it is easy to see that f(vi) ≥ 1

for 1 ≤ i ≤ n and f(v2) = f(vn−1) = 2. Therefore γ2stR(Pn) ≥ γ2stI(Pn) ≥ n + 2 and

thus γ2stR(Pn) = γ2stI(Pn) = n+ 2.

Since γ2stR(P3) = γ2stI(P3) = 4, the condition n ≥ 4 in Example 3 is necessary.

Example 4. Let H be a spider graph, and let w ∈ V (H) with d(w) ≥ 3. If every leaf of
H has distance at least two from w, then γ2

stR(H) = γ2
stI(H) = n+ |S(H)|.

Proof. According to Theorem 7, we have γ2stI(H) ≤ γ2stR(H) ≤ n+ |S(H)|.
Converesely, let f be a γ2stI(H)-function. Since every leaf of H has distance at least

two from w, we note that f(x) ≥ 1 for x ∈ V (H). In addition, we have f(x) = 2

for each x ∈ S(H). Therefore γ2stR(H) ≥ γ2stI(H) ≥ n + |S(H)| and thus γ2stR(H) =

γ2stI(H) = n+ |S(H)|.

Examples 3 and 4 demonstrate that Theorem 7 is sharp.

Example 5. If n ≥ 2, then γ2
stI(K1,n−1) = γ2

stR(K1,n−1) = 4.

Proof. Let G = K1,n−1, and let f be a γ2stI(G)-function. If n = 2, then the result

is obviously. Let now n ≥ 3, and let w be the central vertex of the star G. Clearly,

f(w) = 2. Hence it follows that

γ2stR(G) ≥ γ2stI(G) = f(w) + f(N(w)) ≥ 2 + 2 = 4.

For the converse inequality γ2stI(G) ≤ γ2stR(G) ≤ 4, let v1, v2, . . . , vn−1 be the leaves

of G. If n − 1 = 2p is even, define g : V (G) −→ {−1, 1, 2} by g(w) = 2, g(vi) = 1

for 1 ≤ i ≤ p + 1 and g(vi) = −1 for p + 2 ≤ i ≤ 2p. Then g is an STR2DF on G

of weight 4 and thus γ2stI(G) ≤ γ2stR(G) ≤ 4 in this case. If n = 2p + 1 is odd, then

define h : V (G) −→ {−1, 1, 2} by h(w) = h(v2p+1) = 2, h(vi) = 1 for 1 ≤ i ≤ p and

h(vi) = −1 for p + 1 ≤ i ≤ 2p. Then h is an STR2DF on G of weight 4 and thus

γ2stI(G) ≤ γ2stR(G) ≤ 4 also in this case.

Example 5 shows that γ2stR(H) = γ2stI(H) = n + |S(H)| is not valid for each spider

graph H. Therefore the condition that every leaf of H has distance at least two from

w is important in Example 4.
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4. Special classes of graphs

Let Cn be a cycle of length n ≥ 3. In [6], the author has shown that γstI(Cn) = n/2

when n ≡ 0 (mod 4), γstI(Cn) = (n + 3)/2 when n ≡ 1, 3 (mod 4) and γstI(Cn) =

(n + 6)/2 when n ≡ 2 (mod 4). Now we determine γkstI(Cn) as well as γkstR(Cn) for

2 ≤ k ≤ 4.

Corollary 4 and Observation 3 immediately lead to γ2stI(Cn) = γ2stR(Cn) = n. In

addition, Theorems 1 and 2 imply γ4stI(Cn) = γ4stR(Cn) = 2n.

Example 6. For n ≥ 3, we have γ3
stR(Cn) = γ3

stI(Cn) = d 3n
2
e + 1 when n ≡ 2 (mod 4)

and γ3
stR(Cn) = γ3

stI(Cn) = d 3n
2
e otherwise.

Proof. Let Cn = v1v2 . . . vnv1. Assume first that n ≡ 0, 1, 3 (mod 4). Applying

Corollary 4, we obtain γ3stR(Cn) ≥ γ3stI(Cn) ≥ d 3n2 e.
If n = 4t for an integer t ≥ 1, then define g : V (Cn) −→ {−1, 1, 2} by g(v4i+1) =

g(v4i+2) = 2 and g(v4i+3) = g(v4i+4) = 1 for 0 ≤ i ≤ t − 1. Then g is an STR3DF

on Cn of weight ω(g) = 6t = 3n
2 and so γ3stI(Cn) ≤ γ3stR(Cn) ≤ d 3n2 e and thus

γ3stI(Cn) = γ3stR(Cn) = d 3n2 e in this case.

If n = 4t+ 1 for an integer t ≥ 1, then define g : V (Cn) −→ {−1, 1, 2} by g(v4i+1) =

g(v4i+2) = 2 and g(v4i+3) = g(v4i+4) = 1 for 0 ≤ i ≤ t− 1 and g(v4t+1) = 2. Then g

is an STR3DF on Cn of weight ω(g) = 6t+2 = d 3n2 e and thus γ3stR(Cn) = γ3stI(Cn) =

d 3n2 e in this case too.

If n = 4t+ 3 for an integer t ≥ 0, then define g : V (Cn) −→ {−1, 1, 2} by g(v4i+1) =

g(v4i+2) = 2 for 0 ≤ i ≤ t, g(v4i+3) = g(v4i+4) = 1 for 0 ≤ i ≤ t− 1 and g(v4t+3) = 1.

Then g is an STR3DF on Cn of weight ω(g) = 6t + 5 = d 3n2 e and thus γ3stR(Cn) =

γ3stI(Cn) = d 3n2 e in the third case.

Let now n = 4t+ 2 for an integer t ≥ 1. If f is a γ3stI(Cn)-function, then we observe

that f(vi) ≥ 1 for each 1 ≤ i ≤ n and f(vi) + f(vi+1) + f(vi+2) + f(vi+3) ≥ 6,

where the indices are taken modulo n. Assume, without loss of generality, that

f(v1) = f(v2) = 2 and f(v3) = f(v4) = 1. Then it follows that f(v5) = f(v6) = 2,

and we obtain

ω(f) = f(v1) + f(v2) + f(v3) + f(v4) + f(v5) + f(v6)

+

t−1∑
i=1

(f(v4i+3) + f(v4i+4) + f(v4i+5) + f(v4i+6))

≥ 10 + 6(t− 1) = 6t+ 4.

Therefore ω(f) ≥ 6t+ 4 = d 3n2 e+ 1 and thus γ3stR(Cn) ≥ γ3stI(Cn) ≥ d 3n2 e+ 1 in this

case. Conversely, if we define g : V (Cn) −→ {−1, 1, 2} by g(v4i+1) = g(v4i+2) = 2 for

0 ≤ i ≤ t and g(v4i+3) = g(v4i+4) = 1 for 0 ≤ i ≤ t− 1, then g is an STR3DF on Cn

of weight ω(g) = 6t + 4 = d 3n2 e+ 1 and thus γ3stR(Cn) = γ3stI(Cn) = d 3n2 e+ 1 in the

last case.
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Example 7. If k ≥ 1 and q ≥ p ≥ 2 are integers such that p ≥ k/2, then γk
stI(Kp,q) = 2k.

Proof. Let G = Kp,q, and let g be a γkstI(G)-function. In addition, let X and Y be

a bipartition of the complete bipartite graph G with |X| = p and |Y | = q. If x ∈ X
and y ∈ Y , then

γkstI(G) = g(V (G)) = g(N(x)) + g(N(y)) ≥ k + k = 2k.

For the converse inequality we distinguish different cases.

a) Assume that k ≥ q. Let the function f : V (G) −→ {−1, 1, 2} assign to 2p − k
vertices of X the value 1, to the remaining k − p vertices of X the value 2, to 2q − k
vertices of Y the value 1 and to the remaining k − q vertices of Y the value 2. Then

f is an STIkDF on G of weight ω(f) = 2k and so γkstI(G) ≤ 2k. Thus γkstI(G) = 2k

in this case.

b) Assume that q > k ≥ p and q− k is even. Let the function f : V (G) −→ {−1, 1, 2}
assign to 2p − k vertices of X the value 1, to the remaining k − p vertices of X the

value 2, to k+q
2 vertices of Y the value 1 and to the remaining q−k

2 vertices of Y the

value -1. Then f is an STIkDF on G of weight ω(f) = 2k and so γkstI(G) ≤ 2k. Thus

γkstI(G) = 2k in the second case.

c) Assume that q > k ≥ p and q − k is odd. Let the function f : V (G) −→ {−1, 1, 2}
assign to 2p − k vertices of X the value 1, to the remaining k − p vertices of X the

value 2, to one vertex of Y the value 2, to k+q−3
2 vertices of Y the value 1 and to the

remaining q−k+1
2 vertices of Y the value -1. Then f is an STIkDF on G of weight

ω(f) = 2k and so γkstI(G) ≤ 2k. Thus γkstI(G) = 2k in the third case.

d) Assume that k < p, p− k is even and q− k is even. Let the function f : V (G) −→
{−1, 1, 2} assign to k+p

2 vertices of X the value 1, to the remaining p−k
2 vertices of X

the value -1, to k+q
2 vertices of Y the value 1 and to the remaining q−k

2 vertices of Y

the value -1. Then f is an STIkDF on G of weight ω(f) = 2k and thus γkstI(G) = 2k

in this case too.

e) Assume that k < p, p− k is odd and q − k is odd. Let the function f : V (G) −→
{−1, 1, 2} assign to one vertex of X the value 2, to k+p−3

2 vertices of X the value 1,

to the remaining p−k+1
2 vertices of X the value -1, to one vertex of Y the value 2, to

k+q−3
2 vertices of Y the value 1 and to the remaining q−k+1

2 vertices of Y the value

-1. Then f is an STIkDF on G of weight ω(f) = 2k and thus γkstI(G) = 2k also in

this case.

The cases k < p, p − k even and q − k odd or k < p, p − k odd and q − k even are

analogously, and are therefore omitted.

Example 6 and Example 7 with p = q show again that Corollary 4 is sharp.

Example 8. If S(r, s) is a double star with r, s ≥ 2, then γ2
stI(S(r, s)) = γ2

stR(S(r, s)) = 4.
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Proof. Let u and v be two adjacent vertices of S(r, s) such that u is adjacent to r

leaves and v is adjacent to s leaves. If g is a γ2stI(S(r, s))-function, then the definition

implies

γ2stR(S(r, s)) ≥ γ2stI(S(r, s)) = ω(g) = g(N(u)) + g(N(v)) ≥ 4.

Conversely, let r = 2p + 1 and s = 2q + 1 be odd. Define f by f(u) = f(v) = 2. In

addition, we assign the weight 2 to one leaf of u, the weight -1 to p + 1 leaves of u,

the weight 1 to p− 1 leaves of u, the weight 2 to one leaf of v, the weight -1 to q + 1

leaves of v, and the weight 1 to q− 1 leaves of v. Then f is an STR2DF on S(r, s) of

weight 4 and thus γ2stI(S(r, s)) ≤ γ2stR(S(r, s)) ≤ 4 in this case.

Now let r = 2p and s = 2q be even. Define f by f(u) = f(v) = 2. In addition, we

assign the weight -1 to p leaves of u, the weight 1 to p leaves of u, the weight -1 to

q leaves of v, and the weight 1 to q leaves of v. Then f is an STR2DF on S(r, s) of

weight 4 and thus γ2stI(S(r, s)) ≤ γ2stR(S(r, s)) ≤ 4 also in this case.

The case r even and s odd or r odd and s even are similar to the cases above and are

therefore omitted.

Example 3 shows that γ2stR(S(1, 1)) = γ2stI(S(1, 1)) = 6. For the sake of completeness,

we now determine γ2stI(S(1, s)) for s ≥ 2.

Example 9. If S(1, s) is a double star with s ≥ 2, then γ2
stI(S(1, s)) = γ2

stR(S(1, s)) = 5.

Proof. Let u and v be two adjacent vertices of S(1, s) such that u is adjacent to

one leaf w and v is adjacent to s ≥ 2 leaves. If g is a γ2stI(S(1, s))-function, then we

observe that g(v) = 2 and g(w) ≥ 1. Hence the definition leads to

γ2stR(S(1, s)) ≥ γ2stI(S(1, s)) = ω(g) = g(N(u)) + g(N(v)) ≥ 3 + 2 = 5.

Conversely, let s = 2q + 1 be odd. Define f by f(u) = f(v) = 2 and f(w) = 1. In

addition, we assign the weight 2 to one leaf of v, the weight -1 to q + 1 leaves of v,

and the weight 1 to q − 1 leaves of v. Then f is an STR2DF on S(1, s) of weight 5

and thus γ2stI(S(1, s)) ≤ γ2stR(S(1, s)) ≤ 5 in this case.

Now let s = 2q be even. Define f by f(u) = f(v) = 2 and f(w) = 1. In addition, we

assign the weight -1 to q leaves of v, and the weight 1 to q leaves of v. Then f is an

STR2DF on S(1, s) of weight 5 and thus γ2stI(S(1, s)) ≤ γ2stR(S(1, s)) ≤ 5 also in the

second case.
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