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Abstract: Let k£ > 1 be an integer, and let G be a finite and simple graph with
vertex set V(G). A signed total Italian k-dominating function (STIKDF) on a graph G
is a function f : V(G) — {—1,1,2} satisfying the conditions that ZZeN@) flz) >k
for each vertex v € V(G), where N(v) is the neighborhood of v, and each vertex u
with f(u) = —1 is adjacent to a vertex v with f(v) = 2 or to two vertices w and
z with f(w) = f(z) = 1. The weight of an STIKDF f is w(f) = > ,cv(q) f(v).
The signed total Italian k-domination number v¥ ;(G) of G is the minimum weight
of an STIKDF on G. In this paper we initiate the study of the signed total Italian k-
domination number of graphs, and we present different bounds on 'yfﬂ (G). In addition,
we determine the signed total Italian k-domination number of some classes of graphs.
Some of our results are extensions of well-known properties of the signed total Roman
k-domination number %, »(G), introduced and investigated by Volkmann [8, 10].

Keywords: Signed total Italian k-dominating function, Signed total Italian k-
domination number, Signed total Roman k-dominating function, Signed total Roman
k-domination number.
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1. Terminology and introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi
and Slater [4]. Specifically, let G be a graph with vertex set V(G) = V and edge
set E(G) = E. The integers n = n(G) = |[V(G)| and m = m(G) = |E(G)| are the
order and the size of the graph G, respectively. The open meighborhood of a vertex
vis Ng(v) = N(v) = {u € V(G)|uv € E(G)}, and the closed neighborhood of v is
Nglv] = N[v] = N(v) U{v}. The degree of a vertex v is dg(v) = d(v) = |N(v)|. The
minimum and mazimum degree of a graph G are denoted by §(G) = § and A(G) = A,
respectively. For a set X C V(G), its open neighborhood is the set Ng(X) = N(X) =
© 2021 Azarbaijan Shahid Madani University



172 Signed total Italian k-domination in graphs

Upex N(v), and its closed neighborhood is the set Ng[X] = N[X] = N(X)U X. The
complement of a graph G is denoted by G. A leaf of a graph G is a vertex of degree
1, while a support vertez of G is a vertex adjacent to a leaf. Denote by S(G) the
set of support vertices of G. An edge incident with a leaf is called a pendant edge.
Let P,, C, and K, be the path, cycle and complete graph of order n. A complete
bipartite graph with partite sets X and Y, where | X| = p and |Y| = ¢ is denoted by
K, ,. Specifically, K; , is called a star. Let S(r,s) be the double star with exactly
two adjacent vertices v and v that are not leaves such that u is adjacent to r > 1
leaves and v is adjacent to s > 1 leaves. A spider graph is a tree with one vertex of
degree at least 3 and all others of degree at most two.

All along this paper we will assume that k is a positive integer. In this paper
we continue the study of signed total Roman and signed total Italian dominating
functions in graphs and digraphs. For a subset S C V(G) of vertices of a graph G
and a function f: V(G) — R, we define f(S) =>_ ¢ f(x).

If £ > 11is an integer, then Volkmann [10] defined the signed total Roman k-dominating
function (STRKDF) on a graph G as a function f : V(G) — {—1,1,2} such that
fIN@)) = Xpenew f(@) = k for every v € V(G), and every vertex u for which
f(u) = —1 is adjacent to a vertex v for which f(v) = 2. The weight of an STRKDF f
on a graph G is w(f) = X" ey (q) f(v). The signed total Roman k-domination number
vk r(G) of G is the minimum weight of an STRKDF on G. The special case k = 1 was
introduced and investigated by Volkmann [8] and [7]. A 4% »(G)-function is a signed
total Roman k-dominating function on G of weight 7% (G). Amjadi and Soroudi
[1], Dehgardi and Volkmann [3] and Volkmann [9] studied the signed total Roman
domination number in digraphs.

A signed total Italian k-dominating function (STIKDF) on a graph G is defined as a
function f : V(G) — {—1, 1, 2} having the property f(N(v)) > k for every v € V(G),
and each vertex u with f(u) = —1 is adjacent to a vertex v with f(v) =2 or to two
vertices w and z with f(w) = f(z) = 1. Note that in the case k > 2, the second
condition is superfluous. The weight of an STIKDF f is w(f) = }_,cy(q) f(v). The
signed total Italian k-domination number v, ;(G) of G is the minimum weight of an
STIKDF on G. The special case kK = 1 was introduced and investigated by Volkmann
[6]. A v%;(G)-function is a signed total Italian k-dominating function on G of weight
7% (G). For an STIKDF f on G, let V; = Vi(f) = {v € V(G) : f(v) = i} for
i=—1,1,2. A signed total Italian k-dominating function f : V(G) — {—1,1,2} can
be represented by the ordered partition (V_y,V;, V3) of V(G).

The signed total Italian k-domination number exists when § > g The definitions lead
to vX;(G) < 4% p(G). Therefore each lower bound of 4% ;(G) is also a lower bound of
7k r(G). Note that the signed total Italian k-domination number is the total version
of the weak signed Roman k-domination number, see Volkmann [11, 12].

For an integer ¢ > 1, Kulli [5] called a subset D of vertices of a graph G a total
q-dominating set if every vertex & € V(G) has at least ¢ neighbors in D. The total
g-domination number y;4(G) is the minimum cardinality of a total ¢-dominating set
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of G. The special case ¢ = 1 is the usual total domination number v;(G), introduced
by Cockayne, Dawes and Hedetniemi [2].

Our purpose in this work is to initiate the study of the signed total Italian k-
domination number. We present basic properties and sharp bounds on vftI(G).
In particular, we show that many lower bounds on *yftR(G) are also valid for
7% (G). Some of our results are extensions of well-known properties of the signed
total Roman k-domination number and the signed total Italian domination number
vst1(G) = 7L, ;(G), given by Volkmann [6, 8, 10].

2. Preliminary results

In this section we present basic properties of the signed total Italian k-dominating
functions and the signed total Italian k-domination numbers.

Proposition 1. Let & > 1 be an integer, and let G be a graph of order n with §(G) >
[k/2]. If f = (V_1,V1,V2) is an STIKDF on G, then

(a) |V=i| + VAl + [Vz] = n.
(b) w(f) = [Va| + 2[V2| — [V_1].

(c) If 6(G) > [(k + s)/2] with s € {0,1}, then V; U V3 is a total [(k + s)/2]-dominating
set of G.

Proof.  Since (a) and (b) are immediate, we only prove (c). Suppose on the contrary,
that there exists a vertex v with at most [(k + s)/2] — 1 neighbors in V3 U Va. Then
v has at least

6(G) = ([(k+9)/2] =1) = [(k+5)/2] = ([(k+s)/2] = 1) =11

neighbors in V_;. Hence the definition implies the contradiction

2(k 1
k< f(N@) <2([(k+s)/2] —1) —1 < ¥73:k+572§ k1.
Consequently, V3 U V4 is a total [(k + s)/2]-dominating set of G. O

Corollary 1. If G is a graph of order n and minimum degree § > %527 with s € {0,1},
then 7%, (G) = 27%,’%" - n.

Proof. Let f = (V_1, V1, Va) be a %, ;(G)-function. Then it follows from Proposition
1 that
Vet (G) = Vi +2[Va| = [Voi| = 2[Vi| + 3[Va| = n 2 2[Vi U Va| = 0 2 29,papey — 1

O
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The graphs ¢K5 and gK3 show that Corollary 1 is sharp for k = 1 and & = 2. The
proof of the next proposition is identically with the proof of Proposition 2 in [10] and
is therefore omitted.

Proposition 2. Let k > 1 be an integer, and let G be a graph of order n with minimum
degree 6 > k/2 and maximum degree A. If f = (V_1, V1, V2) is an STIKDF on G, then

(i

) (28 = k)[Va[ + (A = K)[Va| = (8 + K)[V-a].
(i) (24 +0)|Va| + (A +8)|[Va| > (6 + k)n.

)
)

(iii) (A+O)w(f) > (6 — A+ 2K)n+ (6 — A)|Val.
(iv) w(f) > (6 — 2A + 2k)n/(2A + &) + |Val.

3. Bounds on the signed total Italian k-domination number

We start with a general upper bound, and we characterize all extremal graphs.

Theorem 1. Let G be a graph of order n with §(G) > [£]. Then v%;(G) < 2n, with

equality if and only if k is even, §(G) = %, and each vertex of G is adjacent to a vertex of
minimum degeree.

Proof. Define the function g : V(G) — {—1,1,2} by g(x) = 2 for each vertex
z € V(G). Since §(G) > [%], the function g is an STIKDF on G of weight 2n and
thus 7% (G) < 2n.

Now let k be even, §(G) = % and assume that each vertex of G is adjacent to a vertex
of minimum degeree. Let f be an STIKDF on G, and let 2 € V(G) be an arbitray
vertex. Then x has a neighbor v with d(v) = 4. Therefore the condition f(N(v)) > k
implies f(z) = 2. Thus f is of weight 2n, and we obtain V¥, ;(G) = 2n.

Conversely, assume that 7% (G) = 2n. If k = 2p + 1 is odd, then 6(G) > p + 1.
Define the function h : V(G) — {—1,1,2} by h(w) = 1 for an arbitrary vertex w
and h(z) = 2 for each vertex z € V(G) \ {w}. Then

Z fx)y>2(p+1)—1=2p+1=k
zEN (v)

for each vertex v € V(G). Thus the function h is an STIKDF on G of weight 2n — 1,
and we obtain the contradiction 7%, ;(G) < 2n — 1.

Let now k even, and assume that there exists a vertex w such that d(z) > £+1 for each
x € N(w). Define the function hy : V(G) — {—1,1,2} by hy(w) =1 and hq(z) = 2
for each vertex z € V(G)\ {w}. Then hy(N(w)) > k, hi(N(z)) > 2(5+1)-1=k+1
for each z € N(w) and hy(N(y)) > k for each y ¢ N]w]. Hence the function h; is
an STIKDF on G of weight 2n — 1, a contradiction to the assumption v, ;(G) = 2n.
This completes the proof. O
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The proof of Theorem 1 also leads to the next result.

Theorem 2. Let G be a graph of order n with §(G) > [£]. Then 75,z(G) < 2n, with
equality if and only if k is even, 6(G) = %, and each vertex of G is adjacent to a vertex of
minimum degeree.

Let k > 2 be an even integer. If H is a g—regular graph of order n, then Theorems 1
and 2 imply that v ;(H) = v* p(H) = 2n. The next corollaries follow from Theorems
1 and 2 immediately.

Corollary 2. Let G be a connected graph of order n > 2 with §(G) = 1. Then
~v21(G) = 2n if and only if n = 2.

Corollary 3. Let G be a connected graph of order n > 2 with §(G) = 1. Then
v2,r(G) = 2n if and only if n = 2.

Observation 3. If G is a graph of order n with §(G) > k, then v%,;(G) < vEr(G) < n.

Proof. Define the function f : V(G) — {-1,1,2} by f(z) = 1 for each vertex
x € V(G). Since 6(G) > k, the function f is an STRKDF on G of weight n and thus
741(G) £ 75r(G) < n. O

As an application of Proposition 2 (iii), we obtain a lower bound on the signed total
Italian k-domination number for r-regular graphs.

Corollary 4. If G is an r-regular graph of order n with r > %, then

kn

r .

Yo (G) >

Example 1. If H is a k-regular graph of order n, then it follows from Corollary 4 that
VE(H) > n and thus %, (H) = n, according to Observation 3.

Example 1 shows that Observation 3 and Corollary 4 are both sharp.
Theorem 4. If G is a graph of order n with §(G) > g, then
V(@) > k+2+68(G) —n.

If in addition 6(G) — k is odd, then v%,;(G) > k 4+ 3+ §(G) — n.
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Proof. Let f be a v ;(G)-function. Then there exists a vertex w with f(w) > 1. It
follows from the the definitions that

(@) = D> f@)=fw+ D fl@)+ Y f)

z€V(G) zEN (w) z€V(G)—N[w]
> 1+k—(n—dw)—1)=k+2+dw)—n>k+2+6(G) -

Now assume that §(G) — k is odd. If there exists a vertex w with f(w) = 2 or a
vertex v with f(v) =1 and d(v) > 6(G) + 1, then the inequality chain above leads to
vk (G) > k+3+6(G) —n. So assume that f(x) € {—1,1} for each vertex z € V(G),
and each vertex y with f(y) = 1 has degree d(y) = §(G). Let now u be a vertex of
minimum degree with f(u) = 1. Since §(G) — k is odd, we observe that

> f@)zk+1
zEN (u)
and thus
Yu(G) = D f@)=f)+ Y fl >, f@
zeV(G) zEN (u) mGV(G)—N[u]
> 1+k+1-(n—du)—1)=k+3+du)—nm=k+3+06(G)—
This completes the proof. O

Example 2. Ifk > 1 and n > 2 are integers such that 2n — 2 > k, then it holds:
(i) If k > n, then 4% (K,) =k +2.
(i) If k <n—1 and n — k is odd, then v5;(K,) =k + 1.

(i) If k <m—1 and n — k is even, then’ysu( n) =k+2.

Proof.  Let f be a v% (K,)-function.

(i) Since k > n, there exists a vertex w with f(w) > 2. This implies 7%, (K,) =
f(w)+ f(N(w)) >2+k.

For 7% (K,) < k + 2, let the function ¢ : V(K,) — {—1,1,2} assign to 2n — k — 2
vertices the value 1 and to the remaining k 4+ 2 — n vertices the value 2. Then g is an
STIKDF on K, of weight w(g) = k+2 and so v¥,,(K,,) < k+2. Thus v*,(K,) = k+2
in this case.

(ii) Since there exists a vertex w with f(w) > 1, we note that v%,(K,,) = f(w) +
f(N(w)) > 1+ k.

For v%,(K,) < k+ 1, let the function g : V(K,) — {-1,1,2} assign to "5+l
vertices the value 1 and to the remaining % vertices the value -1. Then ¢ is an
STIKDF on K, of weight w(g) = k+1 and so 7%, (K,,) < k+1. Thus 7%, (K,) = k+1

in the second case.
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(iil) If there exists a vertex w with f(w) = 2, then it follws that v¥,,(K,,) = f(w) +
F(N(w)) > 2+ k. If f(x) € {-1,1} for all z € V(K,,), then f(N(x)) is even when
n is odd and f(N(z)) is odd when n is even. Since f(N(z)) > k, whe observe that
f(N(z)) > k+ 1 when n — k is even. If w is a vertex with f(w) = 1, we therefore
deduce that v%,,(K,) = f(w) + f(N(w)) > 1+ k+1=k+2.

For v%,(K,) < k + 2, let the function g : V(K,) — {-1,1,2} assign to “t5+2
vertices the value 1 and to the remaining ”_TH vertices the value -1. Then ¢ is an
STIKDF on K,, of weight w(g) = k+2 and so v%;(K,,) < k+2. Thus 7% ;(K,,) = k+2

in the last case. O

Example 2 (ii) and (iii) show that Theorem 4 is sharp for k < n—1. If A(G) > §(G)+3,
then the next lower bound is an improvement of Theorem 4.

Proposition 3. If G is a graph of order n with §(G) > £, then
%1(G) 2 k+ A(G) —n.

Proof. Let w € V(G) be a vertex of maximum degree, and let f be a ¥ ,(G)-
function. Then the definitions imply

W@ = Y flay= Y fo+ Y f@)

zeV(G) zEN(w) z€V(G)—N(w)

E+ ). fl@)=k—(n—AG)
z€V(G)—N(w)

= k+ A(G) —n,

Y

and the proof of the desired lower bound is complete. O

Corollary 5. Let G be a graph of order n, minimum degree § > g and maximum degree
A. If § < A, then
20 + 3k — 2A

k
'YstI(G) > ’VW”-‘ .

Proof. Multiplying both sides of the inequality in Proposition 2 (iv) by A —§ and
adding the resulting inequality to the inequality in Proposition 2 (iii), we obtain the
desired lower bound. O

Since VX, (G) > %, (@), Corollary 5 leads to the next known lower bound immedi-
ately.

Corollary 6. ([10]) Let G be a graph of order n, minimum degree § > £ and maximum
degree A. If 6 < A, then

20 + 3k — 2A
iz [B2=28,]

2A 46
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Examples 12 and 13 in [10] demonstrate that Corollary 6 is sharp and therefore
Corollary 5 too. The special case k = 1 of Corollaries 4 and 5 can be found in [6].

A set S C V(G) is a 2-packing of the graph G if N[u] N N[v] = 0 for any two distinct
vertices u,v € S. The 2-packing number p(G) of G is defined by

p(G) = max{|S|: S is a 2 — packing of G}.

Analogously to Theorem 14 in [10], one can prove the next lower bound on the signed
total Italian k-domination number.

Theorem 5. If G is a graph of order n with §(G) > %, then
Ye1(G) > p(G)(k +5(G)) — n.
Corollary 7. ([10]) If G is a graph of order n with §(G) > £, then
veir(G) = p(G)(k + 8(G)) — n.
In [10], the author presented an infinite family of graphs achieving equality in Corol-
lary 7. Thus Corollary 7 and Theorem 5 are sharp. Using Corollary 4, one can prove

the following Nordhaus-Gaddum type inequality analogously to Theorem 15 in [10].

Theorem 6. If G is an r-regular graph of order n such that r > g andn—r—12> g -1,
then
4kn

k k A~
> .
Vst (G) + Vst (G) —n—-1

If n is even, then 5 (G) + v5(G) > 4k(n —1)/(n — 2).

Let k > 2 be an even integer, and let H and H be k-regular graphs of order n = 2k+1.
By Example 1, we have 7% ;(H) = v¥,;(H) = n. Consequently,

4kn
n—1

Vh(H) + A~k (H) =2n =
Thus the Nordhaus-Gaddum bound of Theorem 6 is sharp for even k.

Theorem 7. Let G be connected graph of order n > 3 and let S(G) be the set of its
support vertices. Then v2,;(G) < v%4r(G) < n+|S(G)].

Proof.  Define the function f : V(G) — {—1,1,2} by f(z) = 2 when z is a support
vertex and f(z) = 1 otherwise. If v is a leaf, then v is ajacent to a support vertex and
so f(N(v)) = 2. If v is not a leaf, then d(v) > 2 and thus f(N(v)) > 2. Therefore f is
an STR2DF on G of weight n+|S(G)| and hence v%;(G) < v%4x(G) < n+|S(G)|. O
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Example 3. Forn >4, we have Y2, 5(Pn) = v2(Pn) = n + 2.

Proof.  Let P, = v1vy ... vy, and let f be av2;(P,)-function. According to Theorem
7, we have v%,,(P,) < v r(P,) < n+ 2. Conversely, it is easy to see that f(v;) > 1
for 1 <i<mnand f(v2) = f(vn—1) = 2. Therefore v2,5(P,) > v2,;(P,) > n+ 2 and
thus 72, p(Pn) = 72 (Pn) = n + 2. O

Since v z(Ps) = 72,;(Ps) = 4, the condition n > 4 in Example 3 is necessary.

Example 4. Let H be a spider graph, and let w € V(H) with d(w) >
H has distance at least two from w, then v%5(H) = 72, (H) = n+ |S(H)

3. If every leaf of
|.

Proof.  According to Theorem 7, we have 7%, (H) <4 r(H) <n+ |S(H)|.
Converesely, let f be a v2;(H)-function. Since every leaf of H has distance at least
two from w, we note that f(x) > 1 for x € V(H). In addition, we have f(z) = 2
for each x € S(H). Therefore v%5x(H) > v2,;(H) > n+ |S(H)| and thus v (H) =
Vot (H) =n+|S(H)|. [

Examples 3 and 4 demonstrate that Theorem 7 is sharp.
Example 5. Ifn > 2, then ’yfﬂ(Klyn,l) =3 r(Kino1) = 4.

Proof. Let G = Kj,,_1, and let f be a 72;(G)-function. If n = 2, then the result
is obviously. Let now n > 3, and let w be the central vertex of the star G. Clearly,
f(w) = 2. Hence it follows that

V2r(G) > 721 (G) = f(w) + F(N(w)) >2+2=4.

For the converse inequality 72;(G) < 4 (G) < 4, let v1,va,...,v,-1 be the leaves
of G. If n — 1 = 2p is even, define g : V(G) — {-1,1,2} by g(w) = 2, g(v;) = 1
for 1 <i<p+1andg(v;) =—1for p+2 <i<2p. Then gis an STR2DF on G
of weight 4 and thus 72;(G) < 74 x(G) < 4 in this case. If n = 2p + 1 is odd, then
define h : V(G) — {-1,1,2} by h(w) = h(vept+1) = 2, h(v;) = 1 for 1 <4 < p and
h(v;) = =1 for p+1 <4 < 2p. Then h is an STR2DF on G of weight 4 and thus
721 (G) <42 z(G) < 4 also in this case. O

Example 5 shows that 725 (H) = 72,;(H) = n + |S(H)| is not valid for each spider
graph H. Therefore the condition that every leaf of H has distance at least two from
w is important in Example 4.
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4. Special classes of graphs

Let C,, be a cycle of length n > 3. In [6], the author has shown that 57 (C,) = n/
when n = 0(mod4), vs:7(Cr) = (n+ 3)/2 when n = 1, 3(mod4) and ~1(Ch,

(n +6)/2 when n = 2(mod4). Now we determine 7% ;(C,,) as well as 7%, (C},) for
2<k<A4.

Corollary 4 and Observation 3 immediately lead to v%;(Cy) = v%4z(Cn) = n. In
addition, Theorems 1 and 2 imply v%,;(C,,) = 74 z(C)) = 2n.

Example 6. Forn > 3, we have v3,z(Cn) = v3;(Cn) = [22] + 1 when n = 2 (mod 4)
and V3,5 (Cn) = 73,1(Cy) = f%"] otherwise.

Proof. Let Cp, = vjvs...v,v1. Assume first that n = 0, 1, 3 (mod4). Applying
Corollary 4, we obtain 72,z (Cr) = 73,,(Cy) = [32].

If n = 4t for an integer ¢ > 1, then define g : V(C,) — {-1,1,2} by g(vaiy1) =
9(V4i+2) = 2 and g(v4it3) = g(vVai14) = 1 for 0 < i < ¢t —1. Then g is an STR3DF
on C,, of weight w(g) = 6t = 3 and so 73,(Cn) < 3z(Cn) < [2] and thus
ot (Cn) = n(C) = [37 i this case.

If n =4t 4+ 1 for an integer ¢ > 1, then define g : V(C,,) — {—1,1,2} by g(vgiy1) =
9(Vait2) = 2 and g(vgi+3) = g(vVai4a) =1 for 0 < i <t —1 and g(vgry1) = 2. Then g
is an STR3DF on C,, of weight w(g) = 6t+2 = [32] and thus v3,5(Cr) = 73,;(Cp) =
[22] in this case too.
If n = 4t 4 3 for an integer ¢ > 0, then define g : V(Cy,) — {—1,1,2} by g(vgiy1) =
g(Vait2) =2 for 0 <4 <t, g(vair3) = g(Vaiga) = 1 for 0 < i <t —1 and g(varys) = 1.
Then g is an STR3DF on C,, of weight w(g) = 6t + 5 = [32] and thus 73, (C,,) =
73,,(Cr) = [32] in the third case.

Let now n = 4t + 2 for an integer t > 1. If f is a 43,;(C,,)-function, then we observe
that f(v;) > 1 for each 1 < i < n and f(v;) + f(vig1) + f(vit2) + f(vits) = 6,
where the indices are taken modulo n. Assume, without loss of generality, that
f(v1) = f(v2) = 2 and f(vs) = f(vsa) = 1. Then it follows that f(vs) = f(vg) = 2,
and we obtain

w(f) = fur) + f(v2) + f(vs) + fva) + f(vs) + f(ve)
+ Z(f(v4i+3) + f(vaiva) + f(vaivs) + f(vaive))
> 104 6(t— 1) = 6t + 4.

Therefore w(f) > 6t +4 = [22] + 1 and thus v2,5(Cr) > 73,;(Cr) > [22] + 1 in this
case. Conversely, if we define g : V/(C,,) — {—1,1,2} by g(v4i41) = g(vaiy2) = 2 for
0 <i<tand g(vgis+3) = g(vgira) = 1 for 0 <4 <t — 1, then g is an STR3DF on C,
of weight w(g) = 6t +4 = [22] + 1 and thus 73,5(Cy) = 73,;(C,) = [22] + 1 in the
last case. O
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Example 7. Ifk>1 and g > p > 2 are integers such that p > k/2, then 4%, (Kp ) = 2k.

Proof. Let G = K, 4, and let g be a 7% ;(G)-function. In addition, let X and Y be
a bipartition of the complete bipartite graph G with |[X| =pand |Y|=¢q. If z € X
and y € Y, then

~E(G) = g(V(G)) = g(N(2)) + g(N(y)) = k + k = 2k.

For the converse inequality we distinguish different cases.

a) Assume that £ > ¢. Let the function f : V(G) — {—1,1,2} assign to 2p — k
vertices of X the value 1, to the remaining k& — p vertices of X the value 2, to 2¢ — k
vertices of Y the value 1 and to the remaining k — ¢ vertices of Y the value 2. Then
f is an STIKDF on G of weight w(f) = 2k and so v%,;(G) < 2k. Thus 7% ,(G) = 2k
in this case.

b) Assume that ¢ > k > p and ¢ — k is even. Let the function f : V(G) — {-1,1,2}
assign to 2p — k vertices of X the value 1, to the remaining k& — p vertices of X the
value 2, to % vertices of Y the value 1 and to the remaining % vertices of Y the
value -1. Then f is an STIKDF on G of weight w(f) = 2k and so v*,;(G) < 2k. Thus
7% 1 (G) = 2k in the second case.

c¢) Assume that ¢ > k > p and ¢ — k is odd. Let the function f: V(G) — {-1,1,2}
assign to 2p — k vertices of X the value 1, to the remaining k& — p vertices of X the
value 2, to one vertex of Y the value 2, to % vertices of Y the value 1 and to the
remaining % vertices of Y the value -1. Then f is an STIKDF on G of weight
w(f) = 2k and so 7%, ;(G) < 2k. Thus 7% ;(G) = 2k in the third case.

d) Assume that k < p, p—k is even and ¢ — k is even. Let the function f: V(G) —
{-1,1,2} assign to k# vertices of X the value 1, to the remaining % vertices of X
the value -1, to % vertices of Y the value 1 and to the remaining % vertices of Y
the value -1. Then f is an STIKDF on G of weight w(f) = 2k and thus 7% ;(G) = 2k
in this case too.

e) Assume that k < p, p — k is odd and ¢ — k is odd. Let the function f : V(G) —
{—1,1,2} assign to one vertex of X the value 2, to k+’2’_3 vertices of X the value 1,
to the remaining # vertices of X the value -1, to one vertex of Y the value 2, to
k+g_3 vertices of Y the value 1 and to the remaining Q_TICH vertices of Y the value
-1. Then f is an STIKDF on G of weight w(f) = 2k and thus 7% ,;(G) = 2k also in
this case.

The cases k < p, p— k even and ¢ —k odd or £ < p, p — k odd and q — k even are

analogously, and are therefore omitted. O

Example 6 and Example 7 with p = g show again that Corollary 4 is sharp.

Example 8. If S(r,s) is a double star with r,s > 2, then v2,;(S(r, s)) = ¥4 r(S(r,s)) = 4.
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Proof. Let u and v be two adjacent vertices of S(r,s) such that u is adjacent to r
leaves and v is adjacent to s leaves. If g is a 72,;(S(r, s))-function, then the definition
implies

Yarr(S(r,8)) = v (S(r,5)) = wlg) = g(N(u)) + g(N(v)) > 4.

Conversely, let r = 2p+ 1 and s = 2¢ + 1 be odd. Define f by f(u) = f(v) = 2. In
addition, we assign the weight 2 to one leaf of u, the weight -1 to p + 1 leaves of u,
the weight 1 to p — 1 leaves of u, the weight 2 to one leaf of v, the weight -1 to ¢ + 1
leaves of v, and the weight 1 to ¢ — 1 leaves of v. Then f is an STR2DF on S(r,s) of
weight 4 and thus v2,,(S(r, s)) < ¥4 x(S(r,s)) <4 in this case.

Now let r = 2p and s = 2¢ be even. Define f by f(u) = f(v) = 2. In addition, we
assign the weight -1 to p leaves of u, the weight 1 to p leaves of u, the weight -1 to
q leaves of v, and the weight 1 to ¢ leaves of v. Then f is an STR2DF on S(r, s) of
weight 4 and thus 72,;(S(r, s)) < v%4z(S(r, s)) < 4 also in this case.

The case r even and s odd or 7 odd and s even are similar to the cases above and are
therefore omitted. O

Example 9. If S(1,s) is a double star with s > 2, then v2,;(S(1,5)) = v%r(S(1,8)) = 5.

Proof. Let u and v be two adjacent vertices of S(1,s) such that v is adjacent to
one leaf w and v is adjacent to s > 2 leaves. If g is a v%;(S(1, s))-function, then we
observe that g(v) = 2 and g(w) > 1. Hence the definition leads to

Yar(S(L,8)) 2 72 (S(1,5) = wlg) = g(N(u)) + g(N(v)) = 3+2 =5.

Conversely, let s = 2¢ + 1 be odd. Define f by f(u) = f(v) =2 and f(w) = 1. In
addition, we assign the weight 2 to one leaf of v, the weight -1 to ¢ + 1 leaves of v,
and the weight 1 to ¢ — 1 leaves of v. Then f is an STR2DF on S(1,s) of weight 5
and thus 72,;(S(1,s)) <%z (S(1,s)) <5 in this case.

Now let s = 2¢ be even. Define f by f(u) = f(v) =2 and f(w) = 1. In addition, we
assign the weight -1 to ¢ leaves of v, and the weight 1 to ¢ leaves of v. Then f is an
STR2DF on S(1, s) of weight 5 and thus 72,,(S(1,s)) <%z (S(1,s)) <5 also in the
second case. O
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