Research Article

Signed total Italian k-domination in graphs

Lutz Volkmann

Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany volkm@math2.rwth-aachen.de

> Received: 18 July 2020; Accepted: 11 November 2020 Published Online: 13 November 2020

Abstract: Let $k \geq 1$ be an integer, and let G be a finite and simple graph with vertex set V(G). A signed total Italian k-dominating function (STIkDF) on a graph G is a function $f: V(G) \to \{-1, 1, 2\}$ satisfying the conditions that $\sum_{x \in N(v)} f(x) \geq k$ for each vertex $v \in V(G)$, where N(v) is the neighborhood of v, and each vertex u with f(u) = -1 is adjacent to a vertex v with f(v) = 2 or to two vertices w and z with f(w) = f(z) = 1. The weight of an STIkDF f is $\omega(f) = \sum_{v \in V(G)} f(v)$. The signed total Italian k-domination number $\gamma_{stI}^k(G)$ of G is the minimum weight of an STIkDF on G. In this paper we initiate the study of the signed total Italian k-domination number of some classes of graphs. Some of our results are extensions of well-known properties of the signed total Roman k-domination number $\gamma_{stR}^k(G)$, introduced and investigated by Volkmann [8, 10].

Keywords: Signed total Italian k-dominating function, Signed total Italian k-domination number, Signed total Roman k-dominating function, Signed total Roman k-domination number.

AMS Subject classification: 05C69

1. Terminology and introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi and Slater [4]. Specifically, let G be a graph with vertex set V(G) = V and edge set E(G) = E. The integers n = n(G) = |V(G)| and m = m(G) = |E(G)| are the order and the size of the graph G, respectively. The open neighborhood of a vertex v is $N_G(v) = N(v) = \{u \in V(G) | uv \in E(G)\}$, and the closed neighborhood of v is $N_G[v] = N[v] = N(v) \cup \{v\}$. The degree of a vertex v is $d_G(v) = d(v) = |N(v)|$. The minimum and maximum degree of a graph G are denoted by $\delta(G) = \delta$ and $\Delta(G) = \Delta$, respectively. For a set $X \subseteq V(G)$, its open neighborhood is the set $N_G(X) = N(X) =$ © 2021 Azarbaijan Shahid Madani University $\bigcup_{v \in X} N(v)$, and its closed neighborhood is the set $N_G[X] = N[X] = N(X) \cup X$. The complement of a graph G is denoted by \overline{G} . A leaf of a graph G is a vertex of degree 1, while a support vertex of G is a vertex adjacent to a leaf. Denote by S(G) the set of support vertices of G. An edge incident with a leaf is called a pendant edge. Let P_n , C_n and K_n be the path, cycle and complete graph of order n. A complete bipartite graph with partite sets X and Y, where |X| = p and |Y| = q is denoted by $K_{p,q}$. Specifically, $K_{1,q}$ is called a star. Let S(r,s) be the double star with exactly two adjacent vertices u and v that are not leaves such that u is adjacent to $r \geq 1$ leaves and v is adjacent to $s \geq 1$ leaves. A spider graph is a tree with one vertex of degree at least 3 and all others of degree at most two.

All along this paper we will assume that k is a positive integer. In this paper we continue the study of signed total Roman and signed total Italian dominating functions in graphs and digraphs. For a subset $S \subseteq V(G)$ of vertices of a graph G and a function $f: V(G) \longrightarrow \mathbb{R}$, we define $f(S) = \sum_{x \in S} f(x)$.

If $k \geq 1$ is an integer, then Volkmann [10] defined the signed total Roman k-dominating function (STRkDF) on a graph G as a function $f: V(G) \longrightarrow \{-1, 1, 2\}$ such that $f(N(v)) = \sum_{x \in N(v)} f(x) \geq k$ for every $v \in V(G)$, and every vertex u for which f(u) = -1 is adjacent to a vertex v for which f(v) = 2. The weight of an STRkDF f on a graph G is $\omega(f) = \sum_{v \in V(G)} f(v)$. The signed total Roman k-domination number $\gamma_{stR}^k(G)$ of G is the minimum weight of an STRkDF on G. The special case k = 1 was introduced and investigated by Volkmann [8] and [7]. A $\gamma_{stR}^k(G)$ -function is a signed total Roman k-dominating function on G of weight $\gamma_{stR}^k(G)$. Amjadi and Soroudi [1], Dehgardi and Volkmann [3] and Volkmann [9] studied the signed total Roman domination number in digraphs.

A signed total Italian k-dominating function (STIkDF) on a graph G is defined as a function $f: V(G) \longrightarrow \{-1, 1, 2\}$ having the property $f(N(v)) \ge k$ for every $v \in V(G)$, and each vertex u with f(u) = -1 is adjacent to a vertex v with f(v) = 2 or to two vertices w and z with f(w) = f(z) = 1. Note that in the case $k \ge 2$, the second condition is superfluous. The weight of an STIkDF f is $\omega(f) = \sum_{v \in V(G)} f(v)$. The signed total Italian k-domination number $\gamma_{stI}^k(G)$ of G is the minimum weight of an STIkDF on G. The special case k = 1 was introduced and investigated by Volkmann [6]. A $\gamma_{stI}^k(G)$ -function is a signed total Italian k-dominating function on G of weight $\gamma_{stI}^k(G)$. For an STIkDF f on G, let $V_i = V_i(f) = \{v \in V(G) : f(v) = i\}$ for i = -1, 1, 2. A signed total Italian k-dominating function $f: V(G) \longrightarrow \{-1, 1, 2\}$ can be represented by the ordered partition (V_{-1}, V_1, V_2) of V(G).

The signed total Italian k-domination number exists when $\delta \geq \frac{k}{2}$. The definitions lead to $\gamma_{stI}^k(G) \leq \gamma_{stR}^k(G)$. Therefore each lower bound of $\gamma_{stI}^k(G)$ is also a lower bound of $\gamma_{stR}^k(G)$. Note that the signed total Italian k-domination number is the total version of the weak signed Roman k-domination number, see Volkmann [11, 12].

For an integer $q \ge 1$, Kulli [5] called a subset D of vertices of a graph G a *total* q-dominating set if every vertex $x \in V(G)$ has at least q neighbors in D. The *total* q-domination number $\gamma_{tq}(G)$ is the minimum cardinality of a total q-dominating set

of G. The special case q = 1 is the usual total domination number $\gamma_t(G)$, introduced by Cockayne, Dawes and Hedetniemi [2].

Our purpose in this work is to initiate the study of the signed total Italian kdomination number. We present basic properties and sharp bounds on $\gamma_{stI}^k(G)$. In particular, we show that many lower bounds on $\gamma_{stR}^k(G)$ are also valid for $\gamma_{stI}^k(G)$. Some of our results are extensions of well-known properties of the signed total Roman k-domination number and the signed total Italian domination number $\gamma_{stI}(G) = \gamma_{stI}^1(G)$, given by Volkmann [6, 8, 10].

2. Preliminary results

In this section we present basic properties of the signed total Italian k-dominating functions and the signed total Italian k-domination numbers.

Proposition 1. Let $k \ge 1$ be an integer, and let G be a graph of order n with $\delta(G) \ge 1$ $\lfloor k/2 \rfloor$. If $f = (V_{-1}, V_1, V_2)$ is an STIkDF on G, then

- (a) $|V_{-1}| + |V_1| + |V_2| = n$.
- (b) $\omega(f) = |V_1| + 2|V_2| |V_{-1}|.$
- (c) If $\delta(G) \ge \lceil (k+s)/2 \rceil$ with $s \in \{0,1\}$, then $V_1 \cup V_2$ is a total $\lceil (k+s)/2 \rceil$ -dominating set of G.

Proof. Since (a) and (b) are immediate, we only prove (c). Suppose on the contrary, that there exists a vertex v with at most $\lceil (k+s)/2 \rceil - 1$ neighbors in $V_1 \cup V_2$. Then v has at least

$$\delta(G) - \left(\lceil (k+s)/2 \rceil - 1 \right) \geq \lceil (k+s)/2 \rceil - \left(\lceil (k+s)/2 \rceil - 1 \right) = 1$$

neighbors in V_{-1} . Hence the definition implies the contradiction

$$k \le f(N(v)) \le 2(\lceil (k+s)/2 \rceil - 1) - 1 \le \frac{2(k+s+1)}{2} - 3 = k+s - 2 \le k-1.$$

Consequently, $V_1 \cup V_2$ is a total $\lceil (k+s)/2 \rceil$ -dominating set of G.

Corollary 1. If G is a graph of order n and minimum degree $\delta \ge \lfloor \frac{k+s}{2} \rfloor$ with $s \in \{0,1\}$, then $\gamma_{stI}^k(G) \ge 2\gamma_{t\lceil \frac{k+s}{2}\rceil} - n.$

Let $f = (V_{-1}, V_1, V_2)$ be a $\gamma_{stI}^k(G)$ -function. Then it follows from Proposition Proof. 1 that

$$\gamma_{stI}^k(G) = |V_1| + 2|V_2| - |V_{-1}| = 2|V_1| + 3|V_2| - n \ge 2|V_1 \cup V_2| - n \ge 2\gamma_{t\lceil \frac{k+s}{2}\rceil} - n.$$

The graphs qK_2 and qK_3 show that Corollary 1 is sharp for k = 1 and k = 2. The proof of the next proposition is identically with the proof of Proposition 2 in [10] and is therefore omitted.

Proposition 2. Let $k \ge 1$ be an integer, and let G be a graph of order n with minimum degree $\delta \ge k/2$ and maximum degree Δ . If $f = (V_{-1}, V_1, V_2)$ is an STIkDF on G, then

(i)
$$(2\Delta - k)|V_2| + (\Delta - k)|V_1| \ge (\delta + k)|V_{-1}|$$

(ii)
$$(2\Delta + \delta)|V_2| + (\Delta + \delta)|V_1| \ge (\delta + k)n.$$

(iii)
$$(\Delta + \delta)\omega(f) \ge (\delta - \Delta + 2k)n + (\delta - \Delta)|V_2|$$

(iv) $\omega(f) \ge (\delta - 2\Delta + 2k)n/(2\Delta + \delta) + |V_2|.$

3. Bounds on the signed total Italian k-domination number

We start with a general upper bound, and we characterize all extremal graphs.

Theorem 1. Let G be a graph of order n with $\delta(G) \ge \lceil \frac{k}{2} \rceil$. Then $\gamma_{stI}^k(G) \le 2n$, with equality if and only if k is even, $\delta(G) = \frac{k}{2}$, and each vertex of G is adjacent to a vertex of minimum degeree.

Proof. Define the function $g: V(G) \longrightarrow \{-1, 1, 2\}$ by g(x) = 2 for each vertex $x \in V(G)$. Since $\delta(G) \ge \lceil \frac{k}{2} \rceil$, the function g is an STIkDF on G of weight 2n and thus $\gamma_{stI}^k(G) \le 2n$.

Now let k be even, $\delta(G) = \frac{k}{2}$, and assume that each vertex of G is adjacent to a vertex of minimum degeree. Let f be an STIkDF on G, and let $x \in V(G)$ be an arbitray vertex. Then x has a neighbor v with $d(v) = \frac{k}{2}$. Therefore the condition $f(N(v)) \ge k$ implies f(x) = 2. Thus f is of weight 2n, and we obtain $\gamma_{stI}^k(G) = 2n$.

Conversely, assume that $\gamma_{stI}^k(G) = 2n$. If k = 2p + 1 is odd, then $\delta(G) \ge p + 1$. Define the function $h: V(G) \longrightarrow \{-1, 1, 2\}$ by h(w) = 1 for an arbitrary vertex w and h(x) = 2 for each vertex $x \in V(G) \setminus \{w\}$. Then

$$h(N(v)) = \sum_{x \in N(v)} f(x) \ge 2(p+1) - 1 = 2p + 1 = k$$

for each vertex $v \in V(G)$. Thus the function h is an STIkDF on G of weight 2n - 1, and we obtain the contradiction $\gamma_{stI}^k(G) \leq 2n - 1$.

Let now k even, and assume that there exists a vertex w such that $d(x) \ge \frac{k}{2} + 1$ for each $x \in N(w)$. Define the function $h_1: V(G) \longrightarrow \{-1, 1, 2\}$ by $h_1(w) = 1$ and $h_1(x) = 2$ for each vertex $x \in V(G) \setminus \{w\}$. Then $h_1(N(w)) \ge k$, $h_1(N(x)) \ge 2(\frac{k}{2}+1)-1 = k+1$ for each $x \in N(w)$ and $h_1(N(y)) \ge k$ for each $y \notin N[w]$. Hence the function h_1 is an STIkDF on G of weight 2n - 1, a contradiction to the assumption $\gamma_{stI}^k(G) = 2n$. This completes the proof.

The proof of Theorem 1 also leads to the next result.

Theorem 2. Let G be a graph of order n with $\delta(G) \ge \lceil \frac{k}{2} \rceil$. Then $\gamma_{stR}^k(G) \le 2n$, with equality if and only if k is even, $\delta(G) = \frac{k}{2}$, and each vertex of G is adjacent to a vertex of minimum degeree.

Let $k \ge 2$ be an even integer. If H is a $\frac{k}{2}$ -regular graph of order n, then Theorems 1 and 2 imply that $\gamma_{stI}^k(H) = \gamma_{stR}^k(H) = 2n$. The next corollaries follow from Theorems 1 and 2 immediately.

Corollary 2. Let G be a connected graph of order $n \ge 2$ with $\delta(G) = 1$. Then $\gamma^2_{stI}(G) = 2n$ if and only if n = 2.

Corollary 3. Let G be a connected graph of order $n \ge 2$ with $\delta(G) = 1$. Then $\gamma^2_{stR}(G) = 2n$ if and only if n = 2.

Observation 3. If G is a graph of order n with $\delta(G) \ge k$, then $\gamma_{stI}^k(G) \le \gamma_{stR}^k(G) \le n$.

Proof. Define the function $f: V(G) \longrightarrow \{-1, 1, 2\}$ by f(x) = 1 for each vertex $x \in V(G)$. Since $\delta(G) \ge k$, the function f is an STRkDF on G of weight n and thus $\gamma_{stI}^k(G) \le \gamma_{stR}^k(G) \le n$.

As an application of Proposition 2 (iii), we obtain a lower bound on the signed total Italian k-domination number for r-regular graphs.

Corollary 4. If G is an r-regular graph of order n with $r \ge \frac{k}{2}$, then

$$\gamma_{stI}^k(G) \ge \frac{kn}{r}.$$

Example 1. If H is a k-regular graph of order n, then it follows from Corollary 4 that $\gamma_{stI}^{k}(H) \geq n$ and thus $\gamma_{stI}^{k}(H) = n$, according to Observation 3.

Example 1 shows that Observation 3 and Corollary 4 are both sharp.

Theorem 4. If G is a graph of order n with $\delta(G) \geq \frac{k}{2}$, then

$$\gamma_{stI}^k(G) \ge k + 2 + \delta(G) - n.$$

If in addition $\delta(G) - k$ is odd, then $\gamma_{stI}^k(G) \ge k + 3 + \delta(G) - n$.

Proof. Let f be a $\gamma_{stI}^k(G)$ -function. Then there exists a vertex w with $f(w) \ge 1$. It follows from the definitions that

$$\begin{split} \gamma^k_{stI}(G) &= \sum_{x \in V(G)} f(x) = f(w) + \sum_{x \in N(w)} f(x) + \sum_{x \in V(G) - N[w]} f(x) \\ &\geq 1 + k - (n - d(w) - 1) = k + 2 + d(w) - n \geq k + 2 + \delta(G) - n. \end{split}$$

Now assume that $\delta(G) - k$ is odd. If there exists a vertex w with f(w) = 2 or a vertex v with f(v) = 1 and $d(v) \ge \delta(G) + 1$, then the inequality chain above leads to $\gamma_{stI}^k(G) \ge k + 3 + \delta(G) - n$. So assume that $f(x) \in \{-1, 1\}$ for each vertex $x \in V(G)$, and each vertex y with f(y) = 1 has degree $d(y) = \delta(G)$. Let now u be a vertex of minimum degree with f(u) = 1. Since $\delta(G) - k$ is odd, we observe that

$$\sum_{x \in N(u)} f(x) \ge k+1$$

and thus

$$\begin{split} \gamma^k_{stI}(G) &= \sum_{x \in V(G)} f(x) = f(u) + \sum_{x \in N(u)} f(x) + \sum_{x \in V(G) - N[u]} f(x) \\ &\geq 1 + k + 1 - (n - d(u) - 1) = k + 3 + d(u) - n = k + 3 + \delta(G) - n. \end{split}$$

This completes the proof.

Example 2. If $k \ge 1$ and $n \ge 2$ are integers such that $2n - 2 \ge k$, then it holds:

- (i) If $k \ge n$, then $\gamma_{stI}^k(K_n) = k + 2$.
- (ii) If $k \leq n-1$ and n-k is odd, then $\gamma_{stI}^k(K_n) = k+1$.
- (iii) If $k \leq n-1$ and n-k is even, then $\gamma_{stI}^k(K_n) = k+2$.

Proof. Let f be a $\gamma_{stI}^k(K_n)$ -function.

(i) Since $k \ge n$, there exists a vertex w with $f(w) \ge 2$. This implies $\gamma_{stI}^k(K_n) = f(w) + f(N(w)) \ge 2 + k$.

For $\gamma_{stI}^k(K_n) \leq k+2$, let the function $g: V(K_n) \longrightarrow \{-1, 1, 2\}$ assign to 2n-k-2 vertices the value 1 and to the remaining k+2-n vertices the value 2. Then g is an STIkDF on K_n of weight $\omega(g) = k+2$ and so $\gamma_{stI}^k(K_n) \leq k+2$. Thus $\gamma_{stI}^k(K_n) = k+2$ in this case.

(ii) Since there exists a vertex w with $f(w) \ge 1$, we note that $\gamma_{stI}^k(K_n) = f(w) + f(N(w)) \ge 1 + k$.

For $\gamma_{stI}^k(K_n) \leq k+1$, let the function $g: V(K_n) \longrightarrow \{-1, 1, 2\}$ assign to $\frac{n+k+1}{2}$ vertices the value 1 and to the remaining $\frac{n-k-1}{2}$ vertices the value -1. Then g is an STIkDF on K_n of weight $\omega(g) = k+1$ and so $\gamma_{stI}^k(K_n) \leq k+1$. Thus $\gamma_{stI}^k(K_n) = k+1$ in the second case.

(iii) If there exists a vertex w with f(w) = 2, then it follows that $\gamma_{stI}^k(K_n) = f(w) + f(N(w)) \ge 2 + k$. If $f(x) \in \{-1, 1\}$ for all $x \in V(K_n)$, then f(N(x)) is even when n is odd and f(N(x)) is odd when n is even. Since $f(N(x)) \ge k$, whe observe that $f(N(x)) \ge k + 1$ when n - k is even. If w is a vertex with f(w) = 1, we therefore deduce that $\gamma_{stI}^k(K_n) = f(w) + f(N(w)) \ge 1 + k + 1 = k + 2$.

For $\gamma_{stI}^k(K_n) \leq k+2$, let the function $g: V(K_n) \longrightarrow \{-1, 1, 2\}$ assign to $\frac{n+k+2}{2}$ vertices the value 1 and to the remaining $\frac{n-k-2}{2}$ vertices the value -1. Then g is an STIkDF on K_n of weight $\omega(g) = k+2$ and so $\gamma_{stI}^k(K_n) \leq k+2$. Thus $\gamma_{stI}^k(K_n) = k+2$ in the last case.

Example 2 (ii) and (iii) show that Theorem 4 is sharp for $k \leq n-1$. If $\Delta(G) \geq \delta(G)+3$, then the next lower bound is an improvement of Theorem 4.

Proposition 3. If G is a graph of order n with $\delta(G) \geq \frac{k}{2}$, then

$$\gamma_{stI}^k(G) \ge k + \Delta(G) - n.$$

Proof. Let $w \in V(G)$ be a vertex of maximum degree, and let f be a $\gamma_{stI}^k(G)$ -function. Then the definitions imply

$$\begin{split} \gamma_{stI}^{k}(G) &= \sum_{x \in V(G)} f(x) = \sum_{x \in N(w)} f(x) + \sum_{x \in V(G) - N(w)} f(x) \\ &\geq k + \sum_{x \in V(G) - N(w)} f(x) \geq k - (n - \Delta(G)) \\ &= k + \Delta(G) - n, \end{split}$$

and the proof of the desired lower bound is complete.

Corollary 5. Let G be a graph of order n, minimum degree $\delta \geq \frac{k}{2}$ and maximum degree Δ . If $\delta < \Delta$, then

$$\gamma_{stI}^k(G) \ge \left\lceil \frac{2\delta + 3k - 2\Delta}{2\Delta + \delta} n \right\rceil.$$

Proof. Multiplying both sides of the inequality in Proposition 2 (iv) by $\Delta - \delta$ and adding the resulting inequality to the inequality in Proposition 2 (iii), we obtain the desired lower bound.

Since $\gamma_{stR}^k(G) \ge \gamma_{stI}^k(G)$, Corollary 5 leads to the next known lower bound immediately.

Corollary 6. ([10]) Let G be a graph of order n, minimum degree $\delta \geq \frac{k}{2}$ and maximum degree Δ . If $\delta < \Delta$, then

$$\gamma^k_{stR}(G) \ge \left\lceil \frac{2\delta + 3k - 2\Delta}{2\Delta + \delta} n \right\rceil.$$

Examples 12 and 13 in [10] demonstrate that Corollary 6 is sharp and therefore Corollary 5 too. The special case k = 1 of Corollaries 4 and 5 can be found in [6]. A set $S \subseteq V(G)$ is a 2-packing of the graph G if $N[u] \cap N[v] = \emptyset$ for any two distinct vertices $u, v \in S$. The 2-packing number $\rho(G)$ of G is defined by

$$\rho(G) = \max\{|S| : S \text{ is a } 2 - \text{packing of } G\}.$$

Analogously to Theorem 14 in [10], one can prove the next lower bound on the signed total Italian k-domination number.

Theorem 5. If G is a graph of order n with $\delta(G) \ge \frac{k}{2}$, then

$$\gamma_{stI}^k(G) \ge \rho(G)(k + \delta(G)) - n.$$

Corollary 7. ([10]) If G is a graph of order n with $\delta(G) \geq \frac{k}{2}$, then

$$\gamma_{stR}^k(G) \ge \rho(G)(k + \delta(G)) - n.$$

In [10], the author presented an infinite family of graphs achieving equality in Corollary 7. Thus Corollary 7 and Theorem 5 are sharp. Using Corollary 4, one can prove the following Nordhaus-Gaddum type inequality analogously to Theorem 15 in [10].

Theorem 6. If G is an r-regular graph of order n such that $r \ge \frac{k}{2}$ and $n - r - 1 \ge \frac{k}{2} - 1$, then

$$\gamma_{stI}^k(G) + \gamma_{stI}^k(\overline{G}) \ge \frac{4kn}{n-1}.$$

If n is even, then $\gamma_{stI}^k(G) + \gamma_{stI}^k(\overline{G}) \ge 4k(n-1)/(n-2).$

Let $k \geq 2$ be an even integer, and let H and \overline{H} be k-regular graphs of order n = 2k+1. By Example 1, we have $\gamma_{stI}^k(H) = \gamma_{stI}^k(\overline{H}) = n$. Consequently,

$$\gamma^k_{stI}(H) + \gamma^k_{stI}(\overline{H}) = 2n = \frac{4kn}{n-1}$$

Thus the Nordhaus-Gaddum bound of Theorem 6 is sharp for even k.

Theorem 7. Let G be connected graph of order $n \ge 3$ and let S(G) be the set of its support vertices. Then $\gamma_{stI}^2(G) \le \gamma_{stR}^2(G) \le n + |S(G)|$.

Proof. Define the function $f: V(G) \longrightarrow \{-1, 1, 2\}$ by f(x) = 2 when x is a support vertex and f(x) = 1 otherwise. If v is a leaf, then v is a jacent to a support vertex and so f(N(v)) = 2. If v is not a leaf, then $d(v) \ge 2$ and thus $f(N(v)) \ge 2$. Therefore f is an STR2DF on G of weight n + |S(G)| and hence $\gamma_{stI}^2(G) \le \gamma_{stR}^2(G) \le n + |S(G)|$. \Box

Example 3. For $n \ge 4$, we have $\gamma_{stR}^2(P_n) = \gamma_{stI}^2(P_n) = n+2$.

Proof. Let $P_n = v_1 v_2 \dots v_n$, and let f be a $\gamma_{stI}^2(P_n)$ -function. According to Theorem 7, we have $\gamma_{stI}^2(P_n) \leq \gamma_{stR}^2(P_n) \leq n+2$. Conversely, it is easy to see that $f(v_i) \geq 1$ for $1 \leq i \leq n$ and $f(v_2) = f(v_{n-1}) = 2$. Therefore $\gamma_{stR}^2(P_n) \geq \gamma_{stI}^2(P_n) \geq n+2$ and thus $\gamma_{stR}^2(P_n) = \gamma_{stI}^2(P_n) = n+2$.

Since $\gamma_{stR}^2(P_3) = \gamma_{stI}^2(P_3) = 4$, the condition $n \ge 4$ in Example 3 is necessary.

Example 4. Let *H* be a spider graph, and let $w \in V(H)$ with $d(w) \geq 3$. If every leaf of *H* has distance at least two from *w*, then $\gamma_{stR}^2(H) = \gamma_{stI}^2(H) = n + |S(H)|$.

Proof. According to Theorem 7, we have $\gamma_{stI}^2(H) \leq \gamma_{stR}^2(H) \leq n + |S(H)|$. Conversely, let f be a $\gamma_{stI}^2(H)$ -function. Since every leaf of H has distance at least two from w, we note that $f(x) \geq 1$ for $x \in V(H)$. In addition, we have f(x) = 2 for each $x \in S(H)$. Therefore $\gamma_{stR}^2(H) \geq \gamma_{stI}^2(H) \geq n + |S(H)|$ and thus $\gamma_{stR}^2(H) = \gamma_{stI}^2(H) = n + |S(H)|$.

Examples 3 and 4 demonstrate that Theorem 7 is sharp.

Example 5. If $n \ge 2$, then $\gamma_{stI}^2(K_{1,n-1}) = \gamma_{stR}^2(K_{1,n-1}) = 4$.

Proof. Let $G = K_{1,n-1}$, and let f be a $\gamma_{stI}^2(G)$ -function. If n = 2, then the result is obviously. Let now $n \ge 3$, and let w be the central vertex of the star G. Clearly, f(w) = 2. Hence it follows that

$$\gamma_{stR}^2(G) \ge \gamma_{stI}^2(G) = f(w) + f(N(w)) \ge 2 + 2 = 4.$$

For the converse inequality $\gamma_{stI}^2(G) \leq \gamma_{stR}^2(G) \leq 4$, let $v_1, v_2, \ldots, v_{n-1}$ be the leaves of G. If n-1=2p is even, define $g: V(G) \longrightarrow \{-1,1,2\}$ by g(w)=2, $g(v_i)=1$ for $1 \leq i \leq p+1$ and $g(v_i)=-1$ for $p+2 \leq i \leq 2p$. Then g is an STR2DF on Gof weight 4 and thus $\gamma_{stI}^2(G) \leq \gamma_{stR}^2(G) \leq 4$ in this case. If n=2p+1 is odd, then define $h: V(G) \longrightarrow \{-1,1,2\}$ by $h(w) = h(v_{2p+1}) = 2$, $h(v_i) = 1$ for $1 \leq i \leq p$ and $h(v_i) = -1$ for $p+1 \leq i \leq 2p$. Then h is an STR2DF on G of weight 4 and thus $\gamma_{stI}^2(G) \leq \gamma_{stR}^2(G) \leq 4$ also in this case. \Box

Example 5 shows that $\gamma_{stR}^2(H) = \gamma_{stI}^2(H) = n + |S(H)|$ is not valid for each spider graph H. Therefore the condition that every leaf of H has distance at least two from w is important in Example 4.

4. Special classes of graphs

Let C_n be a cycle of length $n \ge 3$. In [6], the author has shown that $\gamma_{stI}(C_n) = n/2$ when $n \equiv 0 \pmod{4}$, $\gamma_{stI}(C_n) = (n+3)/2$ when $n \equiv 1, 3 \pmod{4}$ and $\gamma_{stI}(C_n) = (n+6)/2$ when $n \equiv 2 \pmod{4}$. Now we determine $\gamma_{stI}^k(C_n)$ as well as $\gamma_{stR}^k(C_n)$ for $2 \le k \le 4$.

Corollary 4 and Observation 3 immediately lead to $\gamma_{stI}^2(C_n) = \gamma_{stR}^2(C_n) = n$. In addition, Theorems 1 and 2 imply $\gamma_{stI}^4(C_n) = \gamma_{stR}^4(C_n) = 2n$.

Example 6. For $n \ge 3$, we have $\gamma_{stR}^3(C_n) = \gamma_{stI}^3(C_n) = \lceil \frac{3n}{2} \rceil + 1$ when $n \equiv 2 \pmod{4}$ and $\gamma_{stR}^3(C_n) = \gamma_{stI}^3(C_n) = \lceil \frac{3n}{2} \rceil$ otherwise.

Proof. Let $C_n = v_1 v_2 \dots v_n v_1$. Assume first that $n \equiv 0, 1, 3 \pmod{4}$. Applying Corollary 4, we obtain $\gamma_{stR}^3(C_n) \ge \gamma_{stI}^3(C_n) \ge \lceil \frac{3n}{2} \rceil$.

If n = 4t for an integer $t \ge 1$, then define $g: V(C_n) \longrightarrow \{-1, 1, 2\}$ by $g(v_{4i+1}) = g(v_{4i+2}) = 2$ and $g(v_{4i+3}) = g(v_{4i+4}) = 1$ for $0 \le i \le t-1$. Then g is an STR3DF on C_n of weight $\omega(g) = 6t = \frac{3n}{2}$ and so $\gamma^3_{stI}(C_n) \le \gamma^3_{stR}(C_n) \le \lceil \frac{3n}{2} \rceil$ and thus $\gamma^3_{stI}(C_n) = \gamma^3_{stR}(C_n) = \lceil \frac{3n}{2} \rceil$ in this case.

If n = 4t + 1 for an integer $t \ge 1$, then define $g: V(C_n) \longrightarrow \{-1, 1, 2\}$ by $g(v_{4i+1}) = g(v_{4i+2}) = 2$ and $g(v_{4i+3}) = g(v_{4i+4}) = 1$ for $0 \le i \le t - 1$ and $g(v_{4t+1}) = 2$. Then g is an STR3DF on C_n of weight $\omega(g) = 6t + 2 = \lceil \frac{3n}{2} \rceil$ and thus $\gamma^3_{stR}(C_n) = \gamma^3_{stI}(C_n) = \lceil \frac{3n}{2} \rceil$ in this case too.

If n = 4t + 3 for an integer $t \ge 0$, then define $g: V(C_n) \longrightarrow \{-1, 1, 2\}$ by $g(v_{4i+1}) = g(v_{4i+2}) = 2$ for $0 \le i \le t$, $g(v_{4i+3}) = g(v_{4i+4}) = 1$ for $0 \le i \le t - 1$ and $g(v_{4t+3}) = 1$. Then g is an STR3DF on C_n of weight $\omega(g) = 6t + 5 = \lceil \frac{3n}{2} \rceil$ and thus $\gamma^3_{stR}(C_n) = \gamma^3_{stI}(C_n) = \lceil \frac{3n}{2} \rceil$ in the third case.

Let now n = 4t + 2 for an integer $t \ge 1$. If f is a $\gamma_{stI}^3(C_n)$ -function, then we observe that $f(v_i) \ge 1$ for each $1 \le i \le n$ and $f(v_i) + f(v_{i+1}) + f(v_{i+2}) + f(v_{i+3}) \ge 6$, where the indices are taken modulo n. Assume, without loss of generality, that $f(v_1) = f(v_2) = 2$ and $f(v_3) = f(v_4) = 1$. Then it follows that $f(v_5) = f(v_6) = 2$, and we obtain

$$\omega(f) = f(v_1) + f(v_2) + f(v_3) + f(v_4) + f(v_5) + f(v_6)
+ \sum_{i=1}^{t-1} (f(v_{4i+3}) + f(v_{4i+4}) + f(v_{4i+5}) + f(v_{4i+6}))
\ge 10 + 6(t-1) = 6t + 4.$$

Therefore $\omega(f) \ge 6t + 4 = \lceil \frac{3n}{2} \rceil + 1$ and thus $\gamma^3_{stR}(C_n) \ge \gamma^3_{stI}(C_n) \ge \lceil \frac{3n}{2} \rceil + 1$ in this case. Conversely, if we define $g: V(C_n) \longrightarrow \{-1, 1, 2\}$ by $g(v_{4i+1}) = g(v_{4i+2}) = 2$ for $0 \le i \le t$ and $g(v_{4i+3}) = g(v_{4i+4}) = 1$ for $0 \le i \le t - 1$, then g is an STR3DF on C_n of weight $\omega(g) = 6t + 4 = \lceil \frac{3n}{2} \rceil + 1$ and thus $\gamma^3_{stR}(C_n) = \gamma^3_{stI}(C_n) = \lceil \frac{3n}{2} \rceil + 1$ in the last case.

Example 7. If $k \ge 1$ and $q \ge p \ge 2$ are integers such that $p \ge k/2$, then $\gamma_{stI}^k(K_{p,q}) = 2k$.

Proof. Let $G = K_{p,q}$, and let g be a $\gamma_{stI}^k(G)$ -function. In addition, let X and Y be a bipartition of the complete bipartite graph G with |X| = p and |Y| = q. If $x \in X$ and $y \in Y$, then

$$\gamma_{stI}^k(G) = g(V(G)) = g(N(x)) + g(N(y)) \ge k + k = 2k.$$

For the converse inequality we distinguish different cases.

a) Assume that $k \ge q$. Let the function $f: V(G) \longrightarrow \{-1, 1, 2\}$ assign to 2p - k vertices of X the value 1, to the remaining k - p vertices of X the value 2, to 2q - k vertices of Y the value 1 and to the remaining k - q vertices of Y the value 2. Then f is an STIkDF on G of weight $\omega(f) = 2k$ and so $\gamma_{stI}^k(G) \le 2k$. Thus $\gamma_{stI}^k(G) = 2k$ in this case.

b) Assume that $q > k \ge p$ and q - k is even. Let the function $f: V(G) \longrightarrow \{-1, 1, 2\}$ assign to 2p - k vertices of X the value 1, to the remaining k - p vertices of X the value 2, to $\frac{k+q}{2}$ vertices of Y the value 1 and to the remaining $\frac{q-k}{2}$ vertices of Y the value -1. Then f is an STIkDF on G of weight $\omega(f) = 2k$ and so $\gamma_{stI}^k(G) \le 2k$. Thus $\gamma_{stI}^k(G) = 2k$ in the second case.

c) Assume that $q > k \ge p$ and q - k is odd. Let the function $f: V(G) \longrightarrow \{-1, 1, 2\}$ assign to 2p - k vertices of X the value 1, to the remaining k - p vertices of X the value 2, to one vertex of Y the value 2, to $\frac{k+q-3}{2}$ vertices of Y the value 1 and to the remaining $\frac{q-k+1}{2}$ vertices of Y the value -1. Then f is an STIkDF on G of weight $\omega(f) = 2k$ and so $\gamma_{stI}^k(G) \le 2k$. Thus $\gamma_{stI}^k(G) = 2k$ in the third case.

d) Assume that k < p, p-k is even and q-k is even. Let the function $f: V(G) \longrightarrow \{-1, 1, 2\}$ assign to $\frac{k+p}{2}$ vertices of X the value 1, to the remaining $\frac{p-k}{2}$ vertices of X the value -1, to $\frac{k+q}{2}$ vertices of Y the value 1 and to the remaining $\frac{q-k}{2}$ vertices of Y the value -1. Then f is an STIkDF on G of weight $\omega(f) = 2k$ and thus $\gamma_{stI}^k(G) = 2k$ in this case too.

e) Assume that k < p, p-k is odd and q-k is odd. Let the function $f: V(G) \longrightarrow \{-1, 1, 2\}$ assign to one vertex of X the value 2, to $\frac{k+p-3}{2}$ vertices of X the value 1, to the remaining $\frac{p-k+1}{2}$ vertices of X the value -1, to one vertex of Y the value 2, to $\frac{k+q-3}{2}$ vertices of Y the value 1 and to the remaining $\frac{q-k+1}{2}$ vertices of Y the value -1. Then f is an STIkDF on G of weight $\omega(f) = 2k$ and thus $\gamma_{stI}^k(G) = 2k$ also in this case.

The cases k < p, p - k even and q - k odd or k < p, p - k odd and q - k even are analogously, and are therefore omitted.

Example 6 and Example 7 with p = q show again that Corollary 4 is sharp.

Example 8. If S(r,s) is a double star with $r, s \ge 2$, then $\gamma_{stI}^2(S(r,s)) = \gamma_{stR}^2(S(r,s)) = 4$.

Proof. Let u and v be two adjacent vertices of S(r, s) such that u is adjacent to r leaves and v is adjacent to s leaves. If g is a $\gamma_{stI}^2(S(r, s))$ -function, then the definition implies

$$\gamma^2_{stR}(S(r,s)) \geq \gamma^2_{stI}(S(r,s)) = \omega(g) = g(N(u)) + g(N(v)) \geq 4$$

Conversely, let r = 2p + 1 and s = 2q + 1 be odd. Define f by f(u) = f(v) = 2. In addition, we assign the weight 2 to one leaf of u, the weight -1 to p + 1 leaves of u, the weight 1 to p - 1 leaves of u, the weight 2 to one leaf of v, the weight -1 to q + 1 leaves of v, and the weight 1 to q - 1 leaves of v. Then f is an STR2DF on S(r, s) of weight 4 and thus $\gamma^2_{stI}(S(r, s)) \leq \gamma^2_{stR}(S(r, s)) \leq 4$ in this case.

Now let r = 2p and s = 2q be even. Define f by f(u) = f(v) = 2. In addition, we assign the weight -1 to p leaves of u, the weight 1 to p leaves of u, the weight -1 to q leaves of v, and the weight 1 to q leaves of v. Then f is an STR2DF on S(r,s) of weight 4 and thus $\gamma_{stI}^2(S(r,s)) \leq \gamma_{stR}^2(S(r,s)) \leq 4$ also in this case.

The case r even and s odd or r odd and s even are similar to the cases above and are therefore omitted.

Example 3 shows that $\gamma_{stR}^2(S(1,1)) = \gamma_{stI}^2(S(1,1)) = 6$. For the sake of completeness, we now determine $\gamma_{stI}^2(S(1,s))$ for $s \ge 2$.

Example 9. If S(1,s) is a double star with $s \ge 2$, then $\gamma_{stI}^2(S(1,s)) = \gamma_{stR}^2(S(1,s)) = 5$.

Proof. Let u and v be two adjacent vertices of S(1, s) such that u is adjacent to one leaf w and v is adjacent to $s \ge 2$ leaves. If g is a $\gamma_{stI}^2(S(1, s))$ -function, then we observe that g(v) = 2 and $g(w) \ge 1$. Hence the definition leads to

$$\gamma_{stR}^2(S(1,s)) \ge \gamma_{stI}^2(S(1,s)) = \omega(g) = g(N(u)) + g(N(v)) \ge 3 + 2 = 5.$$

Conversely, let s = 2q + 1 be odd. Define f by f(u) = f(v) = 2 and f(w) = 1. In addition, we assign the weight 2 to one leaf of v, the weight -1 to q + 1 leaves of v, and the weight 1 to q - 1 leaves of v. Then f is an STR2DF on S(1, s) of weight 5 and thus $\gamma_{stI}^2(S(1, s)) \leq \gamma_{stR}^2(S(1, s)) \leq 5$ in this case.

Now let s = 2q be even. Define f by f(u) = f(v) = 2 and f(w) = 1. In addition, we assign the weight -1 to q leaves of v, and the weight 1 to q leaves of v. Then f is an STR2DF on S(1,s) of weight 5 and thus $\gamma_{stI}^2(S(1,s)) \leq \gamma_{stR}^2(S(1,s)) \leq 5$ also in the second case.

References

 J. Amjadi and M. Soroudi, Twin signed total Roman domination numbers in digraphs, Asian-European J. Math. 11 (2018), no. 3, 1850034.

- [2] E.J. Cockayne, Dawes R.M., and Hedetniemi S.T., Total domination in graphs, Networks 10 (1980), no. 3, 211–219.
- [3] N. Dehgardi and L. Volkmann, Signed total Roman k-domination in directed graphs, Commun. Comb. Optim. 1 (2016), no. 2, 165–178.
- [4] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York, 1998.
- [5] V.R. Kulli, On n-total domination number in graphs, Graph theory, Combinatorics, Algorithms, and Applications (San Francisco, CA, 1989), (SIAM, Philadelphia, PA, 1991) (1991), 319–324.
- [6] L. Volkmann, Signed total Italian domination in graphs, J. Combin. Math. Combin. Comput., (to appear).
- [7] _____, On the signed total Roman domination and domatic numbers of graphs, Discrete Appl. Math. 214 (2016), 179–186.
- [8] _____, Signed total Roman domination in graphs, J. Comb. Optim. 32 (2016), no. 3, 855–871.
- [9] _____, Signed total Roman domination in digraphs, Discuss. Math. Graph Theory 37 (2017), no. 1, 261–272.
- [10] _____, Signed total Roman k-domination in graphs, J. Combin. Math. Combin. Comput. 105 (2018), 105–116.
- [11] _____, Weak signed Roman domination in graphs, Commun. Comb. Optim. 5 (2020), no. 2, 111–123.
- [12] _____, Weak signed Roman k-domination in graphs, Commun. Comb. Optim.
 6 (2021), no. 1, 1–15.