Signed total Italian k-domination in graphs

Lutz Volkmann
Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany
volkm@math2.rwth-aachen.de

Received: 18 July 2020; Accepted: 11 November 2020
Published Online: 13 November 2020

Abstract

Let $k \geq 1$ be an integer, and let G be a finite and simple graph with vertex set $V(G)$. A signed total Italian k-dominating function (STIkDF) on a graph G is a function $f: V(G) \rightarrow\{-1,1,2\}$ satisfying the conditions that $\sum_{x \in N(v)} f(x) \geq k$ for each vertex $v \in V(G)$, where $N(v)$ is the neighborhood of v, and each vertex u with $f(u)=-1$ is adjacent to a vertex v with $f(v)=2$ or to two vertices w and z with $f(w)=f(z)=1$. The weight of an STIkDF f is $\omega(f)=\sum_{v \in V(G)} f(v)$. The signed total Italian k-domination number $\gamma_{s t I}^{k}(G)$ of G is the minimum weight of an STIkDF on G. In this paper we initiate the study of the signed total Italian k domination number of graphs, and we present different bounds on $\gamma_{s t I}^{k}(G)$. In addition, we determine the signed total Italian k-domination number of some classes of graphs. Some of our results are extensions of well-known properties of the signed total Roman k-domination number $\gamma_{s t R}^{k}(G)$, introduced and investigated by Volkmann [8, 10].

Keywords: Signed total Italian k-dominating function, Signed total Italian k domination number, Signed total Roman k-dominating function, Signed total Roman k-domination number.

AMS Subject classification: 05C69

1. Terminology and introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi and Slater [4]. Specifically, let G be a graph with vertex set $V(G)=V$ and edge set $E(G)=E$. The integers $n=n(G)=|V(G)|$ and $m=m(G)=|E(G)|$ are the order and the size of the graph G, respectively. The open neighborhood of a vertex v is $N_{G}(v)=N(v)=\{u \in V(G) \mid u v \in E(G)\}$, and the closed neighborhood of v is $N_{G}[v]=N[v]=N(v) \cup\{v\}$. The degree of a vertex v is $d_{G}(v)=d(v)=|N(v)|$. The minimum and maximum degree of a graph G are denoted by $\delta(G)=\delta$ and $\Delta(G)=\Delta$, respectively. For a set $X \subseteq V(G)$, its open neighborhood is the set $N_{G}(X)=N(X)=$ (C) 2021 Azarbaijan Shahid Madani University
$\bigcup_{v \in X} N(v)$, and its closed neighborhood is the set $N_{G}[X]=N[X]=N(X) \cup X$. The complement of a graph G is denoted by \bar{G}. A leaf of a graph G is a vertex of degree 1, while a support vertex of G is a vertex adjacent to a leaf. Denote by $S(G)$ the set of support vertices of G. An edge incident with a leaf is called a pendant edge. Let P_{n}, C_{n} and K_{n} be the path, cycle and complete graph of order n. A complete bipartite graph with partite sets X and Y, where $|X|=p$ and $|Y|=q$ is denoted by $K_{p, q}$. Specifically, $K_{1, q}$ is called a star. Let $S(r, s)$ be the double star with exactly two adjacent vertices u and v that are not leaves such that u is adjacent to $r \geq 1$ leaves and v is adjacent to $s \geq 1$ leaves. A spider graph is a tree with one vertex of degree at least 3 and all others of degree at most two.
All along this paper we will assume that k is a positive integer. In this paper we continue the study of signed total Roman and signed total Italian dominating functions in graphs and digraphs. For a subset $S \subseteq V(G)$ of vertices of a graph G and a function $f: V(G) \longrightarrow \mathbb{R}$, we define $f(S)=\sum_{x \in S} f(x)$.

If $k \geq 1$ is an integer, then Volkmann [10] defined the signed total Roman k-dominating function (STRkDF) on a graph G as a function $f: V(G) \longrightarrow\{-1,1,2\}$ such that $f(N(v))=\sum_{x \in N(v)} f(x) \geq k$ for every $v \in V(G)$, and every vertex u for which $f(u)=-1$ is adjacent to a vertex v for which $f(v)=2$. The weight of an STRkDF f on a graph G is $\omega(f)=\sum_{v \in V(G)} f(v)$. The signed total Roman k-domination number $\gamma_{s t R}^{k}(G)$ of G is the minimum weight of an STRkDF on G. The special case $k=1$ was introduced and investigated by Volkmann [8] and [7]. A $\gamma_{s t R}^{k}(G)$-function is a signed total Roman k-dominating function on G of weight $\gamma_{s t R}^{k}(G)$. Amjadi and Soroudi [1], Dehgardi and Volkmann [3] and Volkmann [9] studied the signed total Roman domination number in digraphs.
A signed total Italian k-dominating function (STIkDF) on a graph G is defined as a function $f: V(G) \longrightarrow\{-1,1,2\}$ having the property $f(N(v)) \geq k$ for every $v \in V(G)$, and each vertex u with $f(u)=-1$ is adjacent to a vertex v with $f(v)=2$ or to two vertices w and z with $f(w)=f(z)=1$. Note that in the case $k \geq 2$, the second condition is superfluous. The weight of an STIkDF f is $\omega(f)=\sum_{v \in V(G)} f(v)$. The signed total Italian k-domination number $\gamma_{s t I}^{k}(G)$ of G is the minimum weight of an STIkDF on G. The special case $k=1$ was introduced and investigated by Volkmann [6]. A $\gamma_{s t I}^{k}(G)$-function is a signed total Italian k-dominating function on G of weight $\gamma_{s t I}^{k}(G)$. For an STIkDF f on G, let $V_{i}=V_{i}(f)=\{v \in V(G): f(v)=i\}$ for $i=-1,1,2$. A signed total Italian k-dominating function $f: V(G) \longrightarrow\{-1,1,2\}$ can be represented by the ordered partition $\left(V_{-1}, V_{1}, V_{2}\right)$ of $V(G)$.
The signed total Italian k-domination number exists when $\delta \geq \frac{k}{2}$. The definitions lead to $\gamma_{s t I}^{k}(G) \leq \gamma_{s t R}^{k}(G)$. Therefore each lower bound of $\gamma_{s t I}^{k}(G)$ is also a lower bound of $\gamma_{s t R}^{k}(G)$. Note that the signed total Italian k-domination number is the total version of the weak signed Roman k-domination number, see Volkmann [11, 12].
For an integer $q \geq 1$, Kulli [5] called a subset D of vertices of a graph G a total q-dominating set if every vertex $x \in V(G)$ has at least q neighbors in D. The total q-domination number $\gamma_{t q}(G)$ is the minimum cardinality of a total q-dominating set
of G. The special case $q=1$ is the usual total domination number $\gamma_{t}(G)$, introduced by Cockayne, Dawes and Hedetniemi [2].

Our purpose in this work is to initiate the study of the signed total Italian k domination number. We present basic properties and sharp bounds on $\gamma_{s t I}^{k}(G)$. In particular, we show that many lower bounds on $\gamma_{s t R}^{k}(G)$ are also valid for $\gamma_{s t I}^{k}(G)$. Some of our results are extensions of well-known properties of the signed total Roman k-domination number and the signed total Italian domination number $\gamma_{s t I}(G)=\gamma_{s t I}^{1}(G)$, given by Volkmann $[6,8,10]$.

2. Preliminary results

In this section we present basic properties of the signed total Italian k-dominating functions and the signed total Italian k-domination numbers.

Proposition 1. Let $k \geq 1$ be an integer, and let G be a graph of order n with $\delta(G) \geq$ $\lceil k / 2\rceil$. If $f=\left(V_{-1}, V_{1}, V_{2}\right)$ is an STIkDF on G, then
(a) $\left|V_{-1}\right|+\left|V_{1}\right|+\left|V_{2}\right|=n$.
(b) $\omega(f)=\left|V_{1}\right|+2\left|V_{2}\right|-\left|V_{-1}\right|$.
(c) If $\delta(G) \geq\lceil(k+s) / 2\rceil$ with $s \in\{0,1\}$, then $V_{1} \cup V_{2}$ is a total $\lceil(k+s) / 2\rceil$-dominating set of G.

Proof. Since (a) and (b) are immediate, we only prove (c). Suppose on the contrary, that there exists a vertex v with at most $\lceil(k+s) / 2\rceil-1$ neighbors in $V_{1} \cup V_{2}$. Then v has at least

$$
\delta(G)-(\lceil(k+s) / 2\rceil-1) \geq\lceil(k+s) / 2\rceil-(\lceil(k+s) / 2\rceil-1)=1
$$

neighbors in V_{-1}. Hence the definition implies the contradiction

$$
k \leq f(N(v)) \leq 2(\lceil(k+s) / 2\rceil-1)-1 \leq \frac{2(k+s+1)}{2}-3=k+s-2 \leq k-1
$$

Consequently, $V_{1} \cup V_{2}$ is a total $\lceil(k+s) / 2\rceil$-dominating set of G.
Corollary 1. If G is a graph of order n and minimum degree $\delta \geq\left\lceil\frac{k+s}{2}\right\rceil$ with $s \in\{0,1\}$, then $\gamma_{s t I}^{k}(G) \geq 2 \gamma_{t\left\lceil\frac{k+s}{2}\right\rceil}-n$.

Proof. Let $f=\left(V_{-1}, V_{1}, V_{2}\right)$ be a $\gamma_{s t I}^{k}(G)$-function. Then it follows from Proposition 1 that

$$
\gamma_{s t I}^{k}(G)=\left|V_{1}\right|+2\left|V_{2}\right|-\left|V_{-1}\right|=2\left|V_{1}\right|+3\left|V_{2}\right|-n \geq 2\left|V_{1} \cup V_{2}\right|-n \geq 2 \gamma_{t\left\lceil\frac{k+s}{2}\right\rceil}-n .
$$

The graphs $q K_{2}$ and $q K_{3}$ show that Corollary 1 is sharp for $k=1$ and $k=2$. The proof of the next proposition is identically with the proof of Proposition 2 in [10] and is therefore omitted.

Proposition 2. Let $k \geq 1$ be an integer, and let G be a graph of order n with minimum degree $\delta \geq k / 2$ and maximum degree Δ. If $f=\left(V_{-1}, V_{1}, V_{2}\right)$ is an STIkDF on G, then
(i) $(2 \Delta-k)\left|V_{2}\right|+(\Delta-k)\left|V_{1}\right| \geq(\delta+k)\left|V_{-1}\right|$.
(ii) $(2 \Delta+\delta)\left|V_{2}\right|+(\Delta+\delta)\left|V_{1}\right| \geq(\delta+k) n$.
(iii) $(\Delta+\delta) \omega(f) \geq(\delta-\Delta+2 k) n+(\delta-\Delta)\left|V_{2}\right|$.
(iv) $\omega(f) \geq(\delta-2 \Delta+2 k) n /(2 \Delta+\delta)+\left|V_{2}\right|$.

3. Bounds on the signed total Italian k-domination number

We start with a general upper bound, and we characterize all extremal graphs.
Theorem 1. Let G be a graph of order n with $\delta(G) \geq\left\lceil\frac{k}{2}\right\rceil$. Then $\gamma_{s t I}^{k}(G) \leq 2 n$, with equality if and only if k is even, $\delta(G)=\frac{k}{2}$, and each vertex of G is adjacent to a vertex of minimum degeree.

Proof. Define the function $g: V(G) \longrightarrow\{-1,1,2\}$ by $g(x)=2$ for each vertex $x \in V(G)$. Since $\delta(G) \geq\left\lceil\frac{k}{2}\right\rceil$, the function g is an STIkDF on G of weight $2 n$ and thus $\gamma_{s t I}^{k}(G) \leq 2 n$.
Now let k be even, $\delta(G)=\frac{k}{2}$, and assume that each vertex of G is adjacent to a vertex of minimum degeree. Let f be an STIkDF on G, and let $x \in V(G)$ be an arbitray vertex. Then x has a neighbor v with $d(v)=\frac{k}{2}$. Therefore the condition $f(N(v)) \geq k$ implies $f(x)=2$. Thus f is of weight $2 n$, and we obtain $\gamma_{s t I}^{k}(G)=2 n$.
Conversely, assume that $\gamma_{s t I}^{k}(G)=2 n$. If $k=2 p+1$ is odd, then $\delta(G) \geq p+1$. Define the function $h: V(G) \longrightarrow\{-1,1,2\}$ by $h(w)=1$ for an arbitrary vertex w and $h(x)=2$ for each vertex $x \in V(G) \backslash\{w\}$. Then

$$
h(N(v))=\sum_{x \in N(v)} f(x) \geq 2(p+1)-1=2 p+1=k
$$

for each vertex $v \in V(G)$. Thus the function h is an STIkDF on G of weight $2 n-1$, and we obtain the contradiction $\gamma_{s t I}^{k}(G) \leq 2 n-1$.
Let now k even, and assume that there exists a vertex w such that $d(x) \geq \frac{k}{2}+1$ for each $x \in N(w)$. Define the function $h_{1}: V(G) \longrightarrow\{-1,1,2\}$ by $h_{1}(w)=1$ and $h_{1}(x)=2$ for each vertex $x \in V(G) \backslash\{w\}$. Then $h_{1}(N(w)) \geq k, h_{1}(N(x)) \geq 2\left(\frac{k}{2}+1\right)-1=k+1$ for each $x \in N(w)$ and $h_{1}(N(y)) \geq k$ for each $y \notin N[w]$. Hence the function h_{1} is an STIkDF on G of weight $2 n-1$, a contradiction to the assumption $\gamma_{s t I}^{k}(G)=2 n$. This completes the proof.

The proof of Theorem 1 also leads to the next result.

Theorem 2. Let G be a graph of order n with $\delta(G) \geq\left\lceil\frac{k}{2}\right\rceil$. Then $\gamma_{s t R}^{k}(G) \leq 2 n$, with equality if and only if k is even, $\delta(G)=\frac{k}{2}$, and each vertex of G is adjacent to a vertex of minimum degeree.

Let $k \geq 2$ be an even integer. If H is a $\frac{k}{2}$-regular graph of order n, then Theorems 1 and 2 imply that $\gamma_{s t I}^{k}(H)=\gamma_{s t R}^{k}(H)=2 n$. The next corollaries follow from Theorems 1 and 2 immediately.

Corollary 2. Let G be a connected graph of order $n \geq 2$ with $\delta(G)=1$. Then $\gamma_{s t I}^{2}(G)=2 n$ if and only if $n=2$.

Corollary 3. Let G be a connected graph of order $n \geq 2$ with $\delta(G)=1$. Then $\gamma_{s t R}^{2}(G)=2 n$ if and only if $n=2$.

Observation 3. If G is a graph of order n with $\delta(G) \geq k$, then $\gamma_{s t I}^{k}(G) \leq \gamma_{s t R}^{k}(G) \leq n$.

Proof. Define the function $f: V(G) \longrightarrow\{-1,1,2\}$ by $f(x)=1$ for each vertex $x \in V(G)$. Since $\delta(G) \geq k$, the function f is an STRkDF on G of weight n and thus $\gamma_{s t I}^{k}(G) \leq \gamma_{s t R}^{k}(G) \leq n$.

As an application of Proposition 2 (iii), we obtain a lower bound on the signed total Italian k-domination number for r-regular graphs.

Corollary 4. If G is an r-regular graph of order n with $r \geq \frac{k}{2}$, then

$$
\gamma_{s t I}^{k}(G) \geq \frac{k n}{r}
$$

Example 1. If H is a k-regular graph of order n, then it follows from Corollary 4 that $\gamma_{s t I}^{k}(H) \geq n$ and thus $\gamma_{s t I}^{k}(H)=n$, according to Observation 3.

Example 1 shows that Observation 3 and Corollary 4 are both sharp.

Theorem 4. If G is a graph of order n with $\delta(G) \geq \frac{k}{2}$, then

$$
\gamma_{s t I}^{k}(G) \geq k+2+\delta(G)-n
$$

If in addition $\delta(G)-k$ is odd, then $\gamma_{s t I}^{k}(G) \geq k+3+\delta(G)-n$.

Proof. Let f be a $\gamma_{s t I}^{k}(G)$-function. Then there exists a vertex w with $f(w) \geq 1$. It follows from the the definitions that

$$
\begin{aligned}
\gamma_{s t I}^{k}(G) & =\sum_{x \in V(G)} f(x)=f(w)+\sum_{x \in N(w)} f(x)+\sum_{x \in V(G)-N[w]} f(x) \\
& \geq 1+k-(n-d(w)-1)=k+2+d(w)-n \geq k+2+\delta(G)-n
\end{aligned}
$$

Now assume that $\delta(G)-k$ is odd. If there exists a vertex w with $f(w)=2$ or a vertex v with $f(v)=1$ and $d(v) \geq \delta(G)+1$, then the inequality chain above leads to $\gamma_{s t I}^{k}(G) \geq k+3+\delta(G)-n$. So assume that $f(x) \in\{-1,1\}$ for each vertex $x \in V(G)$, and each vertex y with $f(y)=1$ has degree $d(y)=\delta(G)$. Let now u be a vertex of minimum degree with $f(u)=1$. Since $\delta(G)-k$ is odd, we observe that

$$
\sum_{x \in N(u)} f(x) \geq k+1
$$

and thus

$$
\begin{aligned}
\gamma_{s t I}^{k}(G) & =\sum_{x \in V(G)} f(x)=f(u)+\sum_{x \in N(u)} f(x)+\sum_{x \in V(G)-N[u]} f(x) \\
& \geq 1+k+1-(n-d(u)-1)=k+3+d(u)-n=k+3+\delta(G)-n .
\end{aligned}
$$

This completes the proof.

Example 2. If $k \geq 1$ and $n \geq 2$ are integers such that $2 n-2 \geq k$, then it holds:
(i) If $k \geq n$, then $\gamma_{s t I}^{k}\left(K_{n}\right)=k+2$.
(ii) If $k \leq n-1$ and $n-k$ is odd, then $\gamma_{s t I}^{k}\left(K_{n}\right)=k+1$.
(iii) If $k \leq n-1$ and $n-k$ is even, then $\gamma_{s t I}^{k}\left(K_{n}\right)=k+2$.

Proof. Let f be a $\gamma_{s t I}^{k}\left(K_{n}\right)$-function.
(i) Since $k \geq n$, there exists a vertex w with $f(w) \geq 2$. This implies $\gamma_{s t I}^{k}\left(K_{n}\right)=$ $f(w)+f(N(w)) \geq 2+k$.
For $\gamma_{s t I}^{k}\left(K_{n}\right) \leq k+2$, let the function $g: V\left(K_{n}\right) \longrightarrow\{-1,1,2\}$ assign to $2 n-k-2$ vertices the value 1 and to the remaining $k+2-n$ vertices the value 2 . Then g is an STIkDF on K_{n} of weight $\omega(g)=k+2$ and so $\gamma_{s t I}^{k}\left(K_{n}\right) \leq k+2$. Thus $\gamma_{s t I}^{k}\left(K_{n}\right)=k+2$ in this case.
(ii) Since there exists a vertex w with $f(w) \geq 1$, we note that $\gamma_{s t I}^{k}\left(K_{n}\right)=f(w)+$ $f(N(w)) \geq 1+k$.
For $\gamma_{s t I}^{k}\left(K_{n}\right) \leq k+1$, let the function $g: V\left(K_{n}\right) \longrightarrow\{-1,1,2\}$ assign to $\frac{n+k+1}{2}$ vertices the value 1 and to the remaining $\frac{n-k-1}{2}$ vertices the value -1 . Then g is an STIkDF on K_{n} of weight $\omega(g)=k+1$ and so $\gamma_{s t I}^{k}\left(K_{n}\right) \leq k+1$. Thus $\gamma_{s t I}^{k}\left(K_{n}\right)=k+1$ in the second case.
(iii) If there exists a vertex w with $f(w)=2$, then it follws that $\gamma_{s t I}^{k}\left(K_{n}\right)=f(w)+$ $f(N(w)) \geq 2+k$. If $f(x) \in\{-1,1\}$ for all $x \in V\left(K_{n}\right)$, then $f(N(x))$ is even when n is odd and $f(N(x))$ is odd when n is even. Since $f(N(x)) \geq k$, whe observe that $f(N(x)) \geq k+1$ when $n-k$ is even. If w is a vertex with $f(w)=1$, we therefore deduce that $\gamma_{s t I}^{k}\left(K_{n}\right)=f(w)+f(N(w)) \geq 1+k+1=k+2$.
For $\gamma_{s t I}^{k}\left(K_{n}\right) \leq k+2$, let the function $g: V\left(K_{n}\right) \longrightarrow\{-1,1,2\}$ assign to $\frac{n+k+2}{2}$ vertices the value 1 and to the remaining $\frac{n-k-2}{2}$ vertices the value -1 . Then g is an STIkDF on K_{n} of weight $\omega(g)=k+2$ and so $\gamma_{s t I}^{k}\left(K_{n}\right) \leq k+2$. Thus $\gamma_{s t I}^{k}\left(K_{n}\right)=k+2$ in the last case.

Example 2 (ii) and (iii) show that Theorem 4 is sharp for $k \leq n-1$. If $\Delta(G) \geq \delta(G)+3$, then the next lower bound is an improvement of Theorem 4.

Proposition 3. If G is a graph of order n with $\delta(G) \geq \frac{k}{2}$, then

$$
\gamma_{s t I}^{k}(G) \geq k+\Delta(G)-n
$$

Proof. Let $w \in V(G)$ be a vertex of maximum degree, and let f be a $\gamma_{s t I}^{k}(G)$ function. Then the definitions imply

$$
\begin{aligned}
\gamma_{s t I}^{k}(G) & =\sum_{x \in V(G)} f(x)=\sum_{x \in N(w)} f(x)+\sum_{x \in V(G)-N(w)} f(x) \\
& \geq k+\sum_{x \in V(G)-N(w)} f(x) \geq k-(n-\Delta(G)) \\
& =k+\Delta(G)-n,
\end{aligned}
$$

and the proof of the desired lower bound is complete.
Corollary 5. Let G be a graph of order n, minimum degree $\delta \geq \frac{k}{2}$ and maximum degree Δ. If $\delta<\Delta$, then

$$
\gamma_{s t I}^{k}(G) \geq\left\lceil\frac{2 \delta+3 k-2 \Delta}{2 \Delta+\delta} n\right\rceil .
$$

Proof. Multiplying both sides of the inequality in Proposition 2 (iv) by $\Delta-\delta$ and adding the resulting inequality to the inequality in Proposition 2 (iii), we obtain the desired lower bound.

Since $\gamma_{s t R}^{k}(G) \geq \gamma_{s t I}^{k}(G)$, Corollary 5 leads to the next known lower bound immediately.

Corollary 6. ([10]) Let G be a graph of order n, minimum degree $\delta \geq \frac{k}{2}$ and maximum degree Δ. If $\delta<\Delta$, then

$$
\gamma_{s t R}^{k}(G) \geq\left\lceil\frac{2 \delta+3 k-2 \Delta}{2 \Delta+\delta} n\right\rceil .
$$

Examples 12 and 13 in [10] demonstrate that Corollary 6 is sharp and therefore Corollary 5 too. The special case $k=1$ of Corollaries 4 and 5 can be found in [6]. A set $S \subseteq V(G)$ is a 2-packing of the graph G if $N[u] \cap N[v]=\emptyset$ for any two distinct vertices $u, v \in S$. The 2-packing number $\rho(G)$ of G is defined by

$$
\rho(G)=\max \{|S|: S \text { is a } 2-\text { packing of } G\} .
$$

Analogously to Theorem 14 in [10], one can prove the next lower bound on the signed total Italian k-domination number.

Theorem 5. If G is a graph of order n with $\delta(G) \geq \frac{k}{2}$, then

$$
\gamma_{s t I}^{k}(G) \geq \rho(G)(k+\delta(G))-n .
$$

Corollary 7. ([10]) If G is a graph of order n with $\delta(G) \geq \frac{k}{2}$, then

$$
\gamma_{s t R}^{k}(G) \geq \rho(G)(k+\delta(G))-n
$$

In [10], the author presented an infinite family of graphs achieving equality in Corollary 7. Thus Corollary 7 and Theorem 5 are sharp. Using Corollary 4, one can prove the following Nordhaus-Gaddum type inequality analogously to Theorem 15 in [10].

Theorem 6. If G is an r-regular graph of order n such that $r \geq \frac{k}{2}$ and $n-r-1 \geq \frac{k}{2}-1$, then

$$
\gamma_{s t I}^{k}(G)+\gamma_{s t I}^{k}(\bar{G}) \geq \frac{4 k n}{n-1} .
$$

If n is even, then $\gamma_{s t I}^{k}(G)+\gamma_{s t I}^{k}(\bar{G}) \geq 4 k(n-1) /(n-2)$.

Let $k \geq 2$ be an even integer, and let H and \bar{H} be k-regular graphs of order $n=2 k+1$. By Example 1, we have $\gamma_{s t I}^{k}(H)=\gamma_{s t I}^{k}(\bar{H})=n$. Consequently,

$$
\gamma_{s t I}^{k}(H)+\gamma_{s t I}^{k}(\bar{H})=2 n=\frac{4 k n}{n-1} .
$$

Thus the Nordhaus-Gaddum bound of Theorem 6 is sharp for even k.

Theorem 7. Let G be connected graph of order $n \geq 3$ and let $S(G)$ be the set of its support vertices. Then $\gamma_{s t I}^{2}(G) \leq \gamma_{s t R}^{2}(G) \leq n+|S(G)|$.

Proof. Define the function $f: V(G) \longrightarrow\{-1,1,2\}$ by $f(x)=2$ when x is a support vertex and $f(x)=1$ otherwise. If v is a leaf, then v is ajacent to a support vertex and so $f(N(v))=2$. If v is not a leaf, then $d(v) \geq 2$ and thus $f(N(v)) \geq 2$. Therefore f is an STR2DF on G of weight $n+|S(G)|$ and hence $\gamma_{s t I}^{2}(G) \leq \gamma_{s t R}^{2}(G) \leq n+|S(G)|$.

Example 3. For $n \geq 4$, we have $\gamma_{s t R}^{2}\left(P_{n}\right)=\gamma_{s t I}^{2}\left(P_{n}\right)=n+2$.

Proof. Let $P_{n}=v_{1} v_{2} \ldots v_{n}$, and let f be a $\gamma_{s t I}^{2}\left(P_{n}\right)$-function. According to Theorem 7, we have $\gamma_{s t I}^{2}\left(P_{n}\right) \leq \gamma_{s t R}^{2}\left(P_{n}\right) \leq n+2$. Conversely, it is easy to see that $f\left(v_{i}\right) \geq 1$ for $1 \leq i \leq n$ and $f\left(v_{2}\right)=f\left(v_{n-1}\right)=2$. Therefore $\gamma_{s t R}^{2}\left(P_{n}\right) \geq \gamma_{s t I}^{2}\left(P_{n}\right) \geq n+2$ and thus $\gamma_{s t R}^{2}\left(P_{n}\right)=\gamma_{s t I}^{2}\left(P_{n}\right)=n+2$.

Since $\gamma_{s t R}^{2}\left(P_{3}\right)=\gamma_{s t I}^{2}\left(P_{3}\right)=4$, the condition $n \geq 4$ in Example 3 is necessary.
Example 4. Let H be a spider graph, and let $w \in V(H)$ with $d(w) \geq 3$. If every leaf of H has distance at least two from w, then $\gamma_{s t R}^{2}(H)=\gamma_{s t I}^{2}(H)=n+|S(H)|$.

Proof. According to Theorem 7, we have $\gamma_{s t I}^{2}(H) \leq \gamma_{s t R}^{2}(H) \leq n+|S(H)|$.
Converesely, let f be a $\gamma_{s t I}^{2}(H)$-function. Since every leaf of H has distance at least two from w, we note that $f(x) \geq 1$ for $x \in V(H)$. In addition, we have $f(x)=2$ for each $x \in S(H)$. Therefore $\gamma_{s t R}^{2}(H) \geq \gamma_{s t I}^{2}(H) \geq n+|S(H)|$ and thus $\gamma_{s t R}^{2}(H)=$ $\gamma_{s t I}^{2}(H)=n+|S(H)|$.

Examples 3 and 4 demonstrate that Theorem 7 is sharp.
Example 5. If $n \geq 2$, then $\gamma_{s t I}^{2}\left(K_{1, n-1}\right)=\gamma_{s t R}^{2}\left(K_{1, n-1}\right)=4$.

Proof. Let $G=K_{1, n-1}$, and let f be a $\gamma_{s t I}^{2}(G)$-function. If $n=2$, then the result is obviously. Let now $n \geq 3$, and let w be the central vertex of the star G. Clearly, $f(w)=2$. Hence it follows that

$$
\gamma_{s t R}^{2}(G) \geq \gamma_{s t I}^{2}(G)=f(w)+f(N(w)) \geq 2+2=4
$$

For the converse inequality $\gamma_{s t I}^{2}(G) \leq \gamma_{s t R}^{2}(G) \leq 4$, let $v_{1}, v_{2}, \ldots, v_{n-1}$ be the leaves of G. If $n-1=2 p$ is even, define $g: V(G) \longrightarrow\{-1,1,2\}$ by $g(w)=2, g\left(v_{i}\right)=1$ for $1 \leq i \leq p+1$ and $g\left(v_{i}\right)=-1$ for $p+2 \leq i \leq 2 p$. Then g is an STR2DF on G of weight 4 and thus $\gamma_{s t I}^{2}(G) \leq \gamma_{s t R}^{2}(G) \leq 4$ in this case. If $n=2 p+1$ is odd, then define $h: V(G) \longrightarrow\{-1,1,2\}$ by $h(w)=h\left(v_{2 p+1}\right)=2, h\left(v_{i}\right)=1$ for $1 \leq i \leq p$ and $h\left(v_{i}\right)=-1$ for $p+1 \leq i \leq 2 p$. Then h is an STR2DF on G of weight 4 and thus $\gamma_{s t I}^{2}(G) \leq \gamma_{s t R}^{2}(G) \leq 4$ also in this case.
Example 5 shows that $\gamma_{s t R}^{2}(H)=\gamma_{s t I}^{2}(H)=n+|S(H)|$ is not valid for each spider graph H. Therefore the condition that every leaf of H has distance at least two from w is important in Example 4.

4. Special classes of graphs

Let C_{n} be a cycle of length $n \geq 3$. In [6], the author has shown that $\gamma_{s t I}\left(C_{n}\right)=n / 2$ when $n \equiv 0(\bmod 4), \gamma_{s t I}\left(C_{n}\right)=(n+3) / 2$ when $n \equiv 1,3(\bmod 4)$ and $\gamma_{s t I}\left(C_{n}\right)=$ $(n+6) / 2$ when $n \equiv 2(\bmod 4)$. Now we determine $\gamma_{s t I}^{k}\left(C_{n}\right)$ as well as $\gamma_{s t R}^{k}\left(C_{n}\right)$ for $2 \leq k \leq 4$.
Corollary 4 and Observation 3 immediately lead to $\gamma_{s t I}^{2}\left(C_{n}\right)=\gamma_{s t R}^{2}\left(C_{n}\right)=n$. In addition, Theorems 1 and 2 imply $\gamma_{s t I}^{4}\left(C_{n}\right)=\gamma_{s t R}^{4}\left(C_{n}\right)=2 n$.

Example 6. For $n \geq 3$, we have $\gamma_{s t R}^{3}\left(C_{n}\right)=\gamma_{s t I}^{3}\left(C_{n}\right)=\left\lceil\frac{3 n}{2}\right\rceil+1$ when $n \equiv 2(\bmod 4)$ and $\gamma_{s t R}^{3}\left(C_{n}\right)=\gamma_{s t I}^{3}\left(C_{n}\right)=\left\lceil\frac{3 n}{2}\right\rceil$ otherwise.

Proof. Let $C_{n}=v_{1} v_{2} \ldots v_{n} v_{1}$. Assume first that $n \equiv 0,1,3(\bmod 4)$. Applying Corollary 4, we obtain $\gamma_{s t R}^{3}\left(C_{n}\right) \geq \gamma_{s t I}^{3}\left(C_{n}\right) \geq\left\lceil\frac{3 n}{2}\right\rceil$.
If $n=4 t$ for an integer $t \geq 1$, then define $g: V\left(C_{n}\right) \longrightarrow\{-1,1,2\}$ by $g\left(v_{4 i+1}\right)=$ $g\left(v_{4 i+2}\right)=2$ and $g\left(v_{4 i+3}\right)=g\left(v_{4 i+4}\right)=1$ for $0 \leq i \leq t-1$. Then g is an STR3DF on C_{n} of weight $\omega(g)=6 t=\frac{3 n}{2}$ and so $\gamma_{s t I}^{3}\left(C_{n}\right) \leq \gamma_{s t R}^{3}\left(C_{n}\right) \leq\left\lceil\frac{3 n}{2}\right\rceil$ and thus $\gamma_{s t I}^{3}\left(C_{n}\right)=\gamma_{s t R}^{3}\left(C_{n}\right)=\left\lceil\frac{3 n}{2}\right\rceil$ in this case.
If $n=4 t+1$ for an integer $t \geq 1$, then define $g: V\left(C_{n}\right) \longrightarrow\{-1,1,2\}$ by $g\left(v_{4 i+1}\right)=$ $g\left(v_{4 i+2}\right)=2$ and $g\left(v_{4 i+3}\right)=g\left(v_{4 i+4}\right)=1$ for $0 \leq i \leq t-1$ and $g\left(v_{4 t+1}\right)=2$. Then g is an STR3DF on C_{n} of weight $\omega(g)=6 t+2=\left\lceil\frac{3 n}{2}\right\rceil$ and thus $\gamma_{s t R}^{3}\left(C_{n}\right)=\gamma_{s t I}^{3}\left(C_{n}\right)=$ $\left\lceil\frac{3 n}{2}\right\rceil$ in this case too.
If $n=4 t+3$ for an integer $t \geq 0$, then define $g: V\left(C_{n}\right) \longrightarrow\{-1,1,2\}$ by $g\left(v_{4 i+1}\right)=$ $g\left(v_{4 i+2}\right)=2$ for $0 \leq i \leq t, g\left(v_{4 i+3}\right)=g\left(v_{4 i+4}\right)=1$ for $0 \leq i \leq t-1$ and $g\left(v_{4 t+3}\right)=1$. Then g is an STR3DF on C_{n} of weight $\omega(g)=6 t+5=\left\lceil\frac{3 n}{2}\right\rceil$ and thus $\gamma_{s t R}^{3}\left(C_{n}\right)=$ $\gamma_{s t I}^{3}\left(C_{n}\right)=\left\lceil\frac{3 n}{2}\right\rceil$ in the third case.
Let now $n=4 t+2$ for an integer $t \geq 1$. If f is a $\gamma_{s t I}^{3}\left(C_{n}\right)$-function, then we observe that $f\left(v_{i}\right) \geq 1$ for each $1 \leq i \leq n$ and $f\left(v_{i}\right)+f\left(v_{i+1}\right)+f\left(v_{i+2}\right)+f\left(v_{i+3}\right) \geq 6$, where the indices are taken modulo n. Assume, without loss of generality, that $f\left(v_{1}\right)=f\left(v_{2}\right)=2$ and $f\left(v_{3}\right)=f\left(v_{4}\right)=1$. Then it follows that $f\left(v_{5}\right)=f\left(v_{6}\right)=2$, and we obtain

$$
\begin{aligned}
\omega(f) & =f\left(v_{1}\right)+f\left(v_{2}\right)+f\left(v_{3}\right)+f\left(v_{4}\right)+f\left(v_{5}\right)+f\left(v_{6}\right) \\
& +\sum_{i=1}^{t-1}\left(f\left(v_{4 i+3}\right)+f\left(v_{4 i+4}\right)+f\left(v_{4 i+5}\right)+f\left(v_{4 i+6}\right)\right) \\
& \geq 10+6(t-1)=6 t+4
\end{aligned}
$$

Therefore $\omega(f) \geq 6 t+4=\left\lceil\frac{3 n}{2}\right\rceil+1$ and thus $\gamma_{s t R}^{3}\left(C_{n}\right) \geq \gamma_{s t I}^{3}\left(C_{n}\right) \geq\left\lceil\frac{3 n}{2}\right\rceil+1$ in this case. Conversely, if we define $g: V\left(C_{n}\right) \longrightarrow\{-1,1,2\}$ by $g\left(v_{4 i+1}\right)=g\left(v_{4 i+2}\right)=2$ for $0 \leq i \leq t$ and $g\left(v_{4 i+3}\right)=g\left(v_{4 i+4}\right)=1$ for $0 \leq i \leq t-1$, then g is an STR3DF on C_{n} of weight $\omega(g)=6 t+4=\left\lceil\frac{3 n}{2}\right\rceil+1$ and thus $\gamma_{s t R}^{3}\left(C_{n}\right)=\gamma_{s t I}^{3}\left(C_{n}\right)=\left\lceil\frac{3 n}{2}\right\rceil+1$ in the last case.

Example 7. If $k \geq 1$ and $q \geq p \geq 2$ are integers such that $p \geq k / 2$, then $\gamma_{s t I}^{k}\left(K_{p, q}\right)=2 k$.

Proof. Let $G=K_{p, q}$, and let g be a $\gamma_{s t I}^{k}(G)$-function. In addition, let X and Y be a bipartition of the complete bipartite graph G with $|X|=p$ and $|Y|=q$. If $x \in X$ and $y \in Y$, then

$$
\gamma_{s t I}^{k}(G)=g(V(G))=g(N(x))+g(N(y)) \geq k+k=2 k .
$$

For the converse inequality we distinguish different cases.
a) Assume that $k \geq q$. Let the function $f: V(G) \longrightarrow\{-1,1,2\}$ assign to $2 p-k$ vertices of X the value 1 , to the remaining $k-p$ vertices of X the value 2 , to $2 q-k$ vertices of Y the value 1 and to the remaining $k-q$ vertices of Y the value 2. Then f is an STIkDF on G of weight $\omega(f)=2 k$ and so $\gamma_{s t I}^{k}(G) \leq 2 k$. Thus $\gamma_{s t I}^{k}(G)=2 k$ in this case.
b) Assume that $q>k \geq p$ and $q-k$ is even. Let the function $f: V(G) \longrightarrow\{-1,1,2\}$ assign to $2 p-k$ vertices of X the value 1, to the remaining $k-p$ vertices of X the value 2 , to $\frac{k+q}{2}$ vertices of Y the value 1 and to the remaining $\frac{q-k}{2}$ vertices of Y the value -1 . Then f is an STIkDF on G of weight $\omega(f)=2 k$ and so $\gamma_{s t I}^{k}(G) \leq 2 k$. Thus $\gamma_{s t I}^{k}(G)=2 k$ in the second case.
c) Assume that $q>k \geq p$ and $q-k$ is odd. Let the function $f: V(G) \longrightarrow\{-1,1,2\}$ assign to $2 p-k$ vertices of X the value 1 , to the remaining $k-p$ vertices of X the value 2 , to one vertex of Y the value 2 , to $\frac{k+q-3}{2}$ vertices of Y the value 1 and to the remaining $\frac{q-k+1}{2}$ vertices of Y the value -1 . Then f is an STIkDF on G of weight $\omega(f)=2 k$ and so $\gamma_{s t I}^{k}(G) \leq 2 k$. Thus $\gamma_{s t I}^{k}(G)=2 k$ in the third case.
d) Assume that $k<p, p-k$ is even and $q-k$ is even. Let the function $f: V(G) \longrightarrow$ $\{-1,1,2\}$ assign to $\frac{k+p}{2}$ vertices of X the value 1 , to the remaining $\frac{p-k}{2}$ vertices of X the value -1 , to $\frac{k+q}{2}$ vertices of Y the value 1 and to the remaining $\frac{q-k}{2}$ vertices of Y the value -1 . Then f is an STIkDF on G of weight $\omega(f)=2 k$ and thus $\gamma_{s t I}^{k}(G)=2 k$ in this case too.
e) Assume that $k<p, p-k$ is odd and $q-k$ is odd. Let the function $f: V(G) \longrightarrow$ $\{-1,1,2\}$ assign to one vertex of X the value 2 , to $\frac{k+p-3}{2}$ vertices of X the value 1 , to the remaining $\frac{p-k+1}{2}$ vertices of X the value -1 , to one vertex of Y the value 2 , to $\frac{k+q-3}{2}$ vertices of Y the value 1 and to the remaining $\frac{q-k+1}{2}$ vertices of Y the value -1. Then f is an STIkDF on G of weight $\omega(f)=2 k$ and thus $\gamma_{s t I}^{k}(G)=2 k$ also in this case.
The cases $k<p, p-k$ even and $q-k$ odd or $k<p, p-k$ odd and $q-k$ even are analogously, and are therefore omitted.

Example 6 and Example 7 with $p=q$ show again that Corollary 4 is sharp.
Example 8. If $S(r, s)$ is a double star with $r, s \geq 2$, then $\gamma_{s t I}^{2}(S(r, s))=\gamma_{s t R}^{2}(S(r, s))=4$.

Proof. Let u and v be two adjacent vertices of $S(r, s)$ such that u is adjacent to r leaves and v is adjacent to s leaves. If g is a $\gamma_{s t I}^{2}(S(r, s))$-function, then the definition implies

$$
\gamma_{s t R}^{2}(S(r, s)) \geq \gamma_{s t I}^{2}(S(r, s))=\omega(g)=g(N(u))+g(N(v)) \geq 4
$$

Conversely, let $r=2 p+1$ and $s=2 q+1$ be odd. Define f by $f(u)=f(v)=2$. In addition, we assign the weight 2 to one leaf of u, the weight -1 to $p+1$ leaves of u, the weight 1 to $p-1$ leaves of u, the weight 2 to one leaf of v, the weight -1 to $q+1$ leaves of v, and the weight 1 to $q-1$ leaves of v. Then f is an STR2DF on $S(r, s)$ of weight 4 and thus $\gamma_{s t I}^{2}(S(r, s)) \leq \gamma_{s t R}^{2}(S(r, s)) \leq 4$ in this case.
Now let $r=2 p$ and $s=2 q$ be even. Define f by $f(u)=f(v)=2$. In addition, we assign the weight -1 to p leaves of u, the weight 1 to p leaves of u, the weight -1 to q leaves of v, and the weight 1 to q leaves of v. Then f is an STR2DF on $S(r, s)$ of weight 4 and thus $\gamma_{s t I}^{2}(S(r, s)) \leq \gamma_{s t R}^{2}(S(r, s)) \leq 4$ also in this case.
The case r even and s odd or r odd and s even are similar to the cases above and are therefore omitted.

Example 3 shows that $\gamma_{s t R}^{2}(S(1,1))=\gamma_{s t I}^{2}(S(1,1))=6$. For the sake of completeness, we now determine $\gamma_{s t I}^{2}(S(1, s))$ for $s \geq 2$.

Example 9. If $S(1, s)$ is a double star with $s \geq 2$, then $\gamma_{s t I}^{2}(S(1, s))=\gamma_{s t R}^{2}(S(1, s))=5$.

Proof. Let u and v be two adjacent vertices of $S(1, s)$ such that u is adjacent to one leaf w and v is adjacent to $s \geq 2$ leaves. If g is a $\gamma_{s t I}^{2}(S(1, s))$-function, then we observe that $g(v)=2$ and $g(w) \geq 1$. Hence the definition leads to

$$
\gamma_{s t R}^{2}(S(1, s)) \geq \gamma_{s t I}^{2}(S(1, s))=\omega(g)=g(N(u))+g(N(v)) \geq 3+2=5
$$

Conversely, let $s=2 q+1$ be odd. Define f by $f(u)=f(v)=2$ and $f(w)=1$. In addition, we assign the weight 2 to one leaf of v, the weight -1 to $q+1$ leaves of v, and the weight 1 to $q-1$ leaves of v. Then f is an STR2DF on $S(1, s)$ of weight 5 and thus $\gamma_{s t I}^{2}(S(1, s)) \leq \gamma_{s t R}^{2}(S(1, s)) \leq 5$ in this case.
Now let $s=2 q$ be even. Define f by $f(u)=f(v)=2$ and $f(w)=1$. In addition, we assign the weight -1 to q leaves of v, and the weight 1 to q leaves of v. Then f is an STR2DF on $S(1, s)$ of weight 5 and thus $\gamma_{s t I}^{2}(S(1, s)) \leq \gamma_{s t R}^{2}(S(1, s)) \leq 5$ also in the second case.

References

[1] J. Amjadi and M. Soroudi, Twin signed total Roman domination numbers in digraphs, Asian-European J. Math. 11 (2018), no. 3, 1850034.
[2] E.J. Cockayne, Dawes R.M., and Hedetniemi S.T., Total domination in graphs, Networks 10 (1980), no. 3, 211-219.
[3] N. Dehgardi and L. Volkmann, Signed total Roman k-domination in directed graphs, Commun. Comb. Optim. 1 (2016), no. 2, 165-178.
[4] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York, 1998.
[5] V.R. Kulli, On n-total domination number in graphs, Graph theory, Combinatorics, Algorithms, and Applications (San Francisco, CA, 1989),(SIAM, Philadelphia, PA, 1991) (1991), 319-324.
[6] L. Volkmann, Signed total Italian domination in graphs, J. Combin. Math. Combin. Comput., (to appear).
[7] , On the signed total Roman domination and domatic numbers of graphs, Discrete Appl. Math. 214 (2016), 179-186.
[8] , Signed total Roman domination in graphs, J. Comb. Optim. 32 (2016), no. 3, 855-871.
[9]__ Signed total Roman domination in digraphs, Discuss. Math. Graph Theory 37 (2017), no. 1, 261-272.
[10] , Signed total Roman k-domination in graphs, J. Combin. Math. Combin. Comput. 105 (2018), 105-116.
[11] _, Weak signed Roman domination in graphs, Commun. Comb. Optim. 5 (2020), no. 2, 111-123.
[12] _ Weak signed Roman k-domination in graphs, Commun. Comb. Optim. 6 (2021), no. 1, 1-15.

