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Abstract: Let G = (V,E) be a simple connected graph of order p and size q. A
decomposition of a graph G is a collection π of edge-disjoint subgraphs G1, G2, . . . , Gn

of G such that every edge of G belongs to exactly one Gi, (1 ≤ i ≤ n). The decom-

position π = {G1, G2, . . . , Gn} of a connected graph G is said to be a distinct edge
geodetic decomposition if g1(Gi) 6= g1(Gj), (1 ≤ i 6= j ≤ n). The maximum cardinality

of π is called the distinct edge geodetic decomposition number of G and is denoted by

πdg1 (G), where g1(G) is the edge geodetic number of G. Some general properties sat-
isfied by this concept are studied. Connected graphs of πdg1 (G) ≥ 2 are characterized

and connected graphs of order p with πdg1 (G) = p− 2 are characterized.

Keywords: decomposition, distinct edge geodetic decomposition, distinct edge geode-

tic decomposition number, edge geodetic number.
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1. Terminology and introduction

By a graph G = (V,E), we mean a finite undirected graph without loops or multiple

edges. The order and size of G are denoted by p and q respectively. For basic graph

theoretic terminology we refer to Harary [6, 8]. N(v) = {u ∈ V (G) | uv ∈ E(G)}
is called the neighborhood of the vertex v in G. The degree of a vertex v ∈ V (G) is

|N(v)| and is denoted by deg(v). If e = {u, v} is an edge of a graph G with deg(u) = 1

and deg(v) > 1, then we call e a pendent edge, u a leaf and v a support vertex. A

vertex of degree p− 1 is called a universal vertex. A vertex v in a connected graph G

is said to be a semi simplicial vertex of G if ∆(< N(v) >) = |N(v)|−1. A vertex v is

a simplicial vertex of a graph G if < N(v) > is complete. Every simplicial vertex of
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a graph G is semi simplicial vertex. A graph G is said to be a semi complete graph

if every vertex of G is a semi simplicial. It is observed that any semi complete graph

has at least two vertices of degree p−2 or more. For any connected graph G, a vertex

v ∈ V (G) is called a cut vertex of G if V −{v} is no longer connected. An independent

set is a set of vertices in a graph, no two of which are adjacent. The number of vertices

in a maximum independent vertex set of G is called the independent vertex number

of G, denoted by β.

The distance d(u, v) between two vertices u and v in a connected graph G is the length

of a shortest u-v path in G. The eccentricity e(v) of a vertex v in G is the maximum

distance from v and a vertex of G. The minimum eccentricity among the vertices of

G is the radius, rad G or r(G) and the maximum eccentricity is its diameter, diamG

of G. A vertex v of G is said to be peripheral vertex if e(v) = diam(G). An u-v

path of length d(u, v) is called an u-v geodesic. A vertex x is said to lie on a u-v

geodesic P if x is a vertex of P including the vertices u and v. For any set S of

vertices of G, the induced subgraph < S > is the maximal subgraph of G with vertex

set S. An edge geodetic set of G is a set S ⊆ V (G) such that every edge of G is

contained in a geodesic joining some pair of vertices in S. The edge geodetic number

g1(G) of G is the minimum order of its edge geodetic sets and any edge geodetic set

of order g1(G) is a minimum edge geodetic set of G or g1-set of G. The edge geodetic

number was introduced by Atici [5] and further studied in [1–3, 13, 15, 17–21]. A

decomposition of a graph G is a collection of edge - disjoint subgraphs G1, G2, . . . , Gn
of G such that every edge of G belongs to exactly one Gi, (1 ≤ i ≤ n). Various types

of decompositions of G have been studied in the literature by imposing conditions

on the subgraph Gi. In this paper we introduced and studied the concept of distinct

edge geodetic decomposition in graphs. For references on decomposition parameters

in graphs see [4, 7, 9–12, 14, 16]. In number theory and combinatorics, a partition of

a positive integer n, also called an integer partition, is a way of writing n as a sum

of positive integers. Two sums that differ only in the order of their summands are

considered the same partition. We denote by Pp, Cp and Kr,s, the path on p vertices,

the cycle on p vertices and complete bipartite graph in which one partite set has r

vertices and the other partite set has s vertices, respectively. Throughout this paper

G denotes simple connected graph with at least two vertices. The following theorems

are used in sequel.

Theorem A. ([18]) Each simplicial vertex of G belongs to every edge geodetic dominating
set of G.

Theorem B. ([18]) For any connected graph G, 2 ≤ g1(G) ≤ p.

Theorem C. ([5]) For any non-trivial tree T , the edge geodetic number g1(T ) equals the
number of end-vertices in T .

Theorem D. ([5]) For the star G = K1,n, g1(G) = n = q.
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Theorem E. ([18]) Any connected graph having more than one universal vertex has edge
geodetic number p.

Theorem F. ([18]) Any connected graph having exactly one universal vertex has edge
geodetic number p− 1.

Theorem G. ([18]) For any connected graph G, g1(G) = 2 if and only if there exist two
peripheral vertices u and v such that every edges of G lies in a diametral path of u and v.

Theorem H. ([18]) For the cycle Cp(p ≥ 4), g1(Cp) = 2 if p is even and g1(Cp) = 3 if p
is odd.

Theorem I. ([18]) No cut vertex of G belongs to any minimum edge geodetic set of G.

2. Distinct edge geodetic decomposition in graphs

Definition 1. The decomposition π = {G1, G2, . . . , Gn} of a connected graph G is said
to be a distinct edge geodetic decomposition if g1(Gi) 6= g1(Gj)(1 ≤ i 6= j ≤ n). The
maximum cardinality of π is called the distinct edge geodetic decomposition number of G
and is denoted by πdg1(G), where g1(G) is the edge geodetic number of G.

Example 1. For the graph G given in Figure 1, G1 and G2 [given in Figure 2] is
a decomposition of G. Since g1(G1) = 3 and g1(G2) = 2, π = {G1, G2} is a distinct
edge geodetic decomposition of G. It is easily verified that there is no distinct edge geodetic
decomposition of cardinality more than 2. Therefore πdg1(G) = 2.

v1

v2

v3 v4

v5

G

Figure 1. A graph with πdg1
(G) = 2.

Remark 1. There can be more than one distinct edge geodetic decompositions for a
graph. For the graph G given in Figure 1, G3 and G4 [given in Figures 2] is a decomposition
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Figure 2.

of G. Since g1(G3) = 4 and g1(G4) = 2, π2 = {G3, G4} is also a distinct edge geodetic
decomposition of G.

Observation 1. For the cycle G = Cp(p ≥ 3) and path G = Pp(p ≥ 3), π = {G} so that
πdg1(G) = 1.

Observation 2. Let G = K1,q. Then πdg1(G) ≥ 2 if and only if q ≥ 4.

Lemma 1. For any connected graph G, g1(G) = p if and only if G is semi complete.

Proof. Let G be a semi complete graph and S be an edge geodetic set of G. Let

v be an vertex of G such that v ∈ V \ S. Let u be a vertex of < N(v) > such

that deg<N(v)>(u) = |N(v)| − 1. Let u1, u2, . . . , uk(k ≥ 2) be the neighbors of u ∈<
N(v) >. Since S is an edge geodetic set of G, the edge uv lies on the x-y geodesic

P : x, x1, . . . , ui, u, v, uj , . . . , y, where x, y ∈ S. Since v is a semi-simplicial vertex

of G, u and uj are adjacent in G and so P is not a x-y geodesic of G, which is a

contradiction. This implies that S = V and hence g1(G) = p.

Conversely, suppose g1(G) = p. We claim that G is a semi-simplicial graph. If not,

let there exists a vertex v in G such that v is not a semi-simplicial vertex of G. Then

for each w ∈ N(v), there exists zw ∈ [N(v) − {w}] such that wzw /∈ E(G). Let

S = V (G) − {v}. Consider the edge wv. Since w, zw ∈ S, the edge wv lies on the
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geodesic w, v, zw. Then S is an edge geodetic set of G with |S| = p − 1, which is a

contradiction. Therefore, G is a semi-complete graph.

Theorem 3. Let π = {G1, G2, . . . , Gk} be a distinct edge geodetic decomposition of G.
If any one of the Gi(1 ≤ i ≤ k) has edge geodetic number p, then none of the Gi(1 ≤ i ≤ k)
has edge geodetic number p− 1.

Proof. Let G1 ∈ π such that g1(G1) = p. Then by Lemma 1, G1 is semi complete.

Hence G1 has at least two vertices of degree p − 2 or more. Let G2 =< G − G1 >.

Consider two cases.

Case 1. Let ∆(G1) = p − 2. Then G2 has at least two end vertices. Hence G2 has

at least two cut vertices. By Theorem I, g1(G2) ≤ p− 2 6= p− 1.

Case 2. Let ∆(G1) = p− 1. Since g1(G1) = p, G1 has at least two vertices of degree

p− 1. Then |V (G2)| ≤ p− 2 and so g1(G2) 6= p− 1.

Theorem 4. Let π = {G1, G2, . . . , Gk} be a distinct edge geodetic decomposition of G. If
any one of the Gi(1 ≤ i ≤ k) has edge geodetic number p−1, then none of the Gi(1 ≤ i ≤ k)
has edge geodetic number p.

Proof. The proof is similar to the proof of Theorem 3.

Theorem 5. For any connected graph G with p ≥ 4, 1 ≤ πdg1(G) ≤ p− 2.

Proof. From the definition of distinct edge geodetic decomposition of G, πdg1(G) ≥
1. Suppose that πdg1(G) = p − 1. Let π = {G1, G2, . . . , Gp−1} be a distinct edge

geodetic decomposition of G. Since g1(Gi) 6= g1(Gj)(i 6= j) and g1(Gi) ≥ 2(1 ≤
i ≤ p − 1), there exist Gl, Gk ∈ π such that g1(G1) = p − 1 and g1(Gk) = p,

which is a contradiction to Theorems 3 and 4. Therefore πdg1(G) ≤ p − 2. Thus

1 ≤ πdg1(G) ≤ p− 2.

Remark 2. The bounds in Theorem 5 are sharp. For the graph G = K3, πdg1(G) = 1
and for the complete graph G = Kp(p ≥ 4), πdg1(G) = p − 2. Also the bounds in Theorem
5 can be strict. For the graph G given in Figure 3, the graphs G1, G2 and G3 illustrated
in Figure 3 represents a decomposition of G with g1(G1) = 4, g1(G2) = 3 and g1(G3) = 2.
Hence π = {G1, G2, G3} is a distinct edge geodetic decomposition of G. It is easily verified
that there is no distinct edge geodetic decomposition of cardinality more than 3 so that
πdg1(G) = 3. Therefore 2 < πdg1(G) < p− 2.

Theorem 6. For any connected graph G, πdg1(G) ≥ 2 if and only if 4(G) ≥ 3 and
q ≥ 4.
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Figure 3. A graph with πdg1
(G) = 3.

Proof. Let 4(G) ≥ 3 and q ≥ 4. We consider two cases.

Case 1. Suppose G is not a tree.

Then G has at least one cycle. Let u1, u2, u3, . . . , uk, u1(k ≥ 3) be a cycle of G. Let

G1 = G − {u1uk}, G2 = K2 = {u1uk}. Also G1 has at least one edge, which does

not lie on the diametral path. Hence by Theorems G, g1(G1) 6= 2. By Theorem C,

g1(G2) = 2. Therefore g1(G1) 6= g1(G2) and hence π = {G1, G2} is a distinct geodetic

decomposition of G so that πdg1(G) ≥ 2.

Case 2. Suppose G is a tree.

We distinguish the following situations.

Subcase 2.1. G is a star.

Let G1 = {e} and G2 = G− {e}. Then by Theorem C, g1(G1) = 2. Since q ≥ 4, by

Theorem C, g1(G2) ≥ 3. Then g1(G1) 6= g1(G2). Hence π = {G1, G2} is a distinct

geodetic decomposition of G so that πdg(G) ≥ 2.

Subcase 2.2. G is not a star.

Let u be a vertex of G such that d(u) ≥ 3. Since q ≥ 4, there exists at least

one pendant vertex x such that x is not adjacent to u. Let G1 = K2 =xy and

G2 = G−{xy}, where y is the adjacent vertex of x. Then by Theorem C, g1(G1) = 2.

Since G2 has at least three pendant edges, by Theorem A, g1(G1) ≥ 3 such that

g1(G1) 6= g1(G2). Hence π = {G1,G2} is a distinct geodetic decomposition of G so

that πdg1(G) ≥ 2.
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Conversely, suppose that πdg1(G) ≥ 2. If 4(G) ≤ 2, then G is either a path or a

cycle. Hence by Observation 1, πdg1(G) = 1. Therefore 4(G) ≥ 3. If q ≤ 3, then G

is a star K1,3. By Observation 2, πdg1(G) = 1, which is a contradiction. Therefore

q ≥ 4.

Remark 3. Star is the smallest graph with maximum edge geodetic number. Hence
the decomposition of G yields the maximum distinct edge geodetic decomposition if each
decomposition Gi is a star.

Theorem 7. For any connected graph G, πdg1(G) = p − 2 if and only if G has at least
p2−p−4

2
edges.

Proof. Let πdg1(G) = p − 2. We have to prove q ≥ p2−p−4
2 . Let π =

{G1, G2, . . . , Gp−2} be a maximum distinct edge geodetic decomposition of G. Let

g1(G1) = 2, g1(G2) = 3, . . . , g1(Gp−2) = p − 1. Since star is the smallest graph with

maximum edge geodetic number, let G1 = K2, G2 = K1,3, G3 = K1,4, . . . , Gp−2 =

K1,p−1. Then q = 1 + 3 + 4 + · · ·+ p− 1 = p2−p−4
2 . If any one of Gi(1 ≤ i ≤ p− 2),

not a star, then q ≥ p2−p−4
2 .

Conversely, suppose that G has at least p2−p−4
2 edges. Also p2−p−4

2 = p(p−1)
2 − 2 and

addition of two edges to G gives the resulting graph as a complete graph. Hence G has

at least p− 3 universal vertices. As in the first part of the theorem, let G1 = K1,p−1,

G2 = K1,p−2, . . . , Gp−4 = K1,4, Gp−3 = K1,3. Then πdg1(G) ≥ p − 3. Hence by

Theorem 5, πdg1(G) = p− 3 or p− 2. Consider the following cases.

Case 1. Let q = p2−p−4
2 . Then Gp−2 =< G−G1 −G2 − · · · −Gp−3 >= K2. Hence

g1(Gp−2) = 2 6= g1(Gi)(1 ≤ i ≤ p − 3) and π = {G1, G2, . . . , Gp−2} is a maximum

distinct edge geodetic decomposition of G so that πdg1(G) = p− 2.

Case 2. Let q = p2−p−2
2 . Then Gp−2 =< G−G1 −G2 − dots−Gp−3 >= P3. Hence

g1(Gp−2) = 2 6= g1(Gi)(1 ≤ i ≤ p− 3) and π = {G1, G2, . . . , Gp−2} is a distinct edge

geodetic decomposition of G so that πdg1(G) = p− 2.

Case 3. Letq = p2−p
2 = p(p−1)

2 . Then G is complete. As in the Case 1 and Case 2,

Gp−3 =< G − G1 − G2 − · · · − Gp−4 >= K4. Let Gp−2 = P3 and Gp−3 = K4 − P3.

Then by Theorem C, g1(Gp−2) = 2. Also it is clear that g1(Gp−3) = 3. Therefore

πdg1(G) = p− 2.

Corollary 1. For any connected graph G, πdg1(G) = p− 2 (p ≥ 4) if G has at least p− 2
universal vertices.

Proof. Suppose G has at least p− 2 universal vertex. Then q ≥ p2−p−4
2 . Hence by

Theorem 7, πdg1(G) = p− 2.

Corollary 2. For any complete graph G = Kp(p ≥ 4), πdg1(G) = p− 2.
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Proof. This follows from Corollary 1.

Theorem 8. Let G be a connected graph with r universal vertices. Then r ≤ πdg1(G) ≤
p− 2.

Proof. Without loss of generality, assume that deg(ui) = p − 1(1 ≤ i ≤ r). Let

G1 = K1,p−1 such that u1 is the rooted vertex of G1. Let V (G1) = {u1, u2, . . . , up}.
Then by Theorem D, g1(G1) = p − 1. Let G2 = K1,p−2 such that u2 is the rooted

vertex of G2. Let V (G2) = {u2, u3, . . . , up}. Then by Theorem D, g1(G2) = p − 2.

Continuing this process, we get Gr−1 = K1,p−(r−1) such that ur−1 is the rooted vertex

of Gr−1 and g1(Gr−1) = p−r+1 . Let Gr =< G−G1−G2−· · ·−Gr−1 >. Then the

order of Gr is p− r + 1 and exactly one vertex ur(say) of Gr has degree p− r. Then

by Theorem F, g1(Gr) = p − r. Hence π = {G1, G2, . . . , Gr−1, Gr} is a maximum

distinct edge geodetic decomposition of G. Hence πdg1(G) = r. Suppose Gr = K1,p−r
and let Gr+1 =< G−G1 −G2 − · · · −Gr−1 −Gr >. If g1(Gr+1) 6= g1(Gi)(1 ≤ i ≤ r)
or any one of p− i(1 ≤ i ≤ r) can be partitioned into distinct factor, which are differ

from p− 1, p− 2, . . . , p− (i− 1), p− (i+ 1), . . . , p− r, then by Remark 3, πdg1(G) ≥ r.
If r ≥ p− 2 by Corollary 1, πdg1(G) = p− 2 and hence r ≤ πdg1(G) ≤ p− 2.

Theorem 9. Let G be any connected graph having exactly p− 3 universal vertices. Then
πdg1(G) = p− 3 if and only if β(G) = 3.

Proof. Suppose that G has p−3 universal vertices and πdg1(G) = p−3. We have to

prove β(G) = 3. Suppose that β(G) 6= 3. Since G has p−3 universal vertices, β(G) <

3. As given in the proof of Theorem 7, let π = {G1, G2, . . . , Gp−3} be a maximum

distinct edge geodetic decomposition with Gp−2 =< G − G1 − G2 − · · · − Gp−3 >.

Then Gp−2 = K2 (otherwise universal vertices will be greater than p− 3). It is easily

verified that g1(Gp−2) 6= g1(Gi)(1 ≤ i ≤ p − 3). Thus π = {G1, G2, . . . , Gp−3, Gp−2}
is a maximum distinct edge geodetic decomposition, which is a contradiction.

Conversely, suppose β(G) = 3. Since G has exactly p−3 universal vertices, exactly

3 vertices of G has degree p− 3. Hence q = (p−3)(p−1)+3(p−3)
2 = p2−p−6

2 and p− 1, p−
2, p− 3, . . . , 3 is the maximum partitions of q with distinct parts. Then by Remark 3,

G1 = K1,p−1, G2 = K1,p−2, . . . , G3 = K1,3 is a distinct edge geodetic decomposition

of G and so πdg1(G) = p− 3.

Corollary 3. Let G be a connected graph G with πdg1(G) = p− 2. Then β(G) ≤ 2.

Proof. Let G be a connected graph with πdg1(G) = p − 2. Then by Theorem 9, G

has at least p2−p−4
2 edges and hence G has at least p − 3 universal vertices so that

β(G) ≤ 2.

Remark 4. The converse of the Corollary 3 need not be true. For the graph G given in
Figure 4, β(G) = 2. The graphs G1, G2 in Figure 4 represents a decomposition of G with
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g1(G1) = 4, g1(G2) = 2. Hence π = {G1, G2} is a distinct edge geodetic decomposition of
G. It is easily verified that there is no distinct edge geodetic decomposition of cardinality
more than 2 so that πdg1(G) = 2 6= p− 2.

v1

v2

v3 v4

v5

G

v1

v2

v4

v5

G1
v2

v3

v4G2

Figure 4. An example to show that the converse of the Corollary 3 need not be true.

Lemma 2. Let G be a connected graph of order p and size q with edge geodetic number
2 ≤ g1(G) ≤ p. Then

(i) g1(G) = q if and only if G = K1,q or K3.

(ii) g1(G) = q + 1 if and only if G = K2.

Proof. (i): Let g1(G) = q. Consider the following cases.

Case 1. G is a tree.

If G has at least two cut vertices, then since no cut vertex of G belongs to any

minimum edge geodetic set of G, g1(G) ≤ p − 2 ≤ q − 1, which is a contradiction.

Hence G has exactly one cut vertex. This implies that G = K1,q.

Case 2. G is not a tree.

Suppose first that G is a cycle Cp. If p ≥ 4, then by Theorem H, g1(G) < q, which is
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a contradiction. Therefore G = C3 = K3. Suppose now that G is not a cycle. Then

by Theorem B, g1(G) ≤ p < q, which is a contradiction.

Conversely, let G = K1,q or K3. Then by Theorems C and A, g1(G) = q.

(ii) Let g1(G) = q + 1 and G 6= K2. Then G has at least two edges. Hence by

Theorem B, g1(G) ≤ p ≤ q, which is a contradiction. Hence g1(G) = q+ 1 if G = K2.

Conversely, suppose G = K2. Then by Theorem C, g1(G) = 2 = q + 1.

Theorem 10. For any connected graph G,
∑
g1(Gi) ≤ q + 1.

Proof. Let π = {G1, G2, . . . , Gn} be a maximum distinct edge geodetic decomposi-

tion of G and E(Gi) = qi(1 ≤ i ≤ n). If Gi 6= K2(1 ≤ i ≤ n), then
∑
g1(Gi) ≤ q.

Suppose that Gi = K2(1 ≤ i ≤ n). Then Gi 6= Gj(1 ≤ i, j ≤ n). By Lemma 2,∑
g1(Gi) ≤ q + 1. Therefore

∑
g1(Gi) ≤ q + 1.

Remark 5. Generally distinct edge geodetic decomposition of a graph G is not a partition
of q (size of G). For the graph G given in Figure 1, the maximum distinct edge geodetic
decomposition is π = {G1, G2}. The edge geodetic numbers of G1 and G2 are 3 and 2
respectively. But 2 and 3 are not the partition of q = 7.

Definition 2. The distinct edge geodetic decomposition π = {G1, G2, . . . , Gn} of G is
called a distinct edge geodetic star decomposition if eachGi(1 ≤ i ≤ n) is the starK1,r(r > 1)
and |E(Gi)| 6= |E(Gj)|(1 ≤ i 6= j ≤ n).

Example 2. For the graph G given in Figure 5, G1 and G2 [given in Figure 5] is a
decomposition of G. Since |E(G1)| 6= |E(G2)|, π = {G1, G2} is a distinct edge geodetic star
decomposition of G and g1(G1) + g1(G2) = 6 = q.

Theorem 11. A distinct edge geodetic decomposition is the partition of q if the decom-
position is a distinct edge geodetic star decomposition.

Proof. Let π = {G1, G2, . . . , Gn} be a distinct edge geodetic star decomposition of

G. Then G1, G2, . . . , Gn are star graphs and |E(Gi| 6= |E(Gj)|(1 ≤ i 6= j ≤ n). By

Theorem D, g1(Gi) = |E(Gi)|, (1 ≤ i ≤ n). This implies
∑
g1(Gi) = q so that the

distinct edge geodetic decomposition is the partition of q.

Theorem 12. For any partition n1 < n2 < n3 < · · · < nk (2 ≤ ni ≤ p − 2) of q, there
exist a graph G of order p and size q such that G has a distinct edge geodetic decomposition
π = {G1, G2, . . . , Gk}, where g1(Gi) = ni(1 ≤ i ≤ k) and p− q = 1.

Proof. Consider the graph G = K1,n1+n2+···+nk
and let Gi = K1,ni for each i ∈

{1, 2, . . . , k}. Then clearly, q = n1 + n2 + · · · + nk and p = q + 1. Moreover, π =

{G1, G2, . . . , Gk} is a distinct edge geodetic decomposition of G.
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Figure 5. A graph with a distinct edge geodetic star decomposition

Conclusion

In this paper, we studied distinct edge geodetic decomposition in graphs. Further,

this concept can be extended to monophonic paths related parameters in graphs.
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