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1. Introduction

Let X = {x1, x2, x3, . . . , xn} be a finite n-element set. A set of subsets of X, say,

P = {Y1, Y2, Y3, . . . , Yk} is called a partition of set X if xi ∈ Yj then xi /∈ Yl, l 6= j

and X =
k⋃

i=1

Yi.

The number of partitions of a finite set X is given by the well known Bell numbers. By

convention the Bell partition of an empty set ∅ is given by {∅} and the corresponding

Bell number is defined as B0 = 1. For the non-empty set X = {x1}, the Bell
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212 Stirling numbers and Lucky partitions

partition is given by {{x1}} hence, B1 = 1. Numerous recurrence relations have been

documented for Bell numbers, and we recall one of these [11], i. e.,

Bn =

n−1∑
k=0

Bk

(
n− 1

k

)
. (1)

Several upper bound asymptotic formulas are known for Bell numbers. We recall an

important upper bound [2], i. e.,

Bn <

(
0.792n

ln(n+ 1)

)n

,

for all positive integers n. A closed formula which provides a sense of the growth

rate of Bell numbers follows from the use of the Lambert W (n) function where the

expressions, B and Pi, Qi are known in W (n). Recall that

Bn+h =
(n+ h)!

W (n)n+h
× exp(e(W (n) − 1)

(2πB)
1
2

uniformly for h = O(ln(n)) as n → ∞ [3, 10]. It is obvious from the growth rate of

the Bell numbers that generating the Bell partitions manually is firstly, difficult and

secondly, very inefficient for research purposes.

The Lah numbers are the coefficients obtained in expressing rising factorials in terms

of falling factorials. They also correspond to the coefficients of the nth derivative of

e
1
x . Lah numbers are related to Stirling numbers and also called, Stirling number of

the third kind [4].

2. Stirling Partition of the Fourth Kind of a Finite Set

Throughout the rest of this paper a set refers to a finite non-empty set. It is known

that the elements of a set are unordered and two sets (possibly distinct) of equal

cardinality are said to be equipotent (or, of equal size). Two equipotent sets A,

B have the relation A ∼ B. The cardinality of a set X = {x1, x2, x3, . . . , xn} is

denoted by |X| or |{x1, x2, x3, . . . , xn}|. Hence, |X| = n. For a set X and a partition

P = {Y1, Y2, Y3, . . . , Yk} a total of k + 2 cardinalities are of importance. These are

|X| = n, |P | = |{Y1, Y2, Y3, . . . , Yk}| = k and |Yi|, i = 1, 2, 3, . . . , k.

Consider two partitions P1 = {Y1, Y2, Y3, . . . , Yk} and P2 = {Z1, Z2, Z3, . . . , Zt} of the

set X. The partitions are said to be congruent, denoted by P1
∼= P2 if and only if

P1 ∼ P2 (or, |P1| = k = t = |P2|) and a for each subset Yi there is a distinct Zj such

that, |Yi| = |Zj |. Put differently, there must be a bijection, P1 7→ P2|Yi|=|Zj |
.

An important specialization on the Stirling partition of the second kind is introduced

in this paper. Stirling partition of the fourth kind of a set X is a partition into k
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non-empty subsets, and the cardinality of the subsets are prescribed as, `1, `2, . . . , `k,
k∑

i=1

`i = n. It means that all partitions have the partition form,

{{`1-element}, {`2-element}, {`3-element}, . . . , {`k-element}}.

The fundamental difference between Lah numbers and Stirling numbers of the fourth

kind is as follows. Whereas Lah numbers count the number of ways a set of n elements

can be partitioned into k non-empty linearly order subsets, Stirling numbers do the

same to unordered subsets. Hence, a specific Lah number is an upper-bound for the

corresponding Stirling number of the fourth kind.

Observe that the Stirling partition of the fourth kind can be clustered, as it forms

Pi(n, k) having an equal number of subsets. These clusters can be derived from the

number of integer partitions of n into exactly k parts denoted by pk(n). A well-known

recursive formula exists [1], i. e.,

pk(n) = pk(n− k) + pk−1(n− 1).

Let the Stirling number of the fourth kind denoted by, S(Pi(n, k)), i =

1, 2, 3, . . . , pk(n), be the number of partitions corresponding to a Stirling of the fourth

kind partition form. We can derive the following important result.

Proposition 1. For the set X = {x1, x2, x3, . . . , xn}, let the Stirling partition form of the
fourth kind be, P1(n, 1), P1(n, 2), . . . , Pp2(n)(n, 2), P1(n, 3), . . . , Pp3(n)(n, 3) . . . P1(n, n). Then

S(n, k) =

pk(n)∑
i=1

S(Pi(n, k)).

Proof. Since S(n, k) yields the exact number of distinct partitions of X with each

partition having exactly k non-empty subsets, it follows that

S(n, k) ≥
pk(n)∑
i=1

S(Pi(n, k)).

Since, p(n) yields the exact number of distinct integer partitions of n, the partition

form cluster Ck is exact and yields all possible partition forms, each contains exactly

k non-empty subsets, i. e., pk(n) such partition forms. Therefore,

S(n, k) ≤
pk(n)∑
i=1

S(Pi(n, k)).

The proof is thus complete.
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3. Lucky Partitions

The concept of Lucky k-polynomials (and in particular Lucky χ-polynomials) was

discussed in [5, 7]. These polynomials relate to the notion of chromatic completion

of graphs [6, 8]. An important subclass of the Stirling partitions of the fourth kind

is called the Lucky partitions. These partitions are necessary for determining the

Lucky k- and the Lucky χ-polynomials. From Lucky’s theorem or an optimal near-

completion k-partition, it follows that for 2 ≤ k ≤ n the Lucky partitions have the

form,

{{bn
k
c − element}, {bn

k
c − element}, . . . , {bn

k
c − element}︸ ︷︷ ︸

(k−r)−subsets

,

{dn
k
e − element}, {dn

k
e − element}, . . . , {dn

k
e − element}︸ ︷︷ ︸

(r≥0)−subsets

}.

Example 1: For X = {x1, x2, x3, x4, x5} and k = 3, the Lucky partition form

{{2− element}, {2− element}, {1− element}} is defined.

For the set {x1}, we obtain the Lucky partition {{x1}}.
For the set {x1, x2}, we obtain the Lucky partitions {{x1, x2}}, {{x1}, {x2}}.
For the set {x1, x2, x3}, we obtain the Lucky partitions,

{{x1, x2}, {x3}}, {{x1, x3}, {x2}}, {{x1}, {x2, x3}}, {{x1}, {x2}, {x3}}.
For the set {v1, v2, v3, v4}, we obtain the Lucky partitions,

{{x1, x2}, {x3, x4}}, {{x1, x2}, {x3}, {x4}}, {{x1, x3}, {x2, x4}},
{{x1, x3}, {x2}, {x4}}, {{x1, x4}, {x2, x3}}, {{x1}, {x2, x3}, {x4}},
{{x1, x4}, {x2}, {x3}}, {{x1}, {x2, x4}, {x3}}, {{x1}, {x2}, {x3, x4}}.
For the set {v1, v2, v3, v4, v5}, we obtain the Lucky partitions,

{{x1, x2}, {x3, x4}, {x5}}, {{x1, x2}, {x3, x5}, {x4}}, {{x1, x2}, {x3}, {x4, x5}},
{{x1, x3}, {x2, x4}, {x5}}, {{x1, x3}, {x2, x5}, {x4}}, {{x1, x3}, {x2}, {x4, x5}},
{{x1, x4}, {x2, x3}, {x5}}, {{x1, x5}, {x2, x3}, {x4}}, {{x1}, {x2, x3}, {x4, x5}},
{{x1, x4}, {x2, x5}, {x3}}, {{x1, x4}, {x2}, {x3, x5}}, {{x1, x5}, {x2, x4}, {x3}},
{{x1}, {x2, x4}, {x3, x5}}, {{x1, x5}, {x2}, {x3, x4}}, {{x1}, {x2, x5}, {x3, x4}}.
Note that 31 iterative Lucky partitions (including the final 15 Lucky partitions) were

generated instead of generating 75 iterative Bell partitions (including the 52 corre-

sponding Bell partitions) to select from. It is expected (if not obvious) that for large

n, a heuristic method to generate Lucky partitions would be noticeably more efficient.

The number of Lucky partitions corresponding to a Lucky partition form is called

the Lucky partition number and is denoted L(n, k). Note that, L(n, k) = S(Pi(n, k)),

∀ n, k ∈ N. Table 1 depicts the Lucky partition numbers for n = 1, 2, 3, 4, 5, 6.

A closed formula for the entries in Table 1 was announced by Dillon Lareau [9]. Hence,

we have,

L(n, k) =
n!

A!B!(dnk e!)A(bnk c!)B
,

where A = n mod k and B = k − A. Lareau referred to it as “the number of

ways of dividing n labeled items into k unlabeled boxes as evenly as possible”. The
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n k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

1 1 - - - - -

2 1 1 - - - -

3 1 3 1 - - -

4 1 3 6 1 - -

5 1 10 15 10 1 -

6 1 10 15 45 15 1

Table 1. Lucky partition numbers for n = 1, 2, 3, 4, 5 and 6

numbers were not named and only in the context of finding Lucky k-polynomials did

the name Lucky partition numbers arise, independently. In the graph theory context

the vertex partitions correspond to those for a null graph (edgeless). For graphs with

edges certain forbidden vertex partitions must be eliminated resulting in a decrease

in the graph specific Lucky partition number. Untangling the closed formula into

various recurrence relations for the Lucky partition numbers is viewed of importance

for researchers to develop the much needed algorithm to generate graph specific Lucky

partitions. Without such a coded algorithm, this research avenue cannot be furthered.

Theorem 1. Let n, k, t ∈ N.
(a) If k = 1 or k = n then, L(n, k) = 1,
(b) If 2 ≤ k ≤ n− 1 and n = tk, t ≥ 2 then, L(n, k) = L(n− 1, k),
(c) If 2 ≤ k ≤ n − 1 and n

k
= bn

k
c + r, 0 ≤ r ≤ k − 2 then, L(n + 1, k) = (k − r)L(n, k) +

S(Pi(n, k)), for corresponding Pi(n, k) in which:
(i) If r = 0, then Pi(n, k) has exactly one, {dn

k
e+ 1-element} subset,

(ii) If 1 ≤ r ≤ (k − 2), then Pi(n, k) has exactly r + 1, {dn
k
e − element} subsets.

Proof. (a) Since p1(n) = pn(n) = 1, the result holds for k = 1 or k = n.

(b) Let 2 ≤ k ≤ n− 1 and n = tk, t ≥ 2. Since the Lucky partition form for Ln−1,k is

{{bn− 1

k
c − element}︸ ︷︷ ︸

1−subset

, {n
k
− element}, {n

k
− element}, . . . , {n

k
− element}︸ ︷︷ ︸

(k−1)−subsets

}

and since all partitions are distinct, the result holds.

(c) Let 2 ≤ k ≤ n− 1 and n
k = bnk c+ r, 0 ≤ r ≤ k − 2.

Case c(i): Let r = 0. The first term follows by adding xn+1 to any of the k, Lucky

partition subsets for n. Furthermore, consider Pi(n, k) which has the partition form,

{{(n
k

+ 1)− element}︸ ︷︷ ︸
1−subset

,{n
k
− element}, {n

k
− element}, . . . , {n

k
− element}︸ ︷︷ ︸

(k−2)−subsets

,

{(n
k
− 1)− element}︸ ︷︷ ︸

1−subset

} and all partitions are distinct.
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Since, {{(n
k

+ 1)− element}︸ ︷︷ ︸
1−subset

, {n
k
− element}, {n

k
− element}, . . . , {n

k
− element}︸ ︷︷ ︸

(k−2)−subsets

,

{(n
k
− 1)− element}︸ ︷︷ ︸

1−subset

∪{xn+1}} is the Lucky partition form for n+1 and all partitions

are distinct, the second term follows. Therefore, c(i) follows.

Case c(ii): Let 1 ≤ r ≤ k − 2. The first term follows by adding xn+1 to any of the

r − k, Lucky partition subsets for n. Furthermore, as Pi(n, k) has the partition form

{{bn
k
c − element}, {bn

k
c − element}, . . . , {bn

k
c − element}︸ ︷︷ ︸

(k−r−2)−subsets

,

{dn
k
e − element}, {dn

k
e − element}, . . . , {dn

k
e − element}︸ ︷︷ ︸

(r+1≥0)−subsets

,{(bn
k
c − 1)− element}︸ ︷︷ ︸

1−subset

}

and all partitions are distinct.

Since, {{bn
k
c − element}, {bn

k
c − element}, . . . , {bn

k
c − element}︸ ︷︷ ︸

(k−r−2)−subsets

, {dnk e − element},

{dn
k
e − element}, . . . , {dn

k
e − element}︸ ︷︷ ︸

(r+1≥0)−subsets

, {(bn
k
c − 1)− element}︸ ︷︷ ︸

1−subset

∪{xn+1}} is the Lucky

partition form for n + 1 and all partitions are distinct, the second term follows.

Therefore, c(ii) follows.

Recall that the falling factorial is denoted, λ(λ− 1) · · · (λ− (`− 1)) = λ(`).

Theorem 2. Let X = {x1, x2, x3, . . . , xn} such that tk ≤ n ≤ (t+ 1)k − 2, t ≥ 2. Then,

L(n+ 1, k) = (k − r)L(n, k) + (k − r)(2)tL(n, k).

Proof. Let X = {x1, x2, x3, . . . , xn} such that tk ≤ n ≤ (t + 1)k − 2, t ≥ 2. Then

n = tk + r, 0 ≤ r ≤ k − 2. Hence, the Lucky partition form is

{{t− element}, {t− element}, . . . , {t− element}︸ ︷︷ ︸
(k−r)−subsets

,

{(t+ 1)− element}, {(t+ 1)− element}, . . . , {(t+ 1)− element}︸ ︷︷ ︸
(0≤r≤k−2)−subsets

}

and all partitions are distinct.

Extending to n+ 1 adds the element xn+1 which can be added to any of the distinct

(k − r), t-element subsets. Therefore, the term (k − r)L(n, k) is valid. The (k − r),
t-element distinct subsets may also be grouped pairwise and from each an element,

one at a time, may be union’ed with the other, and vice versa (or conversely) to yield

an additional (t + 1)-element distinct subset and a (t − 1)-element distinct subset.

The latter can accommodate xn+1 as an additional element to obtain the additional
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Lucky partition forms for n+ 1. Hence,
(
k−r
2

)
such distinct pairs exist. Interchanging

an element is possible in 2
(
k−r
2

)
t ways. Therefore,

L(n+ 1, k) = (k − r)L(n, k) + 2

(
k − r

2

)
t× L(n, k)

i. e., = (k − r)L(n, k) + (k − r)(2)tL(n, k).

Note that Theorem 2 is an alternative result to Theorem 1(c). The choice of ap-

plication will probably depend on which is developed first, i. e., a computer coded

generator for Stirling numbers of the fourth kind or for Lucky numbers.

If a Lucky partition numbers table is presented as a square matrix, the matrix will

be a lower triangular matrix. This leads to alternative ways to present some results.

Proposition 2. Let the matrix A represent the Lucky partition numbers corresponding
to n = 1, 2, 3, . . . , t and k = 1, 2, 3, . . . , t. Then:
(a) Entries ai,i = 1, 1 ≤ i ≤ t.
(b) Entries ai,i−1 = ai−1,i−2 + (i− 1), 3 ≤ i ≤ t.
(c) Through immediate induction (b) holds for all t ≥ 3, t ∈ N.

Proof. (a) The result follows directly from Theorem 1(a).

(b) It is known that L(2, 1) = 1 and L(3, 2) = 3. Since, a3,2 = a2,1+(3−1) = 1+2 = 3,

the result holds for i = 3. Assume the result holds for n = q, 4 ≤ q ≤ t−1. Therefore,

aq,q−1 = aq−1,q−2 + (q − 1).

Let i = q+1. Clearly, because of the Lucky partition form we only have to determine,(
q+1
2

)
−
(
q
2

)
to close the result. It follows easily that,

(q + 1)!

2!(q − 1)!
− q!

2!(q − 2)!
= q = (q + 1)− 1.

Thus the result is true for all 3 ≤ i ≤ t.
(c) Trivial.

4. Conclusion

Clearly, Lucky partition of a finite set is a specialization of Stirling partition of the

fourth kind. The latter is a specialization of Stirling partitions of the second kind. It

is also clear that integer partitions play a key role in this avenue of research.

We now present some research problems.

Problem 1. Find a recurrence relation, if such exists, to determine S(Pi(n, k)),

i = 1, 2, 3, . . . , pk(n).

Problem 2. Find an explicit formula, if such exists, to determine S(Pi(n, k)),
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i = 1, 2, 3, . . . , pk(n).

Problem 3. For a k ∈ N, n = 1, 2, 3, . . . , determine the growth rate of Lucky

partition numbers.

Problem 4. From the table depicting the Lucky partition numbers read together

with Theorem 1(b),(c) it follows that for k = 2, n = 2, 3, 4, . . . the Lucky partition

numbers is a sequence, 1, 3, 3, 10, 10, . . . , ai,1, ai,2, a(i+1),1, a(i+1),2, . . . with aj,1 = aj,2.

Note that aj,1 corresponds to odd j and aj,2 corresponds to even j + 1.

Furthermore, for 1, 3, 3, 10, 10, . . . , ai,1, ai,2, a(i+1),1, a(i+1),2, . . . the sequence of

non-zero first differences is, 2, 7, . . . , (a(i+1),1 − ai,2), . . . .

Conjecture. Consider the sequence, s = 1, 3, 3, a5,1, a5,2, a7,1, a7,2, . . . Let the

non-zero first difference be defined as,

3− 1 = 2 = t3,

a5,1 − 3 = t5,

a7,1 − a5,2 = t7,

.

.

.

Then, for n ≥ 5 and n is odd, L(n, 2) = 2(an−1 + tn−2).

Problem 5. In order to apply Lucky partitions to graph colouring, chromatic comple-

tion and finding Lucky χ- and Lucky k-polynomials the partitions per se are required

because testing for adjacency is required [5–8].

Write a computer code (algorithm) to generate the partitions for the respective Stir-

ling of the fourth kind partition forms. Also prove, uniqueness of solution and con-

vergence of algorithm.
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