Total domination in cubic Knödel graphs

D.A. Mojdeh ${ }^{1}$, S.R. Musawi ${ }^{2}$, E. Nazari Kiashi ${ }^{3}$, N. Jafari Rad ${ }^{4, *}$
${ }^{1}$ Department of Mathematics, University of Mazandaran
Babolsar, Iran
damojdeh@yahoo.com
${ }^{2}$ Faculty of Mathematical Sciences, Shahrood University of Technology
P.O. Box 3619995161, Shahrood, Iran
r_musawi@shahroodut.ac.ir
${ }^{3}$ Department of Mathematics, University of Tafresh
Tafresh, Iran
esmaeil.nazari@gmail.com
${ }^{4}$ Department of Mathematics, Shahed University
Tehran, Iran
n.jafarirad@gmail.com

Received: 20 March 2020; Accepted: 21 December 2020
Published Online: 23 December 2020

Abstract

A subset D of vertices of a graph G is a dominating set if for each $u \in$ $V(G) \backslash D, u$ is adjacent to some vertex $v \in D$. The domination number, $\gamma(G)$ of G, is the minimum cardinality of a dominating set of G. A set $D \subseteq V(G)$ is a total dominating set if for each $u \in V(G), u$ is adjacent to some vertex $v \in D$. The total domination number, $\gamma_{t}(G)$ of G, is the minimum cardinality of a total dominating set of G. For an even integer $n \geq 2$ and $1 \leq \Delta \leq\left\lfloor\log _{2} n\right\rfloor$, a Knödel graph $W_{\Delta, n}$ is a Δ-regular bipartite graph of even order n, with vertices (i, j), for $i=1,2$ and $0 \leq j \leq \frac{n}{2}-1$, where for every $j, 0 \leq j \leq \frac{n}{2}-1$, there is an edge between vertex $(1, j)$ and every vertex $\left(2,\left(j+2^{k}-1\right) \bmod \frac{n}{2}\right)$, for $k=0,1, \ldots, \Delta-1$. In this paper, we determine the total domination number in 3-regular Knödel graphs $W_{3, n}$.

Keywords: Knödel graph, domination number, total domination number, Pigeonhole Principle.

AMS Subject classification: 05C69, 05C30

[^0]
1. Introduction

For graph theory notation and terminology not given here, we refer to [14]. Let $G=$ (V, E) denote a simple graph of order $n=|V(G)|$ and size $m=|E(G)|$. Two vertices $u, v \in V(G)$ are adjacent if $u v \in E(G)$. The open neighborhood of a vertex $u \in V(G)$ is denoted by $N(u)=\{v \in V(G) \mid u v \in E(G)\}$ and for a vertex set $S \subseteq V(G)$, $N(S)=\underset{u \in S}{\cup} N(u)$. The cardinality of $N(u)$ is called the degree of u and is denoted by $\operatorname{deg}(u),\left(\right.$ or $\operatorname{deg}_{G}(u)$ to refer it to $\left.G\right)$. The maximum degree and minimum degree among all vertices in G are denoted by $\Delta(G)$ and $\delta(G)$, respectively. A graph G is a bipartite graph if its vertex set can be divide into two disjoint sets X and Y such that each edge in $E(G)$ connects a vertex in X with a vertex in Y. A set $D \subseteq V(G)$ is a dominating set if for each $u \in V(G) \backslash D, u$ is adjacent to some vertex $v \in D$. The domination number, $\gamma(G)$ of G, is the minimum cardinality of a dominating set of G. A set $D \subseteq V(G)$ is a total dominating set if for each $u \in V(G), u$ is adjacent to some vertex $v \in D$. The total domination number, $\gamma_{t}(G)$ of G, is the minimum cardinality of a total dominating set of G. The concept of domination theory is a widely studied concept in graph theory and for a comprehensive study see, for example [14, 15].
An interesting family of graphs namely Knödel graphs have been introduced about 1975 [17], and have been studied seriously by some authors since 2001, see for example $[1-4,7,8,10]$. For an even integer $n \geq 2$ and $1 \leq \Delta \leq\left\lfloor\log _{2} n\right\rfloor$, a Knödel graph $W_{\Delta, n}$ is a Δ-regular bipartite graph of even order n, with vertices (i, j), for $i=1,2$ and $0 \leq j \leq \frac{n}{2}-1$, where for every $j, 0 \leq j \leq \frac{n}{2}-1$, there is an edge between vertex $(1, j)$ and every vertex $\left(2,\left(j+2^{k}-1\right) \bmod \frac{n}{2}\right)$, for $k=0,1, \ldots, \Delta-1$ (see [20]). Knödel graphs, $W_{\Delta, n}$, are one of the three important families of graphs that they have good properties in terms of broadcasting and gossiping, see for example [5, 6, 9, 11-13, 16]. It is worth-noting that any Knödel graph is a Cayley graph and so it is a vertextransitive graph (see [3]).
Xueliang et. al. [20] studied the domination number in 3-regular Knödel graphs $W_{3, n}$. They obtained exact domination number for $W_{3, n}$. Domination critical and stable Knödel graphs are studied in [18]. Some domination parameters in Knödel graphs are studied in [19]. In this paper, we determine the total domination number in 3-regular Knödel graphs $W_{3, n}$. We will prove the following.

Theorem 1. For each even integer $n \geq 8$,

$$
\gamma_{t}\left(W_{3, n}\right)=4\left\lceil\frac{n}{10}\right\rceil- \begin{cases}0 & n \equiv 0,6,8(\bmod 10) \\ 2 & n \equiv 2,4(\bmod 10)\end{cases}
$$

In Section 2, we prove some necessary Lemmas, and in the Section 3 we prove our main result. We need the following simple observation from number theory.

Observation 2. If a, b, c, d and x are positive integers such that $x^{a}-x^{b}=x^{c}-x^{d} \neq 0$, then $a=c$ and $b=d$.

Figure 1. New labeling of Knödel graphs $W_{3,8}, W_{3,10}$ and $W_{3,12}$.

2. Necessary Lemmas

In this section we prove necessary lemmas we need for the proof of the main result. For simplicity, in this paper, we re-label the vertices of a Knödel graph as follows: we label $(1, i)$ by u_{i+1} for each $i=0,1, \ldots, \frac{n}{2}-1$, and $(2, j)$ by v_{j+1} for $j=0,1, \ldots, \frac{n}{2}-1$. Let $U=\left\{u_{1}, u_{2}, \cdots, u_{\frac{n}{2}}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{\frac{n}{2}}\right\}$. From now on, the vertex set of each Knödel graph $W_{\Delta, n}$ is $U \cup V$ such that U and V are the two partite sets of the graph. If S is a set of vertices of $W_{\Delta, n}$, then clearly, $S \cap U$ and $S \cap V$ partition S, $|S|=|S \cap U|+|S \cap V|, N(S \cap U) \subseteq V$ and $N(S \cap V) \subseteq U$. Note that two vertices u_{i} and v_{j} are adjacent if and only if $j \in\left\{i+2^{0}-1, i+2^{1}-1, \ldots, i+2^{\Delta-1}-1\right\}$, where the addition is taken in modulo $\frac{n}{2}$. Figure 1, shows new labeling of Knödel graphs $W_{3,8}, W_{3,10}$ and $W_{3,12}$.
For any subset $\left\{u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{k}}\right\}$ of U with $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq \frac{n}{2}$, we correspond a sequence based on the differences of the indices of $u_{j}, j=i_{1}, \ldots, i_{k}$, as follows.

Definition 1. For any subset $A=\left\{u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{k}}\right\}$ of U with $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq \frac{n}{2}$ we define a sequence $n_{1}, n_{2}, \ldots, n_{k}$, namely cyclic-sequence, where $n_{j}=i_{j+1}-i_{j}$ for $1 \leq j \leq k-1$ and $n_{k}=\frac{n}{2}+i_{1}-i_{k}$. For two vertices $u_{i_{j}}, u_{i_{j^{\prime}}} \in A$ we define index-distance of $u_{i_{j}}$ and $u_{i_{j^{\prime}}}$ by $i d\left(u_{i_{j}}, u_{i_{j^{\prime}}}\right)=\min \left\{\left|i_{j}-i_{j^{\prime}}\right|, \frac{n}{2}-\left|i_{j}-i_{j^{\prime}}\right|\right\}$.

Observation 3. Let $A=\left\{u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{k}}\right\} \subseteq U$ be a set such that $1 \leq i_{1}<i_{2}<\cdots<$ $i_{k} \leq \frac{n}{2}$ and let $n_{1}, n_{2}, \cdots, n_{k}$ be the corresponding cyclic-sequence of A. Then,
(1) $n_{1}+n_{2}+\cdots+n_{k}=\frac{n}{2}$.
(2) If $u_{i_{j}}, u_{i_{j^{\prime}}} \in A$, then $i d\left(u_{i_{j}}, u_{i_{j^{\prime}}}\right)$ equals to sum of some consecutive elements of the cyclicsequence of A and $\frac{n}{2}-i d\left(u_{i_{j}}, u_{i_{j^{\prime}}}\right)$ is sum of the remaining elements of the cyclic-sequence. Furthermore, $\left\{i d\left(u_{i_{j}}, u_{i_{j^{\prime}}}\right), \frac{n}{2}-i d\left(u_{i_{j}}, u_{i_{j^{\prime}}}\right)\right\}=\left\{\left|i_{j}-i_{j^{\prime}}\right|, \frac{n}{2}-\left|i_{j}-i_{j^{\prime}}\right|\right\}$.

We henceforth use the notation $\mathscr{M}_{\Delta}=\left\{2^{a}-2^{b}: 0 \leq b<a<\Delta\right\}$ for $\Delta \geq 2$.
Lemma 1. In the Knödel graph $W_{\Delta, n}$ with vertex set $U \cup V$, for two distinct vertices u_{i} and $u_{j}, N\left(u_{i}\right) \cap N\left(u_{j}\right) \neq \emptyset$ if and only if id $\left(u_{i}, u_{j}\right) \in \mathscr{M}_{\Delta}$ or $\frac{n}{2}-i d\left(u_{i}, u_{j}\right) \in \mathscr{M}_{\Delta}$.

Proof. Since $W_{\Delta, n}$ is vertex-transitive, for simplicity, we put $1=i<j \leq$ $\frac{n}{2}$. We have $i d\left(u_{1}, u_{j}\right)=\min \left\{j-1, \frac{n}{2}-(j-1)\right\}$ and so $\left.\frac{n}{2}-i d\left(u_{1}, u_{j}\right)\right\}=$ $\max \left\{j-1, \frac{n}{2}-(j-1)\right\}$. Also, we have $N\left(u_{1}\right)=\left\{v_{1}, v_{2}, v_{4}, \ldots, v_{2 \Delta-1}\right\}$ and $N\left(u_{j}\right)=\left\{v_{j}, v_{j+1}, v_{j+3}, \ldots, v_{j+2^{\Delta-1}-1}\right\}$. First assume that $N\left(u_{1}\right) \cap N\left(u_{j}\right) \neq \emptyset$. Let $v_{k} \in N\left(u_{1}\right) \cap N\left(u_{j}\right)$. There exist two integers a and b such that $0 \leq a<b \leq \Delta-1$ and $k \equiv 2^{a} \equiv j+2^{b}-1\left(\bmod \frac{n}{2}\right)$. Since $1 \leq 2^{a}, 2^{b}, j \leq \frac{n}{2}$, we have $1 \leq j+2^{b}-1<n$. If $1 \leq j+2^{b}-1 \leq \frac{n}{2}$, then $2^{a}=j+2^{b}-1$ and $j-1=2^{a}-2^{b} \in \mathscr{M}_{\Delta}$ and if $\frac{n}{2}<j+2^{b}-1<n$, then $2^{a}=j+2^{b}-1-\frac{n}{2}$ and $\frac{n}{2}-(j-1)=2^{b}-2^{a} \in \mathscr{M}_{\Delta}$. Therefore, by Observation $3, i d\left(u_{i}, u_{j}\right) \in \mathscr{M}_{\Delta}$ or $\frac{n}{2}-i d\left(u_{i}, u_{j}\right) \in \mathscr{M}_{\Delta}$.
Conversely, suppose $i d\left(u_{1}, u_{j}\right) \in \mathscr{M}_{\Delta}$ or $\frac{n}{2}-i d\left(u_{1}, u_{j}\right) \in \mathscr{M}_{\Delta}$. Then $j-1 \in \mathscr{M}_{\Delta}$ or $\frac{n}{2}-(j-1) \in \mathscr{M}_{\Delta}$. If $j-1 \in \mathscr{M}_{\Delta}$, then we have $j-1=2^{a}-2^{b}$ for two integers $0 \leq a, b \leq \Delta-1$. Then $2^{a}=j+2^{b}-1$ and $v_{2^{a}} \in N\left(u_{1}\right) \cap N\left(u_{j}\right)$. If $\frac{n}{2}-(j-1) \in \mathscr{M}_{\Delta}$, then we have $\frac{n}{2}-(j-1)=2^{c}-2^{d}$ for two integers $0 \leq c, d \leq \Delta-1$. Now $2^{c}=j+2^{d}-1-\frac{n}{2} \equiv j+2^{d}-1\left(\bmod \frac{n}{2}\right)$ and $v_{2^{c}} \in N\left(u_{1}\right) \cap N\left(u_{j}\right)$. Thus in each case, $N\left(u_{i}\right) \cap N\left(u_{j}\right) \neq \emptyset$.

Lemma 2. In the Knödel graph $W_{\Delta, n}$ with vertex set $U \cup V$, for two distinct vertices u_{i} and $u_{j},\left|N\left(u_{i}\right) \cap N\left(u_{j}\right)\right|=2$ if and only if id $\left(u_{i}, u_{j}\right) \in \mathscr{M}_{\Delta}$ and $\frac{n}{2}-i d\left(u_{i}, u_{j}\right) \in \mathscr{M}_{\Delta}$.

Proof. Without loss of generality, we assume that $1 \leq i<j \leq \frac{n}{2}$. Suppose that $\left|N\left(u_{i}\right) \cap N\left(u_{j}\right)\right|=2$ and $v_{k}, v_{k^{\prime}} \in N\left(u_{i}\right) \cap N\left(u_{j}\right)$ are two distinct vertices in V. There exist two integers a and b such that $0 \leq a, b \leq \Delta-1$ and $k \equiv i+2^{a}-1 \equiv j+2^{b}-1(\bmod$ $\frac{n}{2}$). Similarly, there exist two integers a^{\prime} and b^{\prime} such that $0 \leq a^{\prime}, b^{\prime} \leq \Delta-1$ and $k^{\prime} \equiv i+2^{a^{\prime}}-1 \equiv j+2^{b^{\prime}}-1\left(\bmod \frac{n}{2}\right)$. Now we have $j-i \equiv 2^{b}-2^{a} \equiv 2^{b^{\prime}}-2^{a^{\prime}}(\bmod$ $\frac{n}{2}$). We know that $-\frac{n}{2}<2^{b}-2^{a}, 2^{b^{\prime}}-2^{a^{\prime}}<\frac{n}{2}$. If $-\frac{n}{2}<2^{b}-2^{a}, 2^{b^{\prime}}-2^{a^{\prime}}<0$ or $0<2^{b}-2^{a}, 2^{b^{\prime}}-2^{a^{\prime}}<\frac{n}{2}$, then we have $2^{b}-2^{a}=2^{b^{\prime}}-2^{a^{\prime}} \neq 0$. Observation 2 implies that $b=b^{\prime}$ and therefore $k \equiv k^{\prime}\left(\bmod \frac{n}{2}\right)$ and $v_{k}=v_{k^{\prime}}$, a contradiction. By symmetry, we assume that $0<2^{b}-2^{a}<\frac{n}{2}$ and $-\frac{n}{2}<2^{b^{\prime}}-2^{a^{\prime}}<0$. Since $0<j-i<\frac{n}{2}$, we have $j-i=2^{b}-2^{a}$ and $\frac{n}{2}-(j-i)=2^{a^{\prime}}-2^{b^{\prime}}$ which implies that $j-i \in \mathscr{M}_{\Delta}$ and $\frac{n}{2}-(j-i) \in \mathscr{M}_{\Delta}$. Thus by Observation $3, i d\left(u_{i}, u_{j}\right) \in \mathscr{M}_{\Delta}$ and $\frac{n}{2}-i d\left(u_{i}, u_{j}\right) \in \mathscr{M}_{\Delta}$. Conversely, assume that $i d\left(u_{i}, u_{j}\right) \in \mathscr{M}_{\Delta}$ and $\frac{n}{2}-i d\left(u_{i}, u_{j}\right) \in \mathscr{M}_{\Delta}$ for two distinct vertices u_{i} and u_{j}. There exist two integers a and b such that $0 \leq b<a \leq \frac{n}{2}$ and $j-i=2^{a}-2^{b}$. Also there exist two integer a^{\prime} and b^{\prime} such that $0 \leq a^{\prime}<b^{\prime} \leq \frac{n}{2}$ and $\frac{n}{2}-(j-i)=2^{b^{\prime}}-2^{a^{\prime}}$. Now we have $i+2^{a}-1=j+2^{b}-1$ and $i+2^{a^{\prime}}-1=$ $j+2^{b^{\prime}}-1-\frac{n}{2} \equiv j+2^{b^{\prime}}-1\left(\bmod \frac{n}{2}\right)$. We set $k=i+2^{a}-1$ and $k^{\prime}=i+2^{a^{\prime}}-1$. Then $v_{k}, v_{k^{\prime}} \in N\left(u_{i}\right) \cap N\left(u_{j}\right)$ and $\left|N\left(u_{i}\right) \cap N\left(u_{j}\right)\right| \geq 2$. Notice that $k \not \equiv k^{\prime}\left(\bmod \frac{n}{2}\right)$, since otherwise $a=a^{\prime}$ and $2^{b^{\prime}}-2^{b}=\frac{n}{2}$, a contradiction. Suppose that $\left|N\left(u_{i}\right) \cap N\left(u_{j}\right)\right| \geq 3$. Let $v_{k}, v_{k^{\prime}}, v_{k^{\prime \prime}} \in N\left(u_{i}\right) \cap N\left(u_{j}\right)$ be three distinct vertices. Similar to the first part of
the proof, for v_{k} and $v_{k^{\prime}}$, there exist two integers $a^{\prime \prime}$ and $b^{\prime \prime}$ such that $0 \leq a^{\prime \prime}, b^{\prime \prime} \leq \Delta-1$ and $k^{\prime \prime} \equiv i+2^{a^{\prime \prime}}-1 \equiv j+2^{b^{\prime \prime}}-1\left(\bmod \frac{n}{2}\right)$ and thus $j-i \equiv 2^{a^{\prime \prime}}-2^{b^{\prime \prime}}\left(\bmod \frac{n}{2}\right)$. Since u_{i} and u_{j} are distinct, we have $a^{\prime \prime} \neq b^{\prime \prime}$. If $a^{\prime \prime}>b^{\prime \prime}$, then $j-i=2^{a^{\prime \prime}}-2^{b^{\prime \prime}}$ and it can be seen that $j-i=\frac{n}{2}-\left(2^{a}-2^{b}\right)=\frac{n}{2}-\left(2^{a^{\prime}}-2^{b^{\prime}}\right)$ and Observation 2 implies that $a=a^{\prime}$ and thus $v_{k}=v_{k^{\prime}}$, a contradiction. If $a^{\prime \prime}<b^{\prime \prime}$, then $j-i=\frac{n}{2}-\left(2^{a^{\prime \prime}}-2^{b^{\prime \prime}}\right)$ and it can be seen that $j-i=2^{b}-2^{a}=2^{b^{\prime}}-2^{a^{\prime}}$ and Observation 2 implies that $a=a^{\prime}$, a contradiction. Consequently $\left|N\left(u_{i}\right) \cap N\left(u_{j}\right)\right|=2$.

Corollary 1. (i) In the Knödel graph $W_{\Delta, n}$ with vertex set $U \cup V$, for each $1 \leq i<j \leq \frac{n}{2}$, $\left|N\left(u_{i}\right) \cap N\left(u_{j}\right)\right|=1$ if and only if precisely one of the values id $\left(u_{i}, u_{j}\right)$ and $\frac{n}{2}-i d\left(u_{i}, u_{j}\right)$ belongs to \mathscr{M}_{Δ}.
(ii) In the Knödel graph $W_{\Delta, n}$, there exist distinct vertices with two common neighbors if and only if $n=2^{a}-2^{b}+2^{c}-2^{d}$ and $a>b \geq 1, c>d \geq 1$.

Corollary 2. Any three vertices in the Knödel graph $W_{\Delta, n}$ have at most one common neighbor. Indeed, any Knödel graph is a $K_{2,3}$-free graph.

Lemma 3. In the Knödel graph $W_{\Delta, n}$ with vertex set $U \cup V$ and $\Delta<\log _{2}\left(\frac{n}{2}+2\right)$, we have:
(i) $\left|N\left(u_{i}\right) \cap N\left(u_{j}\right)\right| \leq 1,1 \leq i<j \leq \frac{n}{2}$.
(ii) $\left|N\left(u_{i}\right) \cap N\left(u_{j}\right)\right|=1$ if and only if id $\left(u_{i}, u_{j}\right) \in \mathscr{M}_{\Delta}$.

Proof. (i) Suppose to the contrary that $\left|N\left(u_{i}\right) \cap N\left(u_{j}\right)\right|>1$, then by Corollary 2 we have $\left|N\left(u_{i}\right) \cap N\left(u_{j}\right)\right|=2$. Then the Lemma 2 implies that $i d\left(u_{i}, u_{j}\right) \in \mathscr{M}_{\Delta}$ and $\frac{n}{2}-i d\left(u_{i}, u_{j}\right) \in \mathscr{M}_{\Delta}$. Thus $i d\left(u_{i}, u_{j}\right) \leq 2^{\Delta-1}-1, \frac{n}{2}-i d\left(u_{i}, u_{j}\right) \leq 2^{\Delta-1}-1$ and $\frac{n}{2} \leq 2^{\Delta}-2$. This inequality implies that $\Delta \geq \log _{2}\left(\frac{n}{2}+2\right)$, a contradiction. Hence $\left|N\left(u_{i}\right) \cap N\left(u_{j}\right)\right| \leq 1$, as desired.
(ii) Assume that $\left|N\left(u_{i}\right) \cap N\left(u_{j}\right)\right|=1$. By Corollary 1, precisely one of the values $i d\left(u_{i}, u_{j}\right)$ and $\frac{n}{2}-i d\left(u_{i}, u_{j}\right)$ belongs to \mathscr{M}_{Δ}. If $\frac{n}{2}-i d\left(u_{i}, u_{j}\right) \in \mathscr{M}_{\Delta}$, then $\frac{n}{2}-$ $i d\left(u_{i}, u_{j}\right) \leq 2^{\Delta-1}-1$ and so $2^{\Delta}-2-i d\left(u_{i}, u_{j}\right)<2^{\Delta-1}-1$. Now, we have $2^{\Delta-1}-1<$ $i d\left(u_{i}, u_{j}\right)$ and so $\frac{n}{2}-i d\left(u_{i}, u_{j}\right)<i d\left(u_{i}, u_{j}\right)$, a contradiction by definition of indexdistance. Therefore, $i d\left(u_{i}, u_{j}\right) \in \mathscr{M}_{\Delta}$.
Conversely, Assume that $i d\left(u_{i}, u_{j}\right) \in \mathscr{M}_{\Delta}$. Thus, $i d\left(u_{i}, u_{j}\right) \leq 2^{\Delta-1}-1$ and so $\frac{n}{2}-i d\left(u_{i}, u_{j}\right) \geq \frac{n}{2}-2^{\Delta-1}+1>2^{\Delta}-2-2^{\Delta-1}+1=2^{\Delta-1}-1$. Therefore, $\frac{n}{2}-i d\left(u_{i}, u_{j}\right) \notin$ \mathscr{M}_{Δ} and by Corollary 1 we have $\left|N\left(u_{i}\right) \cap N\left(u_{j}\right)\right|=1$.

Lemma 4. Let $W_{\Delta, n}$ be a Knödel graph with vertex set $U \cup V$. For any non-empty subset $A \subseteq U$:
(i) $\sum_{v \in N(A)}|N(v) \cap A|=\Delta|A|$.
(ii) The corresponding cyclic-sequence of A has at most $\Delta|A|-|N(A)|$ elements belonging to \mathscr{M}_{Δ}.

Proof. Let $A \subseteq U$ be a non-emptyset.
(i) It is obvious that the induced subgraph graph $H=W_{\Delta, n}[A \cup N(A)]$ is a bipartite
graph and $|E(H)|=\sum_{u \in A} \operatorname{deg}_{H}(u)=\sum_{v \in N(A)} \operatorname{deg}_{H}(v)$. If $u \in A$, then $\operatorname{deg}_{H}(u)=\Delta$, and for $v \in N(A)$ we have $\operatorname{deg}_{H}(v)=|N(v) \cap A|$. Thus, $\sum_{u \in A} \operatorname{deg}_{H}(u)=\sum_{u \in A} \Delta=\Delta|A|$ and $\sum_{v \in N(A)} \operatorname{deg}_{H}(v)=\sum_{v \in N(A)}|N(v) \cap A|$. Consequently, $\sum_{v \in N(A)}|N(v) \cap A|=\Delta|A|$. (ii) Suppose that $A=\left\{u_{i_{1}}, u_{i_{2}}, \ldots, u_{i_{|A|}}\right\}$, where $1 \leq i_{1}<i_{2}<\cdots<i_{|A|} \leq \frac{n}{2}$, and let $n_{1}, n_{2}, \ldots, n_{|A|}$ be the corresponding cyclic-sequence of A. For any vertex $v \in N(A)$, let $r(v)=|N(v) \cap A|$. Let $J=\left\{j: n_{j} \in \mathscr{M}_{\Delta}\right\}$ and $R=\Delta|A|-|N(A)|$. We prove that $R \geq|J|$. If $R \geq|A|$, then we have nothing to prove, since $|J| \leq|A|$. Assume that $R<|A|$ and notice that by part (i),

$$
R=\Delta|A|-|N(A)|=\sum_{v \in N(A)}|N(v) \cap A|-\sum_{v \in N(A)} 1=\sum_{v \in N(A)}[r(v)-1] .
$$

If $\{v \in N(A): r(v) \geq 2\}=\emptyset$, then $R=0$ and $J=\emptyset$, and so $R \geq|J|$. Thus assume that $\{v \in N(A): r(v) \geq 2\} \neq \emptyset$. Then $R=\sum_{\substack{v \in N(A) \\ r(v) \geq 2}}[r(v)-1]$.
Assume that there exists $v^{\prime} \in N(A)$ such that $r\left(v^{\prime}\right)=|A|$. Then

$$
R=r\left(v^{\prime}\right)-1+\sum_{\substack{v \in N(A) \\ r(v) \geq 2 \\ v \neq v^{\prime}}}[r(v)-1]=|A|-1+\sum_{\substack{v \in N(A) \\ r\left(v \neq 2 \\ v \neq v^{\prime}\right.}}[r(v)-1] .
$$

Since $R<|A|$, we obtain that $\sum_{\substack{v \in N(A) \\ r(v) \geq 2 \\ v \neq v^{\prime}}}[r(v)-1]=0, R=|A|-1$, and for each $v \in N(A) \backslash\left\{v^{\prime}\right\}$ we have $r(v)=1$. Since $W_{\Delta, n}$ is vertex transitive, without loss of generality, we assume that $v^{\prime}=v_{\frac{n}{2}}$.
According to the definition of a Knodel graph, there exist integers $0 \leq a_{|A|}<a_{|A|-1}<$ $\cdots<a_{2}<a_{1} \leq \Delta-1$ such that $i_{j}=\frac{n}{2}-2^{a_{j}}+1$ for each $1 \leq j \leq|A|$. Moreover, $n_{j}=i_{j+1}-i_{j}=2^{a_{i_{j}}}-2^{a_{i_{j+1}}} \in \mathscr{M}_{\Delta}$ for each $1 \leq j \leq|A|-1$. Evidently, $i_{|A|}-i_{|A|-1}=$ $n_{1}+n_{2}+\cdots+n_{|A|-1}=2^{a_{|A|-1}}-2^{a_{|A|}} \in \mathscr{M}_{\Delta}$ and $n_{|A|}=\frac{n}{2}-\left(i_{|A|}-i_{|A|-1}\right)$. We show that $n_{|A|} \notin \mathscr{M}_{\Delta}$. Suppose to the contrary that $n_{|A|} \in \mathscr{M}_{\Delta}$. Since $n_{|A|}=$ $\frac{n}{2}-\left(i_{|A|}-i_{|A|-1}\right) \in \mathscr{M}_{\Delta}$ and $i_{|A|}-i_{|A|-1} \in \mathscr{M}_{\Delta}$, by Observation 3, id $\left(u_{i_{1}}, u_{i_{|A|}}\right) \in \mathscr{M}_{\Delta}$ and $\frac{n}{2}-i d\left(u_{i_{1}}, u_{i_{|A|}}\right) \in \mathscr{M}_{\Delta}$, and by Lemma $2,\left|N\left(u_{i_{1}}\right) \cap N\left(u_{i_{|A|}}\right)\right|=2$. Now there exists $v^{\prime \prime} \neq v_{\frac{n}{2}}$ such that $v^{\prime \prime} \in N\left(u_{i_{1}}\right) \cap N\left(u_{i_{|A|}}\right)$ and $r\left(v^{\prime \prime}\right) \geq 2$, a contradiction. Therefore, $n_{|A|} \notin \mathscr{M}_{\Delta}$. Since $n_{j} \in \mathscr{M}_{\Delta}$ for each $1 \leq j \leq|A|-1$, we obtain that $|J|=|A|-1=R$. Thus there are at most $R=|A|-1$ elements of the cyclic sequence of A which belong to \mathscr{M}_{Δ}.
Next assume that $r(v)<|A|$ for any $v \in N(A)$. Let $X_{v}=\left\{j: u_{i_{j}}, u_{i_{j+1}} \in N(v) \cap A\right\}$. We prove that $J \subseteq \underset{v \in N(A)}{\cup} X_{v}$. Let $j \in J$. Then $n_{j}=i_{j+1}-i_{j} \in \mathscr{M}_{\Delta}$. By Observation 3, $n_{j}=i_{j+1}-i_{j} \in\left\{i d\left(u_{i_{j}}, u_{i_{j+1}}\right), \frac{n}{2}-i d\left(u_{i_{j}}, u_{i_{j+1}}\right)\right\}$ and by Lemma $1, \mid N\left(u_{i_{j}}\right) \cap$ $N\left(u_{i_{j+1}}\right) \mid \geq 1$. Let $v \in N\left(u_{i_{j}}\right) \cap N\left(u_{i_{j+1}}\right)$. Then $u_{i_{j}}, u_{i_{j+1}} \in N(v) \cap A$. Therefore
$j \in X_{v}$ and $j \in \underset{v \in N(A)}{\cup} X_{v}$ that implies $J \subseteq \underset{v \in N(A)}{\cup} X_{v}$. Then $|J| \leq\left|\underset{v \in N(A)}{\cup} X_{v}\right|$. Observe that $X_{v}=\left\{j: u_{i_{j}} \in N(v) \cap A\right\}-\left\{j: u_{i_{j}} \in N(v) \cap A, u_{i_{j+1}} \notin N(v) \cap A\right\}$, and $\left|\left\{j: u_{i_{j}} \in N(v) \cap A\right\}\right|=|N(v) \cap A|=r(v)$. Since $N(v) \cap A \subsetneq A$, we have $\left\{j: u_{i_{j}} \in N(v) \cap A, u_{i_{j+1}} \notin N(v) \cap A\right\} \neq \emptyset$. Therefore $\left|X_{v}\right| \leq r(v)-1$. Consequently, $|J| \leq\left|\bigcup_{v \in N(A)}^{\cup} X_{v}\right| \leq \sum_{v \in N(A)}\left|X_{v}\right| \leq \sum_{v \in N(A)}[r(v)-1]$.

We remark that one can define the cyclic-sequence and index-distance for any subset of V in a similar way, and thus the Observation 3, Lemmas 1 and 2 and corollaries 1 and 2 are valid for cyclic-sequence and index-distance on subsets of V as well.

3. Proof of Theorem 1

We are now ready to determine the total domination number of $W_{3, n}$. We will prove that for each even integer $n \geq 8$,

$$
\gamma_{t}\left(W_{3, n}\right)=4\left\lceil\frac{n}{10}\right\rceil-\left\{\begin{array}{cc}
0 & n \equiv 0,6,8(\bmod 10) \\
2 & n \equiv 2,4(\bmod 10)
\end{array}\right.
$$

Clearly $n \geq 8$ is an even integer by the definition of $W_{3, n}$. We divide the proof into five cases depending on n.

Proof. We distinguish four cases.
Case 1: $n \equiv 0(\bmod 10)$. Let $n=10 t$, where $t \geq 1$. Then the set $D_{1}=\left\{u_{5 k+b}, v_{5 k+b}\right.$: $k=0,1, \ldots, t-1 ; b=1,2\}$ is a total dominating set for $W_{3, n}$ and thus $\gamma_{t}\left(W_{3, n}\right) \leq$ $\left|D_{1}\right|=4 t=4\left\lceil\frac{n}{10}\right\rceil$. We show that $\gamma_{t}\left(W_{3, n}\right)=4 t$. Suppose to the contrary, that $\gamma_{t}\left(W_{3, n}\right)<4 t$. Let D be a total dominating set with $4 t-1$ elements. Then by the Pigeonhole Principle either $|D \cap U| \leq 2 t-1$ or $|D \cap V| \leq 2 t-1$. Without loss of generality, assume that $|D \cap U| \leq 2 t-1$. Let $|D \cap U|=2 t-1-a$, where $a \geq 0$. Then $|D \cap V|=2 t+a$. Observe that $D \cap U$ dominates at most $3|D \cap U|=6 t-3-3 a$ vertices of V, and so $6 t-3-3 a \geq 5 t=|V|$, since $D \cap U$ dominates V. Clearly the inequality $6 t-3-3 a \geq 5 t$ does not hold if $t \in\{1,2\}$, and thus this contradiction implies that $\gamma_{t}\left(W_{3, n}\right)=4 t=4\left\lceil\frac{n}{10}\right\rceil$ for $t=1,2$. From here on, assume that $t \geq 3$. By Lemma 4(ii), at most $3|D \cap U|-|N(D \cap U)|=3(2 t-1-a)-5 t=t-3-3 a$ elements of the cyclic-sequence of $D \cap U$ belong to $\mathscr{M}_{3}=\{1,2,3\}$. Hence, at least $(2 t-1-a)-(t-3-3 a)=t+2+2 a$ elements of the cyclic-sequence of $D \cap U$ do not belong to \mathscr{M}_{3} and are greater than 3 . Then by Observation 3, we have

$$
5 t=\sum_{i=1}^{2 t-1} n_{i} \geq 4(t+2+2 a)+(t-3-3 a)=5 t+5+5 a
$$

a contradiction. Therefore, $\gamma_{t}\left(W_{3, n}\right)=4 t=4\left\lceil\frac{n}{10}\right\rceil$.
Case 2: $n \equiv 2(\bmod 10)$. Let $n=10 t+2$, where $t \geq 1$. Then the set $D_{2}=$ $\left\{u_{5 k+b}, v_{5 k+b}: k=0,1, \ldots, t-1 ; b=1,2\right\} \cup\left\{u_{5 t+1}, v_{5 t+1}\right\}$ is a total dominating set for
$W_{3, n}$ and thus $\gamma_{t}\left(W_{3, n}\right) \leq\left|D_{2}\right|=4 t+2=4\left\lceil\frac{n}{10}\right\rceil-2$. We show that $\gamma_{t}\left(W_{3, n}\right)=4 t+2$. Suppose to the contrary, that $\gamma_{t}\left(W_{3, n}\right)<4 t+2$. Let D be a total dominating set with $4 t+1$ elements. Then by the Pigeonhole Principle either $|D \cap U| \leq 2 t$ or $|D \cap V| \leq 2 t$. Without loss of generality, assume that $|D \cap U| \leq 2 t$. Let $|D \cap U|=2 t-a$, where $a \geq 0$. Then $|D \cap V|=2 t+1+a$. Observe that $D \cap U$ dominates at most $6 t-3 a$ vertices of V and so $6 t-3 a \geq 5 t+1=|V|$, since $D \cap U$ dominates V. By Lemma 4(ii), at most $3|D \cap U|-|N(D \cap U)|=3(2 t-a)-(5 t+1)=t-1-3 a$ elements of the cyclic-sequence of $D \cap U$ belong to \mathscr{M}_{3}. Hence, at least $(2 t-a)-(t-1-3 a)=t+1+2 a$ elements of the cyclic-sequence of $D \cap U$ do not belong to \mathscr{M}_{3} and are greater than 3. Then by Observation 3, we have

$$
5 t+1=\sum_{i=1}^{2 t-a} n_{i} \geq 4(t+1+2 a)+(t-1-3 a)=5 t+3+5 a
$$

a contradiction. Therefore, $\gamma_{t}\left(W_{3, n}\right)=4 t+2=4\left\lceil\frac{n}{10}\right\rceil-2$.
Case 3: $n \equiv 4(\bmod 10)$. Let $n=10 t+4$, where $t \geq 1$. Then the set $D_{3}=$ $\left\{u_{5 k+b}, v_{5 k+b}: k=0,1, \ldots, t-1 ; b=1,2\right\} \cup\left\{u_{5 t+1}, v_{5 t-1}\right\}$ is a total dominating set for $W_{3, n}$ and thus $\gamma_{t}\left(W_{3, n}\right) \leq\left|D_{3}\right|=4 t+2=4\left\lceil\frac{n}{10}\right\rceil-2$. We show that $\gamma_{t}\left(W_{3, n}\right)=4 t+2$. Suppose to the contrary, that $\gamma_{t}\left(W_{3, n}\right)<4 t+2$. Let D be a total dominating set with $4 t+1$ elements. Then by the Pigeonhole Principle either $|D \cap U| \leq 2 t$ or $|D \cap V| \leq 2 t$. Without loss of generality, assume that $|D \cap U| \leq 2 t$. Let $|D \cap U|=2 t-a$, where $a \geq 0$. Then $|D \cap V|=2 t+1+a$. Observe that $D \cap U$ dominates at most $6 t-3 a$ vertices of V, and so $6 t-3 a \geq 5 t+2=|V|$, since $D \cap U$ dominates V. Clearly the inequality $6 t-3 a \geq 5 t+2$ does not hold if $t=1$, and thus this contradiction implies that $\gamma_{t}\left(W_{3, n}\right)=4 t+2=4\left\lceil\left\lceil\frac{n}{10}\right\rceil-2\right.$ for $t=1$. From here on, assume that $t \geq 2$. By Lemma 4, at most $3|D \cap U|-|N(D \cap U)|=3(2 t-a)-(5 t+2)=t-2-3 a$ elements of the cyclic-sequence of $D \cap U$ belong to \mathscr{M}_{3}. Hence, at least $(2 t-a)-(t-2-3 a)=t+2+2 a$ elements of the cyclic-sequence of $D \cap U$ do not belong to \mathscr{M}_{3} and are greater than 3. Then by Observation 3, we have

$$
5 t+2=\sum_{i=1}^{2 t-a} n_{i} \geq 4(t+2+2 a)+(t-2-3 a)=5 t+6+5 a
$$

a contradiction. Therefore, $\gamma_{t}\left(W_{3, n}\right)=4 t+2=4\left\lceil\frac{n}{10}\right\rceil-2$.
Case 4: $n \equiv 6(\bmod 10)$. Let $n=10 t+6$, where $t \geq 1$. Then the set $D_{4}=$ $\left\{u_{5 k+b}, v_{5 k+b}: k=0,1, \ldots, t ; b=1,2\right\}$ is a total dominating set for $W_{3, n}$ and thus $\gamma_{t}\left(W_{3, n}\right) \leq\left|D_{4}\right|=4 t+4=4\left\lceil\frac{n}{10}\right\rceil$. We show that $\gamma_{t}\left(W_{3, n}\right)=4 t+4$. Suppose to the contrary, that $\gamma_{t}\left(W_{3, n}\right)<4 t+4$. Let D be a total dominating set with $4 t+3$ elements. Then by the Pigeonhole Principle either $|D \cap U| \leq 2 t+1$ or $|D \cap V| \leq 2 t+1$. Without loss of generality, assume that $|D \cap U| \leq 2 t+1$. Let $|D \cap U|=2 t+1-a$, where $a \geq 0$. Then $|D \cap V|=2 t+2+a$. Observe that $D \cap U$ dominates at most $6 t+3-3 a$ vertices of V, and so $6 t+3-3 a \geq 5 t+3=|V|$, since $D \cap U$ dominates V. By Lemma 4, at most $3|D \cap U|-|N(D \cap U)|=3(2 t+1-a)-(5 t+3)=t-3 a$ elements of the cyclic-sequence of $D \cap U$ belong to \mathscr{M}_{3}. Hence, at least $(2 t+1-a)-(t-3 a)=t+1+2 a$ elements
of the cyclic-sequence of $D \cap U$ do not belong to \mathscr{M}_{3} and are greater than 3 . Then by Observation 3, we have

$$
5 t+3=\sum_{i=1}^{2 t+1-a} n_{i} \geq 4(t+2+2 a)+(t-3 a)=5 t+8+5 a,
$$

a contradiction. Therefore, $\gamma_{t}\left(W_{3, n}\right)=4 t+4=4\left\lceil\frac{n}{10}\right\rceil$.
Case 5: $n \equiv 8(\bmod 10)$. Let $n=10 t+8$, where $t \geq 0$. Then the set $D_{5}=$ $\left\{u_{5 k+b}, v_{5 k+b}: k=0,1, \ldots, t ; b=1,2\right\}$ is a total dominating set for $W_{3, n}$ and thus $\gamma_{t}\left(W_{3, n}\right) \leq\left|D_{5}\right|=4 t+4=4\left\lceil\frac{n}{10}\right\rceil$. We show that $\gamma_{t}\left(W_{3, n}\right)=4 t+4$. Suppose to the contrary, that $\gamma_{t}\left(W_{3, n}\right)<4 t+4$. Let D be a total dominating set with $4 t+3$ elements. Then by the Pigeonhole Principle either $|D \cap U| \leq 2 t+1$ or $|D \cap V| \leq 2 t+1$. Without loss of generality, assume that $|D \cap U| \leq 2 t+1$. Let $|D \cap U|=2 t+1-a$ and $a \geq 0$. Then $|D \cap V|=2 t+2+a$. Observe that $D \cap U$ dominates at most $6 t+3-3 a$ vertices of V, and so $6 t+3-3 a \geq 5 t+4=|V|$, since $D \cap U$ dominates V. By Lemma 4, at most $3|D \cap U|-|N(D \cap U)|=3(2 t+1-a)-(5 t+4)=t-1-3 a$ elements of the cyclicsequence of $D \cap U$ belong to \mathscr{M}_{3}. Hence, at least $(2 t+1-a)-(t-1-3 a)=t+2+2 a$ elements of the cyclic-sequence of $D \cap U$ do not belong to \mathscr{M}_{3} and are greater than 3. Then by Observation 3, we have

$$
5 t+4=\sum_{i=1}^{2 t+1-a} n_{i} \geq 4(t+2+2 a)+(t-1-3 a)=5 t+7+5 a
$$

a contradiction. Therefore $\gamma_{t}\left(W_{3, n}\right)=4 t+2=4\left\lceil\frac{n}{10}\right\rceil$.

References

[1] J.-C. Bermond, H.A. Harutyunyan, A.L. Liestman, and S. Perennes, A note on the dimensionality of modified Knödel graphs, Int. J. Foundations Comput. Sci. 8 (1997), no. 2, 109-116.
[2] G. Fertin and A. Raspaud, Families of graphs having broadcasting and gossiping properties, International Workshop on Graph-Theoretic Concepts in Computer Science, Springer, 1998, pp. 63-77.
[3] , A survey of Knödel graphs, Discrete Appl. Math. 137 (2004), no. 2, 173-196.
[4] P. Fraigniaud and J.G. Peters, Minimum linear gossip graphs and maximal linear (δ, k)-gossip graphs, Networks 38 (2001), no. 3, 150-162.
[5] H. Grigoryan and H.A. Harutyunyan, Broadcasting in the Knödel graph, Ninth International Conference on Computer Science and Information Technologies, IEEE, 2013, pp. 1-6.
[6] , The shortest path problem in the Knödel graph, J. Discrete Algorithms 31 (2015), 40-47.
[7] H.A. Harutyunyan, Multiple message broadcasting in modified Knödel graph, SIROCCO, vol. 7, 2000, pp. 157-165.
[8] _ , Minimum multiple message broadcast graphs, Networks 47 (2006), no. 4, 218-224.
[9] , An efficient vertex addition method for broadcast networks, Internet Math. 5 (2008), no. 3, 211-225.
[10] H.A. Harutyunyan and Z. Li, A new construction of broadcast graphs, Discrete Appl. Math. 280 (2020), 144-155.
[11] H.A. Harutyunyan and A.L. Liestman, More broadcast graphs, Discrete Appl. Math. 98 (1999), no. 1-2, 81-102.
[12] _, Upper bounds on the broadcast function using minimum dominating sets, Discrete Math. 312 (2012), no. 20, 2992-2996.
[13] H.A. Harutyunyan and C.D. Morosan, On the minimum path problem in Knödel graphs, Networks 50 (2007), no. 1, 86-91.
[14] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in Graphs- Advanced Topics, Marcel Dekker, Inc., New York, 1998.
[15] M.A. Henning and A. Yeo, Total Domination in Graphs, Springer, 2013.
[16] L. Khachatrian and H. Harutounian, On optimal broadcast graphs, Fourth International Colloquium on Coding Theory, Dilijan, Armenia, 1991, pp. 36-40.
[17] W. Knödel, New gossips and telephones, Discrete Math. 13 (1975), no. 1, 95.
[18] D.A. Mojdeh, S.R. Musawi, and E. Nazari, Domination critical Knödel graphs, Iran J. Sci. Technol. Trans. Sci. 43 (2019), no. 5, 2423-2428.
[19] S. Varghese, A. Vijayakumar, and A.M. Hinz, Power domination in Knödel graphs and Hanoi graphs, Discuss. Math. Graph Theory 38 (2018), no. 1, 63-74.
[20] F. Xueliang, X. Xu, Y. Yuansheng, and X. Feng, On the domination number of Knödel graph $W(3, n)$, International Journal of Pure and Applied Mathematics 50 (2009), no. 4, 553-558.

[^0]: * Corresponding author

