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Abstract: A subset D of vertices of a graph G is a dominating set if for each u ∈
V (G)\D, u is adjacent to some vertex v ∈ D. The domination number, γ(G) of G, is the

minimum cardinality of a dominating set of G. A set D ⊆ V (G) is a total dominating

set if for each u ∈ V (G), u is adjacent to some vertex v ∈ D. The total domination
number, γt(G) of G, is the minimum cardinality of a total dominating set of G. For
an even integer n ≥ 2 and 1 ≤ ∆ ≤ blog2 nc, a Knödel graph W∆,n is a ∆-regular

bipartite graph of even order n, with vertices (i, j), for i = 1, 2 and 0 ≤ j ≤ n
2
− 1,

where for every j, 0 ≤ j ≤ n
2
− 1, there is an edge between vertex (1, j) and every

vertex (2, (j+ 2k − 1) mod n
2

), for k = 0, 1, . . . ,∆− 1. In this paper, we determine the

total domination number in 3-regular Knödel graphs W3,n.
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1. Introduction

For graph theory notation and terminology not given here, we refer to [14]. Let G =

(V,E) denote a simple graph of order n = |V (G)| and size m = |E(G)|. Two vertices

u, v ∈ V (G) are adjacent if uv ∈ E(G). The open neighborhood of a vertex u ∈ V (G)

is denoted by N(u) = {v ∈ V (G)|uv ∈ E(G)} and for a vertex set S ⊆ V (G),

N(S) = ∪
u∈S

N(u). The cardinality of N(u) is called the degree of u and is denoted

by deg(u), (or degG(u) to refer it to G). The maximum degree and minimum degree

among all vertices in G are denoted by ∆(G) and δ(G), respectively. A graph G is

a bipartite graph if its vertex set can be divide into two disjoint sets X and Y such

that each edge in E(G) connects a vertex in X with a vertex in Y . A set D ⊆ V (G)

is a dominating set if for each u ∈ V (G)\D, u is adjacent to some vertex v ∈ D. The

domination number, γ(G) of G, is the minimum cardinality of a dominating set of G.

A set D ⊆ V (G) is a total dominating set if for each u ∈ V (G), u is adjacent to some

vertex v ∈ D. The total domination number, γt(G) of G, is the minimum cardinality

of a total dominating set of G. The concept of domination theory is a widely studied

concept in graph theory and for a comprehensive study see, for example [14, 15].

An interesting family of graphs namely Knödel graphs have been introduced about

1975 [17], and have been studied seriously by some authors since 2001, see for example

[1–4, 7, 8, 10]. For an even integer n ≥ 2 and 1 ≤ ∆ ≤ blog2 nc, a Knödel graph W∆,n

is a ∆-regular bipartite graph of even order n, with vertices (i, j), for i = 1, 2 and

0 ≤ j ≤ n
2 −1, where for every j, 0 ≤ j ≤ n

2 −1, there is an edge between vertex (1, j)

and every vertex (2, (j + 2k − 1) mod n
2 ), for k = 0, 1, . . . ,∆ − 1 (see [20]). Knödel

graphs, W∆,n, are one of the three important families of graphs that they have good

properties in terms of broadcasting and gossiping, see for example [5, 6, 9, 11–13, 16].

It is worth-noting that any Knödel graph is a Cayley graph and so it is a vertex-

transitive graph (see [3]).

Xueliang et. al. [20] studied the domination number in 3-regular Knödel graphs

W3,n. They obtained exact domination number for W3,n. Domination critical and

stable Knödel graphs are studied in [18]. Some domination parameters in Knödel

graphs are studied in [19]. In this paper, we determine the total domination number

in 3-regular Knödel graphs W3,n. We will prove the following.

Theorem 1. For each even integer n ≥ 8,

γt(W3,n) = 4
⌈ n

10

⌉
−
{

0 n ≡ 0, 6, 8 (mod 10)
2 n ≡ 2, 4 (mod 10).

In Section 2, we prove some necessary Lemmas, and in the Section 3 we prove our

main result. We need the following simple observation from number theory.

Observation 2. If a, b, c, d and x are positive integers such that xa − xb = xc − xd 6= 0,
then a = c and b = d.
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v1 v2 v3 v4

u1 u2 u3 u4

W3,8

v1 v2 v3 v4 v5

u1 u2 u3 u4 u5

W3,10

v1 v2 v3 v4 v5 v6

u1 u2 u3 u4 u5 u6

W3,12

Figure 1. New labeling of Knödel graphs W3,8,W3,10 and W3,12.

2. Necessary Lemmas

In this section we prove necessary lemmas we need for the proof of the main result.

For simplicity, in this paper, we re-label the vertices of a Knödel graph as follows: we

label (1, i) by ui+1 for each i = 0, 1, . . . , n2 −1, and (2, j) by vj+1 for j = 0, 1, . . . , n2 −1.

Let U = {u1, u2, · · · , un
2
} and V = {v1, v2, . . . , vn

2
}. From now on, the vertex set of

each Knödel graph W∆,n is U ∪ V such that U and V are the two partite sets of the

graph. If S is a set of vertices of W∆,n, then clearly, S ∩ U and S ∩ V partition S,

|S| = |S ∩U |+ |S ∩ V |, N(S ∩U) ⊆ V and N(S ∩ V ) ⊆ U . Note that two vertices ui
and vj are adjacent if and only if j ∈ {i+ 20 − 1, i+ 21 − 1, . . . , i+ 2∆−1 − 1}, where

the addition is taken in modulo n
2 . Figure 1, shows new labeling of Knödel graphs

W3,8,W3,10 and W3,12.

For any subset {ui1 , ui2 , . . . , uik} of U with 1 ≤ i1 < i2 < · · · < ik ≤ n
2 , we correspond

a sequence based on the differences of the indices of uj , j = i1, . . . , ik, as follows.

Definition 1. For any subset A = {ui1 , ui2 , . . . , uik} of U with 1 ≤ i1 < i2 < · · · < ik ≤ n
2

we define a sequence n1, n2, . . . , nk, namely cyclic-sequence, where nj = ij+1 − ij for
1 ≤ j ≤ k−1 and nk = n

2
+ i1− ik. For two vertices uij , uij′ ∈ A we define index-distance

of uij and uij′ by id(uij , uij′ ) = min{|ij − ij′ |, n
2
− |ij − ij′ |}.

Observation 3. Let A = {ui1 , ui2 , . . . , uik} ⊆ U be a set such that 1 ≤ i1 < i2 < · · · <
ik ≤ n

2
and let n1, n2, · · · , nk be the corresponding cyclic-sequence of A. Then,

(1) n1 + n2 + · · ·+ nk = n
2

.
(2) If uij , uij′ ∈ A, then id(uij , uij′ ) equals to sum of some consecutive elements of the cyclic-
sequence of A and n

2
− id(uij , uij′ ) is sum of the remaining elements of the cyclic-sequence.

Furthermore, {id(uij , uij′ ),
n
2
− id(uij , uij′ )} = {|ij − ij′ |, n

2
− |ij − ij′ |}.
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We henceforth use the notation M∆ = {2a − 2b : 0 ≤ b < a < ∆} for ∆ ≥ 2.

Lemma 1. In the Knödel graph W∆,n with vertex set U ∪ V , for two distinct vertices ui

and uj, N(ui) ∩N(uj) 6= ∅ if and only if id(ui, uj) ∈M∆ or n
2
− id(ui, uj) ∈M∆.

Proof. Since W∆,n is vertex-transitive, for simplicity, we put 1 = i < j ≤
n
2 . We have id(u1, uj) = min{j − 1, n2 − (j − 1)} and so n

2 − id(u1, uj)} =

max{j − 1, n2 − (j − 1)}. Also, we have N(u1) = {v1, v2, v4, . . . , v2∆−1} and

N(uj) = {vj , vj+1, vj+3, . . . , vj+2∆−1−1}. First assume that N(u1) ∩N(uj) 6= ∅. Let

vk ∈ N(u1) ∩N(uj). There exist two integers a and b such that 0 ≤ a < b ≤ ∆ − 1

and k ≡ 2a ≡ j + 2b− 1(mod n
2 ). Since 1 ≤ 2a, 2b, j ≤ n

2 , we have 1 ≤ j + 2b− 1 < n.

If 1 ≤ j + 2b − 1 ≤ n
2 , then 2a = j + 2b − 1 and j − 1 = 2a − 2b ∈ M∆ and if

n
2 < j + 2b − 1 < n, then 2a = j + 2b − 1 − n

2 and n
2 − (j − 1) = 2b − 2a ∈ M∆.

Therefore, by Observation 3, id(ui, uj) ∈M∆ or n
2 − id(ui, uj) ∈M∆.

Conversely, suppose id(u1, uj) ∈ M∆ or n
2 − id(u1, uj) ∈ M∆. Then j − 1 ∈ M∆

or n
2 − (j − 1) ∈ M∆. If j − 1 ∈ M∆, then we have j − 1 = 2a − 2b for two

integers 0 ≤ a, b ≤ ∆ − 1. Then 2a = j + 2b − 1 and v2a ∈ N(u1) ∩ N(uj). If
n
2 −(j−1) ∈M∆, then we have n

2 −(j−1) = 2c−2d for two integers 0 ≤ c, d ≤ ∆−1.

Now 2c = j + 2d − 1 − n
2 ≡ j + 2d − 1 (mod n

2 ) and v2c ∈ N(u1) ∩ N(uj). Thus in

each case, N(ui) ∩N(uj) 6= ∅.

Lemma 2. In the Knödel graph W∆,n with vertex set U ∪ V , for two distinct vertices ui

and uj, |N(ui) ∩N(uj)| = 2 if and only if id(ui, uj) ∈M∆ and n
2
− id(ui, uj) ∈M∆.

Proof. Without loss of generality, we assume that 1 ≤ i < j ≤ n
2 . Suppose that

|N(ui)∩N(uj)| = 2 and vk, vk′ ∈ N(ui)∩N(uj) are two distinct vertices in V . There

exist two integers a and b such that 0 ≤ a, b ≤ ∆−1 and k ≡ i+2a−1 ≡ j+2b−1(mod
n
2 ). Similarly, there exist two integers a′ and b′ such that 0 ≤ a′, b′ ≤ ∆ − 1 and

k′ ≡ i+ 2a
′ − 1 ≡ j + 2b

′ − 1(mod n
2 ). Now we have j − i ≡ 2b − 2a ≡ 2b

′ − 2a
′
(mod

n
2 ). We know that −n

2 < 2b − 2a, 2b
′ − 2a

′
< n

2 . If −n
2 < 2b − 2a, 2b

′ − 2a
′
< 0 or

0 < 2b−2a, 2b
′ −2a

′
< n

2 , then we have 2b−2a = 2b
′ −2a

′ 6= 0. Observation 2 implies

that b = b′ and therefore k ≡ k′(mod n
2 ) and vk = vk′ , a contradiction. By symmetry,

we assume that 0 < 2b − 2a < n
2 and −n

2 < 2b
′ − 2a

′
< 0. Since 0 < j − i < n

2 , we

have j − i = 2b − 2a and n
2 − (j − i) = 2a

′ − 2b
′

which implies that j − i ∈M∆ and
n
2 − (j− i) ∈M∆. Thus by Observation 3, id(ui, uj) ∈M∆ and n

2 − id(ui, uj) ∈M∆.

Conversely, assume that id(ui, uj) ∈ M∆ and n
2 − id(ui, uj) ∈ M∆ for two distinct

vertices ui and uj . There exist two integers a and b such that 0 ≤ b < a ≤ n
2 and

j − i = 2a − 2b. Also there exist two integer a′ and b′ such that 0 ≤ a′ < b′ ≤ n
2

and n
2 − (j − i) = 2b

′ − 2a
′
. Now we have i + 2a − 1 = j + 2b − 1 and i + 2a

′ − 1 =

j+ 2b
′ − 1− n

2 ≡ j+ 2b
′ − 1(mod n

2 ). We set k = i+ 2a− 1 and k′ = i+ 2a
′ − 1. Then

vk, vk′ ∈ N(ui) ∩N(uj) and |N(ui) ∩N(uj)| ≥ 2. Notice that k 6≡ k′(mod n
2 ), since

otherwise a = a′ and 2b
′−2b = n

2 , a contradiction. Suppose that |N(ui)∩N(uj)| ≥ 3.

Let vk, vk′ , vk′′ ∈ N(ui)∩N(uj) be three distinct vertices. Similar to the first part of
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the proof, for vk and vk′ , there exist two integers a′′ and b′′ such that 0 ≤ a′′, b′′ ≤ ∆−1

and k′′ ≡ i+ 2a
′′ − 1 ≡ j+ 2b

′′ − 1(mod n
2 ) and thus j− i ≡ 2a

′′ − 2b
′′
(mod n

2 ). Since

ui and uj are distinct, we have a′′ 6= b′′. If a′′ > b′′, then j − i = 2a
′′ − 2b

′′
and it can

be seen that j − i = n
2 − (2a − 2b) = n

2 − (2a
′ − 2b

′
) and Observation 2 implies that

a = a′ and thus vk = vk′ , a contradiction. If a′′ < b′′, then j − i = n
2 − (2a

′′ − 2b
′′
)

and it can be seen that j − i = 2b − 2a = 2b
′ − 2a

′
and Observation 2 implies that

a = a′, a contradiction. Consequently |N(ui) ∩N(uj)| = 2.

Corollary 1. (i) In the Knödel graph W∆,n with vertex set U∪V , for each 1 ≤ i < j ≤ n
2
,

|N(ui) ∩ N(uj)| = 1 if and only if precisely one of the values id(ui, uj) and n
2
− id(ui, uj)

belongs to M∆.
(ii) In the Knödel graph W∆,n, there exist distinct vertices with two common neighbors if
and only if n = 2a − 2b + 2c − 2d and a > b ≥ 1, c > d ≥ 1.

Corollary 2. Any three vertices in the Knödel graph W∆,n have at most one common
neighbor. Indeed, any Knödel graph is a K2,3-free graph.

Lemma 3. In the Knödel graph W∆,n with vertex set U ∪ V and ∆ < log2(n
2

+ 2), we
have:
(i) |N(ui) ∩N(uj)| ≤ 1, 1 ≤ i < j ≤ n

2
.

(ii) |N(ui) ∩N(uj)| = 1 if and only if id(ui, uj) ∈M∆.

Proof. (i) Suppose to the contrary that |N(ui) ∩ N(uj)| > 1, then by Corollary 2

we have |N(ui) ∩N(uj)| = 2. Then the Lemma 2 implies that id(ui, uj) ∈M∆ and
n
2 − id(ui, uj) ∈ M∆. Thus id(ui, uj) ≤ 2∆−1 − 1, n

2 − id(ui, uj) ≤ 2∆−1 − 1 and
n
2 ≤ 2∆ − 2. This inequality implies that ∆ ≥ log2(n

2 + 2), a contradiction. Hence

|N(ui) ∩N(uj)| ≤ 1, as desired.

(ii) Assume that |N(ui) ∩ N(uj)| = 1. By Corollary 1, precisely one of the values

id(ui, uj) and n
2 − id(ui, uj) belongs to M∆. If n

2 − id(ui, uj) ∈ M∆, then n
2 −

id(ui, uj) ≤ 2∆−1−1 and so 2∆−2− id(ui, uj) < 2∆−1−1. Now , we have 2∆−1−1 <

id(ui, uj) and so n
2 − id(ui, uj) < id(ui, uj), a contradiction by definition of index-

distance. Therefore, id(ui, uj) ∈M∆.

Conversely, Assume that id(ui, uj) ∈ M∆. Thus, id(ui, uj) ≤ 2∆−1 − 1 and so
n
2−id(ui, uj) ≥ n

2−2∆−1+1 > 2∆−2−2∆−1+1 = 2∆−1−1. Therefore, n
2−id(ui, uj) /∈

M∆ and by Corollary 1 we have |N(ui) ∩N(uj)| = 1.

Lemma 4. Let W∆,n be a Knödel graph with vertex set U ∪V . For any non-empty subset
A ⊆ U :
(i)

∑
v∈N(A)

|N(v) ∩A| = ∆|A|.

(ii) The corresponding cyclic-sequence of A has at most ∆|A| − |N(A)| elements belonging
to M∆.

Proof. Let A ⊆ U be a non-emptyset.

(i) It is obvious that the induced subgraph graph H = W∆,n[A∪N(A)] is a bipartite
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graph and |E(H)| =
∑
u∈A

degH(u) =
∑

v∈N(A)

degH(v). If u ∈ A, then degH(u) = ∆,

and for v ∈ N(A) we have degH(v) = |N(v)∩A|. Thus,
∑
u∈A

degH(u) =
∑
u∈A

∆ = ∆|A|

and
∑

v∈N(A)

degH(v) =
∑

v∈N(A)

|N(v) ∩A|. Consequently,
∑

v∈N(A)

|N(v) ∩A| = ∆|A|.

(ii) Suppose that A = {ui1 , ui2 , . . . , ui|A|}, where 1 ≤ i1 < i2 < · · · < i|A| ≤ n
2 , and let

n1, n2, . . . , n|A| be the corresponding cyclic-sequence of A. For any vertex v ∈ N(A),

let r(v) = |N(v) ∩ A|. Let J = {j : nj ∈ M∆} and R = ∆|A| − |N(A)|. We prove

that R ≥ |J |. If R ≥ |A|, then we have nothing to prove, since |J | ≤ |A|. Assume

that R < |A| and notice that by part (i),

R = ∆|A| − |N(A)| =
∑

v∈N(A)

|N(v) ∩A| −
∑

v∈N(A)

1 =
∑

v∈N(A)

[r(v)− 1].

If {v ∈ N(A) : r(v) ≥ 2} = ∅, then R = 0 and J = ∅, and so R ≥ |J |. Thus assume

that {v ∈ N(A) : r(v) ≥ 2} 6= ∅. Then R =
∑

v∈N(A)
r(v)≥2

[r(v)− 1].

Assume that there exists v′ ∈ N(A) such that r(v′) = |A|. Then

R = r(v′)− 1 +
∑

v∈N(A)
r(v)≥2
v 6=v′

[r(v)− 1] = |A| − 1 +
∑

v∈N(A)
r(v)≥2
v 6=v′

[r(v)− 1].

Since R < |A|, we obtain that
∑

v∈N(A)
r(v)≥2
v 6=v′

[r(v) − 1] = 0, R = |A| − 1, and for each

v ∈ N(A) \ {v′} we have r(v) = 1. Since W∆,n is vertex transitive, without loss of

generality, we assume that v′ = vn
2

.

According to the definition of a Knodel graph, there exist integers 0 ≤ a|A| < a|A|−1 <

· · · < a2 < a1 ≤ ∆ − 1 such that ij = n
2 − 2aj + 1 for each 1 ≤ j ≤ |A|. Moreover,

nj = ij+1−ij = 2aij −2aij+1 ∈M∆ for each 1 ≤ j ≤ |A|−1. Evidently, i|A|−i|A|−1 =

n1 + n2 + · · · + n|A|−1 = 2a|A|−1 − 2a|A| ∈ M∆ and n|A| = n
2 − (i|A| − i|A|−1). We

show that n|A| 6∈ M∆. Suppose to the contrary that n|A| ∈ M∆. Since n|A| =
n
2−(i|A|−i|A|−1) ∈M∆ and i|A|−i|A|−1 ∈M∆, by Observation 3, id(ui1 , ui|A|) ∈M∆

and n
2 − id(ui1 , ui|A|) ∈ M∆, and by Lemma 2, |N(ui1) ∩ N(ui|A|)| = 2. Now there

exists v′′ 6= vn
2

such that v′′ ∈ N(ui1) ∩ N(ui|A|) and r(v′′) ≥ 2, a contradiction.

Therefore, n|A| 6∈ M∆. Since nj ∈ M∆ for each 1 ≤ j ≤ |A| − 1, we obtain that

|J | = |A|−1 = R. Thus there are at most R = |A|−1 elements of the cyclic sequence

of A which belong to M∆.

Next assume that r(v) < |A| for any v ∈ N(A). Let Xv = {j : uij , uij+1
∈ N(v)∩A}.

We prove that J ⊆ ∪
v∈N(A)

Xv. Let j ∈ J . Then nj = ij+1−ij ∈M∆. By Observation

3, nj = ij+1 − ij ∈ {id(uij , uij+1
), n2 − id(uij , uij+1

)} and by Lemma 1, |N(uij ) ∩
N(uij+1)| ≥ 1. Let v ∈ N(uij ) ∩ N(uij+1). Then uij , uij+1 ∈ N(v) ∩ A. Therefore
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j ∈ Xv and j ∈ ∪
v∈N(A)

Xv that implies J ⊆ ∪
v∈N(A)

Xv. Then |J | ≤ | ∪
v∈N(A)

Xv|.

Observe that Xv = {j : uij ∈ N(v) ∩ A} − {j : uij ∈ N(v) ∩ A, uij+1
/∈ N(v) ∩ A},

and |{j : uij ∈ N(v) ∩ A}| = |N(v) ∩ A| = r(v). Since N(v) ∩ A ( A, we have

{j : uij ∈ N(v)∩A, uij+1
/∈ N(v)∩A} 6= ∅. Therefore |Xv| ≤ r(v)− 1. Consequently,

|J | ≤ | ∪
v∈N(A)

Xv| ≤
∑

v∈N(A)

|Xv| ≤
∑

v∈N(A)

[r(v)− 1].

We remark that one can define the cyclic-sequence and index-distance for any subset

of V in a similar way, and thus the Observation 3, Lemmas 1 and 2 and corollaries 1

and 2 are valid for cyclic-sequence and index-distance on subsets of V as well.

3. Proof of Theorem 1

We are now ready to determine the total domination number of W3,n. We will prove

that for each even integer n ≥ 8,

γt(W3,n) = 4
⌈ n

10

⌉
−
{

0 n ≡ 0, 6, 8 (mod 10)

2 n ≡ 2, 4 (mod 10).

Clearly n ≥ 8 is an even integer by the definition of W3,n. We divide the proof into

five cases depending on n.

Proof. We distinguish four cases.

Case 1: n ≡ 0 (mod 10). Let n = 10t, where t ≥ 1. Then the set D1 = {u5k+b, v5k+b :

k = 0, 1, . . . , t − 1; b = 1, 2} is a total dominating set for W3,n and thus γt(W3,n) ≤
|D1| = 4t = 4d n

10e. We show that γt(W3,n) = 4t. Suppose to the contrary, that

γt(W3,n) < 4t. Let D be a total dominating set with 4t − 1 elements. Then by the

Pigeonhole Principle either |D ∩ U | ≤ 2t − 1 or |D ∩ V | ≤ 2t − 1. Without loss of

generality, assume that |D∩U | ≤ 2t−1. Let |D∩U | = 2t−1−a, where a ≥ 0. Then

|D ∩ V | = 2t + a. Observe that D ∩ U dominates at most 3|D ∩ U | = 6t − 3 − 3a

vertices of V , and so 6t − 3 − 3a ≥ 5t = |V |, since D ∩ U dominates V . Clearly the

inequality 6t − 3 − 3a ≥ 5t does not hold if t ∈ {1, 2}, and thus this contradiction

implies that γt(W3,n) = 4t = 4d n
10e for t = 1, 2. From here on, assume that t ≥ 3.

By Lemma 4(ii), at most 3|D ∩ U | − |N(D ∩ U)| = 3(2t − 1 − a) − 5t = t − 3 − 3a

elements of the cyclic-sequence of D ∩ U belong to M3 = {1, 2, 3}. Hence, at least

(2t − 1 − a) − (t − 3 − 3a) = t + 2 + 2a elements of the cyclic-sequence of D ∩ U do

not belong to M3 and are greater than 3. Then by Observation 3, we have

5t =
2t−1

Σ
i=1

ni ≥ 4(t+ 2 + 2a) + (t− 3− 3a) = 5t+ 5 + 5a,

a contradiction. Therefore, γt(W3,n) = 4t = 4d n
10e.

Case 2: n ≡ 2 (mod 10). Let n = 10t + 2, where t ≥ 1. Then the set D2 =

{u5k+b, v5k+b : k = 0, 1, . . . , t−1; b = 1, 2}∪{u5t+1, v5t+1} is a total dominating set for
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W3,n and thus γt(W3,n) ≤ |D2| = 4t+2 = 4d n
10e−2. We show that γt(W3,n) = 4t+2.

Suppose to the contrary, that γt(W3,n) < 4t+2. Let D be a total dominating set with

4t+1 elements. Then by the Pigeonhole Principle either |D∩U | ≤ 2t or |D∩V | ≤ 2t.

Without loss of generality, assume that |D ∩ U | ≤ 2t. Let |D ∩ U | = 2t − a, where

a ≥ 0. Then |D ∩ V | = 2t + 1 + a. Observe that D ∩ U dominates at most 6t − 3a

vertices of V and so 6t − 3a ≥ 5t + 1 = |V |, since D ∩ U dominates V . By Lemma

4(ii), at most 3|D∩U |− |N(D∩U)| = 3(2t−a)− (5t+1) = t−1−3a elements of the

cyclic-sequence of D∩U belong to M3. Hence, at least (2t−a)−(t−1−3a) = t+1+2a

elements of the cyclic-sequence of D ∩ U do not belong to M3 and are greater than

3. Then by Observation 3, we have

5t+ 1 =
2t−a
Σ
i=1

ni ≥ 4(t+ 1 + 2a) + (t− 1− 3a) = 5t+ 3 + 5a,

a contradiction. Therefore, γt(W3,n) = 4t+ 2 = 4d n
10e − 2.

Case 3: n ≡ 4 (mod 10). Let n = 10t + 4, where t ≥ 1. Then the set D3 =

{u5k+b, v5k+b : k = 0, 1, . . . , t−1; b = 1, 2}∪{u5t+1, v5t−1} is a total dominating set for

W3,n and thus γt(W3,n) ≤ |D3| = 4t+2 = 4d n
10e−2. We show that γt(W3,n) = 4t+2.

Suppose to the contrary, that γt(W3,n) < 4t+2. Let D be a total dominating set with

4t+1 elements. Then by the Pigeonhole Principle either |D∩U | ≤ 2t or |D∩V | ≤ 2t.

Without loss of generality, assume that |D∩U | ≤ 2t. Let |D∩U | = 2t−a, where a ≥ 0.

Then |D ∩ V | = 2t + 1 + a. Observe that D ∩ U dominates at most 6t − 3a vertices

of V , and so 6t− 3a ≥ 5t+ 2 = |V |, since D ∩U dominates V . Clearly the inequality

6t − 3a ≥ 5t + 2 does not hold if t = 1, and thus this contradiction implies that

γt(W3,n) = 4t+2 = 4d n
10e−2 for t = 1. From here on, assume that t ≥ 2. By Lemma

4, at most 3|D ∩ U | − |N(D ∩ U)| = 3(2t− a)− (5t+ 2) = t− 2− 3a elements of the

cyclic-sequence of D∩U belong to M3. Hence, at least (2t−a)−(t−2−3a) = t+2+2a

elements of the cyclic-sequence of D ∩ U do not belong to M3 and are greater than

3. Then by Observation 3, we have

5t+ 2 =
2t−a
Σ
i=1

ni ≥ 4(t+ 2 + 2a) + (t− 2− 3a) = 5t+ 6 + 5a,

a contradiction. Therefore, γt(W3,n) = 4t+ 2 = 4d n
10e − 2.

Case 4: n ≡ 6 (mod 10). Let n = 10t + 6, where t ≥ 1. Then the set D4 =

{u5k+b, v5k+b : k = 0, 1, . . . , t; b = 1, 2} is a total dominating set for W3,n and thus

γt(W3,n) ≤ |D4| = 4t+ 4 = 4d n
10e. We show that γt(W3,n) = 4t+ 4. Suppose to the

contrary, that γt(W3,n) < 4t+4. Let D be a total dominating set with 4t+3 elements.

Then by the Pigeonhole Principle either |D∩U | ≤ 2t+1 or |D∩V | ≤ 2t+1. Without

loss of generality, assume that |D∩U | ≤ 2t+1. Let |D∩U | = 2t+1−a, where a ≥ 0.

Then |D∩V | = 2t+2+a. Observe that D∩U dominates at most 6t+3−3a vertices of

V , and so 6t+ 3−3a ≥ 5t+ 3 = |V |, since D∩U dominates V . By Lemma 4, at most

3|D∩U |−|N(D∩U)| = 3(2t+1−a)−(5t+3) = t−3a elements of the cyclic-sequence

of D ∩ U belong to M3. Hence, at least (2t+ 1− a)− (t− 3a) = t+ 1 + 2a elements
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of the cyclic-sequence of D ∩ U do not belong to M3 and are greater than 3. Then

by Observation 3, we have

5t+ 3 =
2t+1−a

Σ
i=1

ni ≥ 4(t+ 2 + 2a) + (t− 3a) = 5t+ 8 + 5a,

a contradiction. Therefore, γt(W3,n) = 4t+ 4 = 4d n
10e.

Case 5: n ≡ 8 (mod 10). Let n = 10t + 8, where t ≥ 0. Then the set D5 =

{u5k+b, v5k+b : k = 0, 1, . . . , t; b = 1, 2} is a total dominating set for W3,n and thus

γt(W3,n) ≤ |D5| = 4t+ 4 = 4d n
10e. We show that γt(W3,n) = 4t+ 4. Suppose to the

contrary, that γt(W3,n) < 4t+4. Let D be a total dominating set with 4t+3 elements.

Then by the Pigeonhole Principle either |D∩U | ≤ 2t+1 or |D∩V | ≤ 2t+1. Without

loss of generality, assume that |D ∩ U | ≤ 2t+ 1. Let |D ∩ U | = 2t+ 1− a and a ≥ 0.

Then |D∩V | = 2t+ 2+a. Observe that D∩U dominates at most 6t+ 3−3a vertices

of V , and so 6t+ 3− 3a ≥ 5t+ 4 = |V |, since D ∩ U dominates V . By Lemma 4, at

most 3|D∩U |−|N(D∩U)| = 3(2t+1−a)−(5t+4) = t−1−3a elements of the cyclic-

sequence of D∩U belong to M3. Hence, at least (2t+1−a)− (t−1−3a) = t+2+2a

elements of the cyclic-sequence of D ∩ U do not belong to M3 and are greater than

3. Then by Observation 3, we have

5t+ 4 =
2t+1−a

Σ
i=1

ni ≥ 4(t+ 2 + 2a) + (t− 1− 3a) = 5t+ 7 + 5a,

a contradiction. Therefore γt(W3,n) = 4t+ 2 = 4d n
10e.
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