Research Article



# Total domination in cubic Knödel graphs

D.A. Mojdeh<sup>1</sup>, S.R. Musawi<sup>2</sup>, E. Nazari Kiashi<sup>3</sup>, N. Jafari Rad<sup>4,\*</sup>

<sup>1</sup>Department of Mathematics, University of Mazandaran Babolsar, Iran damojdeh@yahoo.com

<sup>2</sup>Faculty of Mathematical Sciences, Shahrood University of Technology P.O. Box 3619995161, Shahrood, Iran r\_musawi@shahroodut.ac.ir

> <sup>3</sup>Department of Mathematics, University of Tafresh Tafresh, Iran esmaeil.nazari@gmail.com

<sup>4</sup>Department of Mathematics, Shahed University Tehran, Iran n.jafarirad@gmail.com

Received: 20 March 2020; Accepted: 21 December 2020 Published Online: 23 December 2020

**Abstract:** A subset D of vertices of a graph G is a *dominating set* if for each  $u \in V(G) \setminus D$ , u is adjacent to some vertex  $v \in D$ . The *domination number*,  $\gamma(G)$  of G, is the minimum cardinality of a dominating set of G. A set  $D \subseteq V(G)$  is a *total dominating set* if for each  $u \in V(G)$ , u is adjacent to some vertex  $v \in D$ . The *total domination number*,  $\gamma_t(G)$  of G, is the minimum cardinality of a total dominating set of G. For an even integer  $n \geq 2$  and  $1 \leq \Delta \leq \lfloor \log_2 n \rfloor$ , a *Knödel graph*  $W_{\Delta,n}$  is a  $\Delta$ -regular bipartite graph of even order n, with vertices (i, j), for i = 1, 2 and  $0 \leq j \leq \frac{n}{2} - 1$ , where for every j,  $0 \leq j \leq \frac{n}{2} - 1$ , there is an edge between vertex (1, j) and every vertex  $(2, (j + 2^k - 1) \mod \frac{n}{2})$ , for  $k = 0, 1, \ldots, \Delta - 1$ . In this paper, we determine the total domination number in 3-regular Knödel graphs  $W_{3,n}$ .

Keywords: Knödel graph, domination number, total domination number, Pigeonhole Principle.

AMS Subject classification: 05C69, 05C30

<sup>\*</sup> Corresponding author

## 1. Introduction

For graph theory notation and terminology not given here, we refer to [14]. Let G =(V, E) denote a simple graph of order n = |V(G)| and size m = |E(G)|. Two vertices  $u, v \in V(G)$  are adjacent if  $uv \in E(G)$ . The open neighborhood of a vertex  $u \in V(G)$ is denoted by  $N(u) = \{v \in V(G) | uv \in E(G)\}$  and for a vertex set  $S \subseteq V(G)$ ,  $N(S) = \bigcup_{u \in S} N(u)$ . The cardinality of N(u) is called the *degree* of u and is denoted by  $\deg(u)$ , (or  $\deg_G(u)$  to refer it to G). The maximum degree and minimum degree among all vertices in G are denoted by  $\Delta(G)$  and  $\delta(G)$ , respectively. A graph G is a bipartite graph if its vertex set can be divide into two disjoint sets X and Y such that each edge in E(G) connects a vertex in X with a vertex in Y. A set  $D \subseteq V(G)$ is a dominating set if for each  $u \in V(G) \setminus D$ , u is adjacent to some vertex  $v \in D$ . The domination number,  $\gamma(G)$  of G, is the minimum cardinality of a dominating set of G. A set  $D \subseteq V(G)$  is a total dominating set if for each  $u \in V(G)$ , u is adjacent to some vertex  $v \in D$ . The total domination number,  $\gamma_t(G)$  of G, is the minimum cardinality of a total dominating set of G. The concept of domination theory is a widely studied concept in graph theory and for a comprehensive study see, for example [14, 15]. An interesting family of graphs namely *Knödel graphs* have been introduced about 1975 [17], and have been studied seriously by some authors since 2001, see for example [1-4, 7, 8, 10]. For an even integer  $n \ge 2$  and  $1 \le \Delta \le \lfloor \log_2 n \rfloor$ , a Knödel graph  $W_{\Delta,n}$ is a  $\Delta$ -regular bipartite graph of even order n, with vertices (i, j), for i = 1, 2 and  $0 \le j \le \frac{n}{2} - 1$ , where for every  $j, 0 \le j \le \frac{n}{2} - 1$ , there is an edge between vertex (1, j)and every vertex  $(2, (j+2^k-1) \mod \frac{n}{2})$ , for  $k = 0, 1, \ldots, \Delta - 1$  (see [20]). Knödel graphs,  $W_{\Delta,n}$ , are one of the three important families of graphs that they have good properties in terms of broadcasting and gossiping, see for example [5, 6, 9, 11–13, 16]. It is worth-noting that any Knödel graph is a Cayley graph and so it is a vertex-

Xueliang et. al. [20] studied the domination number in 3-regular Knödel graphs  $W_{3,n}$ . They obtained exact domination number for  $W_{3,n}$ . Domination critical and stable Knödel graphs are studied in [18]. Some domination parameters in Knödel graphs are studied in [19]. In this paper, we determine the total domination number in 3-regular Knödel graphs  $W_{3,n}$ . We will prove the following.

**Theorem 1.** For each even integer  $n \ge 8$ ,

transitive graph (see [3]).

$$\gamma_t(W_{3,n}) = 4 \left\lceil \frac{n}{10} \right\rceil - \begin{cases} 0 & n \equiv 0, 6, 8 \pmod{10} \\ 2 & n \equiv 2, 4 \pmod{10}. \end{cases}$$

In Section 2, we prove some necessary Lemmas, and in the Section 3 we prove our main result. We need the following simple observation from number theory.

**Observation 2.** If a, b, c, d and x are positive integers such that  $x^a - x^b = x^c - x^d \neq 0$ , then a = c and b = d.



Figure 1. New labeling of Knödel graphs  $W_{3,8}, W_{3,10}$  and  $W_{3,12}$ .

### 2. Necessary Lemmas

In this section we prove necessary lemmas we need for the proof of the main result. For simplicity, in this paper, we re-label the vertices of a Knödel graph as follows: we label (1, i) by  $u_{i+1}$  for each  $i = 0, 1, \ldots, \frac{n}{2} - 1$ , and (2, j) by  $v_{j+1}$  for  $j = 0, 1, \ldots, \frac{n}{2} - 1$ . Let  $U = \{u_1, u_2, \cdots, u_{\frac{n}{2}}\}$  and  $V = \{v_1, v_2, \ldots, v_{\frac{n}{2}}\}$ . From now on, the vertex set of each Knödel graph  $W_{\Delta,n}$  is  $U \cup V$  such that U and V are the two partite sets of the graph. If S is a set of vertices of  $W_{\Delta,n}$ , then clearly,  $S \cap U$  and  $S \cap V$  partition S,  $|S| = |S \cap U| + |S \cap V|$ ,  $N(S \cap U) \subseteq V$  and  $N(S \cap V) \subseteq U$ . Note that two vertices  $u_i$  and  $v_j$  are adjacent if and only if  $j \in \{i + 2^0 - 1, i + 2^1 - 1, \ldots, i + 2^{\Delta - 1} - 1\}$ , where the addition is taken in modulo  $\frac{n}{2}$ . Figure 1, shows new labeling of Knödel graphs  $W_{3,8}, W_{3,10}$  and  $W_{3,12}$ .

For any subset  $\{u_{i_1}, u_{i_2}, \ldots, u_{i_k}\}$  of U with  $1 \le i_1 < i_2 < \cdots < i_k \le \frac{n}{2}$ , we correspond a sequence based on the differences of the indices of  $u_j, j = i_1, \ldots, i_k$ , as follows.

**Definition 1.** For any subset  $A = \{u_{i_1}, u_{i_2}, \ldots, u_{i_k}\}$  of U with  $1 \le i_1 < i_2 < \cdots < i_k \le \frac{n}{2}$  we define a sequence  $n_1, n_2, \ldots, n_k$ , namely **cyclic-sequence**, where  $n_j = i_{j+1} - i_j$  for  $1 \le j \le k-1$  and  $n_k = \frac{n}{2} + i_1 - i_k$ . For two vertices  $u_{i_j}, u_{i_{j'}} \in A$  we define **index-distance** of  $u_{i_j}$  and  $u_{i_{j'}}$  by  $id(u_{i_j}, u_{i_{j'}}) = min\{|i_j - i_{j'}|, \frac{n}{2} - |i_j - i_{j'}|\}$ .

**Observation 3.** Let  $A = \{u_{i_1}, u_{i_2}, \dots, u_{i_k}\} \subseteq U$  be a set such that  $1 \leq i_1 < i_2 < \dots < i_k \leq \frac{n}{2}$  and let  $n_1, n_2, \dots, n_k$  be the corresponding cyclic-sequence of A. Then, (1)  $n_1 + n_2 + \dots + n_k = \frac{n}{2}$ .

(2) If  $u_{i_j}, u_{i_{j'}} \in A$ , then  $id(u_{i_j}, u_{i_{j'}})$  equals to sum of some consecutive elements of the cyclic-sequence of A and  $\frac{n}{2} - id(u_{i_j}, u_{i_{j'}})$  is sum of the remaining elements of the cyclic-sequence. Furthermore,  $\{id(u_{i_j}, u_{i_{j'}}), \frac{n}{2} - id(u_{i_j}, u_{i_{j'}})\} = \{|i_j - i_{j'}|, \frac{n}{2} - |i_j - i_{j'}|\}.$  We henceforth use the notation  $\mathcal{M}_{\Delta} = \{2^a - 2^b : 0 \le b < a < \Delta\}$  for  $\Delta \ge 2$ .

**Lemma 1.** In the Knödel graph  $W_{\Delta,n}$  with vertex set  $U \cup V$ , for two distinct vertices  $u_i$ and  $u_j$ ,  $N(u_i) \cap N(u_j) \neq \emptyset$  if and only if  $id(u_i, u_j) \in \mathscr{M}_\Delta$  or  $\frac{n}{2} - id(u_i, u_j) \in \mathscr{M}_\Delta$ .

*Proof.* Since  $W_{\Delta,n}$  is vertex-transitive, for simplicity, we put  $1 = i < j \leq \frac{n}{2}$ . We have  $id(u_1, u_j) = \min\{j - 1, \frac{n}{2} - (j - 1)\}$  and so  $\frac{n}{2} - id(u_1, u_j)\} = \max\{j - 1, \frac{n}{2} - (j - 1)\}$ . Also, we have  $N(u_1) = \{v_1, v_2, v_4, \dots, v_{2^{\Delta-1}}\}$  and  $N(u_j) = \{v_j, v_{j+1}, v_{j+3}, \dots, v_{j+2^{\Delta-1}-1}\}$ . First assume that  $N(u_1) \cap N(u_j) \neq \emptyset$ . Let  $v_k \in N(u_1) \cap N(u_j)$ . There exist two integers a and b such that  $0 \leq a < b \leq \Delta - 1$  and  $k \equiv 2^a \equiv j + 2^b - 1 \pmod{\frac{n}{2}}$ . Since  $1 \leq 2^a, 2^b, j \leq \frac{n}{2}$ , we have  $1 \leq j + 2^b - 1 < n$ . If  $1 \leq j + 2^b - 1 \leq \frac{n}{2}$ , then  $2^a = j + 2^b - 1$  and  $j - 1 = 2^a - 2^b \in \mathscr{M}_\Delta$  and if  $\frac{n}{2} < j + 2^b - 1 < n$ , then  $2^a = j + 2^b - 1 - \frac{n}{2}$  and  $\frac{n}{2} - (j - 1) = 2^b - 2^a \in \mathscr{M}_\Delta$ .

Conversely, suppose  $id(u_1, u_j) \in \mathscr{M}_\Delta$  or  $\frac{n}{2} - id(u_1, u_j) \in \mathscr{M}_\Delta$ . Then  $j - 1 \in \mathscr{M}_\Delta$ or  $\frac{n}{2} - (j - 1) \in \mathscr{M}_\Delta$ . If  $j - 1 \in \mathscr{M}_\Delta$ , then we have  $j - 1 = 2^a - 2^b$  for two integers  $0 \le a, b \le \Delta - 1$ . Then  $2^a = j + 2^b - 1$  and  $v_{2^a} \in N(u_1) \cap N(u_j)$ . If  $\frac{n}{2} - (j - 1) \in \mathscr{M}_\Delta$ , then we have  $\frac{n}{2} - (j - 1) = 2^c - 2^d$  for two integers  $0 \le c, d \le \Delta - 1$ . Now  $2^c = j + 2^d - 1 - \frac{n}{2} \equiv j + 2^d - 1 \pmod{\frac{n}{2}}$  and  $v_{2^c} \in N(u_1) \cap N(u_j)$ . Thus in each case,  $N(u_i) \cap N(u_j) \neq \emptyset$ .

**Lemma 2.** In the Knödel graph  $W_{\Delta,n}$  with vertex set  $U \cup V$ , for two distinct vertices  $u_i$ and  $u_j$ ,  $|N(u_i) \cap N(u_j)| = 2$  if and only if  $id(u_i, u_j) \in \mathscr{M}_\Delta$  and  $\frac{n}{2} - id(u_i, u_j) \in \mathscr{M}_\Delta$ .

Proof. Without loss of generality, we assume that  $1 \leq i < j \leq \frac{n}{2}$ . Suppose that  $|N(u_i) \cap N(u_j)| = 2$  and  $v_k, v_{k'} \in N(u_i) \cap N(u_j)$  are two distinct vertices in V. There exist two integers a and b such that  $0 \le a, b \le \Delta - 1$  and  $k \equiv i + 2^a - 1 \equiv j + 2^b - 1 \pmod{2^{a-1}}$  $\frac{n}{2}$ ). Similarly, there exist two integers a' and b' such that  $0 \le a', b' \le \Delta - 1$  and  $\begin{array}{l} \overset{2}{k'} \equiv i + 2^{a'} - 1 \equiv j + 2^{b'} - 1 \pmod{\frac{n}{2}} . \text{ Now we have } j - i \equiv 2^{b'} - 2^{a} \equiv 2^{b'} - 2^{a'} \pmod{\frac{n}{2}} . \\ \begin{array}{l} \overset{2}{m} = 2^{b'} - 2^{a'} = 2^{b'} - 2^{a'} \pmod{\frac{n}{2}} . \\ \end{array} \\ \begin{array}{l} \overset{2}{m} = 2^{b'} - 2^{a'} + 2^{a'} +$  $0 < 2^{b} - 2^{a}, 2^{b'} - 2^{a'} < \frac{n}{2}$ , then we have  $2^{b} - 2^{a} = 2^{b'} - 2^{a'} \neq 0$ . Observation 2 implies that b = b' and therefore  $k \equiv k' \pmod{\frac{n}{2}}$  and  $v_k = v_{k'}$ , a contradiction. By symmetry, we assume that  $0 < 2^{b} - 2^{a} < \frac{n}{2}$  and  $-\frac{n}{2} < 2^{b'} - 2^{a'} < 0$ . Since  $0 < j - i < \frac{n}{2}$ , we have  $j - i = 2^{b} - 2^{a}$  and  $\frac{n}{2} - (j - i) = 2^{a'} - 2^{b'}$  which implies that  $j - i \in \mathcal{M}_{\Delta}$  and  $\frac{n}{2} - (j-i) \in \mathscr{M}_{\Delta}$ . Thus by Observation 3,  $id(u_i, u_j) \in \mathscr{M}_{\Delta}$  and  $\frac{n}{2} - id(u_i, u_j) \in \mathscr{M}_{\Delta}$ . Conversely, assume that  $id(u_i, u_j) \in \mathscr{M}_{\Delta}$  and  $\frac{n}{2} - id(u_i, u_j) \in \mathscr{M}_{\Delta}$  for two distinct vertices  $u_i$  and  $u_j$ . There exist two integers a and b such that  $0 \le b < a \le \frac{n}{2}$  and  $j - i = 2^a - 2^b$ . Also there exist two integer a' and b' such that  $0 \le a' < b' \le \frac{n}{2}$ and  $\frac{n}{2} - (j - i) = 2^{b'} - 2^{a'}$ . Now we have  $i + 2^a - 1 = j + 2^b - 1$  and  $i + 2^{a'} - 1 = 2^{a'}$  $j + 2^{\tilde{b}'} - 1 - \frac{n}{2} \equiv j + 2^{b'} - 1 \pmod{\frac{n}{2}}$ . We set  $k = i + 2^a - 1$  and  $k' = i + 2^{a'} - 1$ . Then  $v_k, v_{k'} \in N(u_i) \cap N(u_j)$  and  $|N(u_i) \cap N(u_j)| \ge 2$ . Notice that  $k \not\equiv k' \pmod{\frac{n}{2}}$ , since otherwise a = a' and  $2^{b'} - 2^{b} = \frac{n}{2}$ , a contradiction. Suppose that  $|N(u_i) \cap N(u_i)| \ge 3$ . Let  $v_k, v_{k'}, v_{k''} \in N(u_i) \cap N(u_i)$  be three distinct vertices. Similar to the first part of

the proof, for  $v_k$  and  $v_{k'}$ , there exist two integers a'' and b'' such that  $0 \le a'', b'' \le \Delta - 1$ and  $k'' \equiv i + 2^{a''} - 1 \equiv j + 2^{b''} - 1 \pmod{\frac{n}{2}}$  and thus  $j - i \equiv 2^{a''} - 2^{b''} \pmod{\frac{n}{2}}$ . Since  $u_i$  and  $u_j$  are distinct, we have  $a'' \neq b''$ . If a'' > b'', then  $j - i = 2^{a''} - 2^{b''}$  and it can be seen that  $j - i = \frac{n}{2} - (2^a - 2^b) = \frac{n}{2} - (2^{a'} - 2^{b'})$  and Observation 2 implies that a = a' and thus  $v_k = v_{k'}$ , a contradiction. If a'' < b'', then  $j - i = \frac{n}{2} - (2^{a''} - 2^{b''})$ and it can be seen that  $j - i = 2^b - 2^a = 2^{b'} - 2^{a'}$  and Observation 2 implies that a = a', a contradiction. Consequently  $|N(u_i) \cap N(u_j)| = 2$ .

**Corollary 1.** (i) In the Knödel graph  $W_{\Delta,n}$  with vertex set  $U \cup V$ , for each  $1 \le i < j \le \frac{n}{2}$ ,  $|N(u_i) \cap N(u_j)| = 1$  if and only if precisely one of the values  $id(u_i, u_j)$  and  $\frac{n}{2} - id(u_i, u_j)$  belongs to  $\mathcal{M}_{\Delta}$ .

(ii) In the Knödel graph  $W_{\Delta,n}$ , there exist distinct vertices with two common neighbors if and only if  $n = 2^a - 2^b + 2^c - 2^d$  and  $a > b \ge 1, c > d \ge 1$ .

**Corollary 2.** Any three vertices in the Knödel graph  $W_{\Delta,n}$  have at most one common neighbor. Indeed, any Knödel graph is a  $K_{2,3}$ -free graph.

**Lemma 3.** In the Knödel graph  $W_{\Delta,n}$  with vertex set  $U \cup V$  and  $\Delta < \log_2(\frac{n}{2} + 2)$ , we have: (i)  $|N(u_i) \cap N(u_j)| \le 1, 1 \le i < j \le \frac{n}{2}$ .

(i)  $|N(u_i) \cap N(u_j)| \ge 1$ ,  $1 \ge i < j \ge 2$ . (ii)  $|N(u_i) \cap N(u_j)| = 1$  if and only if  $id(u_i, u_j) \in \mathcal{M}_\Delta$ .

*Proof.* (i) Suppose to the contrary that  $|N(u_i) \cap N(u_j)| > 1$ , then by Corollary 2 we have  $|N(u_i) \cap N(u_j)| = 2$ . Then the Lemma 2 implies that  $id(u_i, u_j) \in \mathcal{M}_\Delta$  and  $\frac{n}{2} - id(u_i, u_j) \in \mathcal{M}_\Delta$ . Thus  $id(u_i, u_j) \leq 2^{\Delta-1} - 1$ ,  $\frac{n}{2} - id(u_i, u_j) \leq 2^{\Delta-1} - 1$  and  $\frac{n}{2} \leq 2^{\Delta} - 2$ . This inequality implies that  $\Delta \geq \log_2(\frac{n}{2} + 2)$ , a contradiction. Hence  $|N(u_i) \cap N(u_j)| \leq 1$ , as desired.

(ii) Assume that  $|N(u_i) \cap N(u_j)| = 1$ . By Corollary 1, precisely one of the values  $id(u_i, u_j)$  and  $\frac{n}{2} - id(u_i, u_j)$  belongs to  $\mathscr{M}_{\Delta}$ . If  $\frac{n}{2} - id(u_i, u_j) \in \mathscr{M}_{\Delta}$ , then  $\frac{n}{2} - id(u_i, u_j) \leq 2^{\Delta-1} - 1$  and so  $2^{\Delta} - 2 - id(u_i, u_j) < 2^{\Delta-1} - 1$ . Now, we have  $2^{\Delta-1} - 1 < id(u_i, u_j)$  and so  $\frac{n}{2} - id(u_i, u_j) < id(u_i, u_j)$ , a contradiction by definition of indexdistance. Therefore,  $id(u_i, u_j) \in \mathscr{M}_{\Delta}$ .

Conversely, Assume that  $id(u_i, u_j) \in \mathscr{M}_{\Delta}$ . Thus,  $id(u_i, u_j) \leq 2^{\Delta-1} - 1$  and so  $\frac{n}{2} - id(u_i, u_j) \geq \frac{n}{2} - 2^{\Delta-1} + 1 > 2^{\Delta} - 2 - 2^{\Delta-1} + 1 = 2^{\Delta-1} - 1$ . Therefore,  $\frac{n}{2} - id(u_i, u_j) \notin \mathscr{M}_{\Delta}$  and by Corollary 1 we have  $|N(u_i) \cap N(u_j)| = 1$ .  $\Box$ 

**Lemma 4.** Let  $W_{\Delta,n}$  be a Knödel graph with vertex set  $U \cup V$ . For any non-empty subset  $A \subseteq U$ : (i)  $\sum_{v \in N(A)} |N(v) \cap A| = \Delta |A|$ .

(ii) The corresponding cyclic-sequence of A has at most  $\Delta |A| - |N(A)|$  elements belonging to  $\mathcal{M}_{\Delta}$ .

*Proof.* Let  $A \subseteq U$  be a non-emptyset.

(i) It is obvious that the induced subgraph graph  $H = W_{\Delta,n}[A \cup N(A)]$  is a bipartite

graph and  $|E(H)| = \sum_{u \in A} \deg_H(u) = \sum_{v \in N(A)} \deg_H(v)$ . If  $u \in A$ , then  $\deg_H(u) = \Delta$ , and for  $v \in N(A)$  we have  $\deg_H(v) = |N(v) \cap A|$ . Thus,  $\sum_{u \in A} \deg_H(u) = \sum_{u \in A} \Delta = \Delta |A|$ and  $\sum_{v \in N(A)} \deg_H(v) = \sum_{v \in N(A)} |N(v) \cap A|$ . Consequently,  $\sum_{v \in N(A)} |N(v) \cap A| = \Delta |A|$ . (ii) Suppose that  $A = \{u_{i_1}, u_{i_2}, \dots, u_{i_{|A|}}\}$ , where  $1 \leq i_1 < i_2 < \dots < i_{|A|} \leq \frac{n}{2}$ , and let  $n_1, n_2, \dots, n_{|A|}$  be the corresponding cyclic-sequence of A. For any vertex  $v \in N(A)$ , let  $r(v) = |N(v) \cap A|$ . Let  $J = \{j : n_j \in \mathcal{M}_\Delta\}$  and  $R = \Delta |A| - |N(A)|$ . We prove that  $R \geq |J|$ . If  $R \geq |A|$ , then we have nothing to prove, since  $|J| \leq |A|$ . Assume that R < |A| and notice that by part (i),

$$R = \Delta |A| - |N(A)| = \sum_{v \in N(A)} |N(v) \cap A| - \sum_{v \in N(A)} 1 = \sum_{v \in N(A)} [r(v) - 1].$$

If  $\{v \in N(A) : r(v) \ge 2\} = \emptyset$ , then R = 0 and  $J = \emptyset$ , and so  $R \ge |J|$ . Thus assume that  $\{v \in N(A) : r(v) \ge 2\} \ne \emptyset$ . Then  $R = \sum_{\substack{v \in N(A) \\ v \in N(A)}} [r(v) - 1]$ .

Assume that there exists  $v' \in N(A)$  such that r(v') = |A|. Then

$$R = r(v') - 1 + \sum_{\substack{v \in N(A) \\ r(v) \ge 2 \\ v \neq v'}} [r(v) - 1] = |A| - 1 + \sum_{\substack{v \in N(A) \\ r(v) \ge 2 \\ v \neq v'}} [r(v) - 1].$$

Since R < |A|, we obtain that  $\sum_{\substack{v \in N(A) \\ r(v) \geq 2}} [r(v) - 1] = 0$ , R = |A| - 1, and for each

 $v \in N(A) \setminus \{v'\}$  we have r(v) = 1. Since  $W_{\Delta,n}$  is vertex transitive, without loss of generality, we assume that  $v' = v_{\frac{n}{2}}$ .

According to the definition of a Knodel graph, there exist integers  $0 \leq a_{|A|} < a_{|A|-1} < \cdots < a_2 < a_1 \leq \Delta - 1$  such that  $i_j = \frac{n}{2} - 2^{a_j} + 1$  for each  $1 \leq j \leq |A|$ . Moreover,  $n_j = i_{j+1} - i_j = 2^{a_{i_j}} - 2^{a_{i_j+1}} \in \mathscr{M}_\Delta$  for each  $1 \leq j \leq |A| - 1$ . Evidently,  $i_{|A|} - i_{|A|-1} = n_1 + n_2 + \cdots + n_{|A|-1} = 2^{a_{|A|-1}} - 2^{a_{|A|}} \in \mathscr{M}_\Delta$  and  $n_{|A|} = \frac{n}{2} - (i_{|A|} - i_{|A|-1})$ . We show that  $n_{|A|} \notin \mathscr{M}_\Delta$ . Suppose to the contrary that  $n_{|A|} \in \mathscr{M}_\Delta$ . Since  $n_{|A|} = \frac{n}{2} - (i_{|A|} - i_{|A|-1}) \in \mathscr{M}_\Delta$  and  $i_{|A|} - i_{|A|-1} \in \mathscr{M}_\Delta$ , by Observation 3,  $id(u_{i_1}, u_{i_{|A|}}) \in \mathscr{M}_\Delta$  and  $\frac{n}{2} - id(u_{i_1}, u_{i_{|A|}}) \in \mathscr{M}_\Delta$ , and by Lemma 2,  $|N(u_{i_1}) \cap N(u_{i_{|A|}})| = 2$ . Now there exists  $v'' \neq v_{\frac{n}{2}}$  such that  $v'' \in N(u_{i_1}) \cap N(u_{i_{|A|}})$  and  $r(v'') \geq 2$ , a contradiction. Therefore,  $n_{|A|} \notin \mathscr{M}_\Delta$ . Since  $n_j \in \mathscr{M}_\Delta$  for each  $1 \leq j \leq |A| - 1$ , we obtain that |J| = |A| - 1 = R. Thus there are at most R = |A| - 1 elements of the cyclic sequence of A which belong to  $\mathscr{M}_\Delta$ .

Next assume that r(v) < |A| for any  $v \in N(A)$ . Let  $X_v = \{j : u_{i_j}, u_{i_{j+1}} \in N(v) \cap A\}$ . We prove that  $J \subseteq \bigcup_{v \in N(A)} X_v$ . Let  $j \in J$ . Then  $n_j = i_{j+1} - i_j \in \mathscr{M}_\Delta$ . By Observation 3,  $n_j = i_{j+1} - i_j \in \{id(u_{i_j}, u_{i_{j+1}}), \frac{n}{2} - id(u_{i_j}, u_{i_{j+1}})\}$  and by Lemma 1,  $|N(u_{i_j}) \cap N(u_{i_{j+1}})| \ge 1$ . Let  $v \in N(u_{i_j}) \cap N(u_{i_{j+1}})$ . Then  $u_{i_j}, u_{i_{j+1}} \in N(v) \cap A$ . Therefore  $\begin{array}{l} j \in X_v \text{ and } j \in \bigcup_{v \in N(A)} X_v \text{ that implies } J \subseteq \bigcup_{v \in N(A)} X_v. \text{ Then } |J| \leq |\bigcup_{v \in N(A)} X_v|. \end{array} \\ \text{Observe that } X_v = \{j : u_{i_j} \in N(v) \cap A\} - \{j : u_{i_j} \in N(v) \cap A, u_{i_{j+1}} \notin N(v) \cap A\}, \\ \text{and } |\{j : u_{i_j} \in N(v) \cap A\}| = |N(v) \cap A| = r(v). \text{ Since } N(v) \cap A \subsetneq A, \text{ we have } \\ \{j : u_{i_j} \in N(v) \cap A, u_{i_{j+1}} \notin N(v) \cap A\} \neq \emptyset. \text{ Therefore } |X_v| \leq r(v) - 1. \text{ Consequently,} \\ |J| \leq |\bigcup_{v \in N(A)} X_v| \leq \sum_{v \in N(A)} |X_v| \leq \sum_{v \in N(A)} [r(v) - 1]. \end{array}$ 

We remark that one can define the cyclic-sequence and index-distance for any subset of V in a similar way, and thus the Observation 3, Lemmas 1 and 2 and corollaries 1 and 2 are valid for cyclic-sequence and index-distance on subsets of V as well.

### 3. Proof of Theorem 1

We are now ready to determine the total domination number of  $W_{3,n}$ . We will prove that for each even integer  $n \geq 8$ ,

$$\gamma_t(W_{3,n}) = 4 \left\lceil \frac{n}{10} \right\rceil - \begin{cases} 0 & n \equiv 0, 6, 8 \pmod{10} \\ 2 & n \equiv 2, 4 \pmod{10}. \end{cases}$$

Clearly  $n \ge 8$  is an even integer by the definition of  $W_{3,n}$ . We divide the proof into five cases depending on n.

*Proof.* We distinguish four cases.

**Case 1:**  $n \equiv 0 \pmod{10}$ . Let n = 10t, where  $t \geq 1$ . Then the set  $D_1 = \{u_{5k+b}, v_{5k+b} : k = 0, 1, \ldots, t-1; b = 1, 2\}$  is a total dominating set for  $W_{3,n}$  and thus  $\gamma_t(W_{3,n}) \leq |D_1| = 4t = 4\lceil \frac{n}{10} \rceil$ . We show that  $\gamma_t(W_{3,n}) = 4t$ . Suppose to the contrary, that  $\gamma_t(W_{3,n}) < 4t$ . Let D be a total dominating set with 4t - 1 elements. Then by the Pigeonhole Principle either  $|D \cap U| \leq 2t - 1$  or  $|D \cap V| \leq 2t - 1$ . Without loss of generality, assume that  $|D \cap U| \leq 2t - 1$ . Let  $|D \cap U| = 2t - 1 - a$ , where  $a \geq 0$ . Then  $|D \cap V| = 2t + a$ . Observe that  $D \cap U$  dominates at most  $3|D \cap U| = 6t - 3 - 3a$  vertices of V, and so  $6t - 3 - 3a \geq 5t = |V|$ , since  $D \cap U$  dominates V. Clearly the inequality  $6t - 3 - 3a \geq 5t$  does not hold if  $t \in \{1, 2\}$ , and thus this contradiction implies that  $\gamma_t(W_{3,n}) = 4t = 4\lceil \frac{n}{10}\rceil$  for t = 1, 2. From here on, assume that  $t \geq 3$ . By Lemma 4(ii), at most  $3|D \cap U| - |N(D \cap U)| = 3(2t - 1 - a) - 5t = t - 3 - 3a$  elements of the cyclic-sequence of  $D \cap U$  belong to  $\mathcal{M}_3 = \{1, 2, 3\}$ . Hence, at least (2t - 1 - a) - (t - 3 - 3a) = t + 2 + 2a elements of the cyclic-sequence of  $D \cap U$  do not belong to  $\mathcal{M}_3$  and are greater than 3. Then by Observation 3, we have

$$5t = \sum_{i=1}^{2t-1} n_i \ge 4(t+2+2a) + (t-3-3a) = 5t+5+5a,$$

a contradiction. Therefore,  $\gamma_t(W_{3,n}) = 4t = 4 \lceil \frac{n}{10} \rceil$ .

**Case 2:**  $n \equiv 2 \pmod{10}$ . Let n = 10t + 2, where  $t \geq 1$ . Then the set  $D_2 = \{u_{5k+b}, v_{5k+b} : k = 0, 1, \dots, t-1; b = 1, 2\} \cup \{u_{5t+1}, v_{5t+1}\}$  is a total dominating set for

 $W_{3,n}$  and thus  $\gamma_t(W_{3,n}) \leq |D_2| = 4t + 2 = 4\lceil \frac{n}{10} \rceil - 2$ . We show that  $\gamma_t(W_{3,n}) = 4t + 2$ . Suppose to the contrary, that  $\gamma_t(W_{3,n}) < 4t + 2$ . Let D be a total dominating set with 4t + 1 elements. Then by the Pigeonhole Principle either  $|D \cap U| \leq 2t$  or  $|D \cap V| \leq 2t$ . Without loss of generality, assume that  $|D \cap U| \leq 2t$ . Let  $|D \cap U| = 2t - a$ , where  $a \geq 0$ . Then  $|D \cap V| = 2t + 1 + a$ . Observe that  $D \cap U$  dominates at most 6t - 3a vertices of V and so  $6t - 3a \geq 5t + 1 = |V|$ , since  $D \cap U$  dominates V. By Lemma 4(ii), at most  $3|D \cap U| - |N(D \cap U)| = 3(2t - a) - (5t + 1) = t - 1 - 3a$  elements of the cyclic-sequence of  $D \cap U$  belong to  $\mathcal{M}_3$ . Hence, at least (2t-a) - (t-1-3a) = t+1+2a elements of the cyclic-sequence of  $D \cap U$  do not belong to  $\mathcal{M}_3$  and are greater than 3. Then by Observation 3, we have

$$5t + 1 = \sum_{i=1}^{2t-a} n_i \ge 4(t+1+2a) + (t-1-3a) = 5t+3+5a,$$

a contradiction. Therefore,  $\gamma_t(W_{3,n}) = 4t + 2 = 4\lceil \frac{n}{10} \rceil - 2$ .

**Case 3:**  $n \equiv 4 \pmod{10}$ . Let n = 10t + 4, where  $t \ge 1$ . Then the set  $D_3 = \{u_{5k+b}, v_{5k+b} : k = 0, 1, \ldots, t-1; b = 1, 2\} \cup \{u_{5t+1}, v_{5t-1}\}$  is a total dominating set for  $W_{3,n}$  and thus  $\gamma_t(W_{3,n}) \le |D_3| = 4t + 2 = 4\lceil \frac{n}{10}\rceil - 2$ . We show that  $\gamma_t(W_{3,n}) = 4t + 2$ . Suppose to the contrary, that  $\gamma_t(W_{3,n}) < 4t + 2$ . Let D be a total dominating set with 4t + 1 elements. Then by the Pigeonhole Principle either  $|D \cap U| \le 2t$  or  $|D \cap V| \le 2t$ . Without loss of generality, assume that  $|D \cap U| \le 2t$ . Let  $|D \cap U| = 2t - a$ , where  $a \ge 0$ . Then  $|D \cap V| = 2t + 1 + a$ . Observe that  $D \cap U$  dominates at most 6t - 3a vertices of V, and so  $6t - 3a \ge 5t + 2 = |V|$ , since  $D \cap U$  dominates V. Clearly the inequality  $6t - 3a \ge 5t + 2$  does not hold if t = 1, and thus this contradiction implies that  $\gamma_t(W_{3,n}) = 4t + 2 = 4\lceil \frac{n}{10}\rceil - 2$  for t = 1. From here on, assume that  $t \ge 2$ . By Lemma 4, at most  $3|D \cap U| - |N(D \cap U)| = 3(2t - a) - (5t + 2) = t - 2 - 3a$  elements of the cyclic-sequence of  $D \cap U$  belong to  $\mathcal{M}_3$ . Hence, at least (2t-a) - (t-2-3a) = t+2+2a elements of the cyclic-sequence of  $D \cap U$  do not belong to  $\mathcal{M}_3$  and are greater than 3. Then by Observation 3, we have

$$5t + 2 = \sum_{i=1}^{2t-a} n_i \ge 4(t+2+2a) + (t-2-3a) = 5t + 6 + 5a,$$

a contradiction. Therefore,  $\gamma_t(W_{3,n}) = 4t + 2 = 4\lceil \frac{n}{10} \rceil - 2$ .

**Case 4:**  $n \equiv 6 \pmod{10}$ . Let n = 10t + 6, where  $t \geq 1$ . Then the set  $D_4 = \{u_{5k+b}, v_{5k+b} : k = 0, 1, \ldots, t; b = 1, 2\}$  is a total dominating set for  $W_{3,n}$  and thus  $\gamma_t(W_{3,n}) \leq |D_4| = 4t + 4 = 4\lceil \frac{n}{10} \rceil$ . We show that  $\gamma_t(W_{3,n}) = 4t + 4$ . Suppose to the contrary, that  $\gamma_t(W_{3,n}) < 4t + 4$ . Let D be a total dominating set with 4t + 3 elements. Then by the Pigeonhole Principle either  $|D \cap U| \leq 2t + 1$  or  $|D \cap V| \leq 2t + 1$ . Without loss of generality, assume that  $|D \cap U| \leq 2t + 1$ . Let  $|D \cap U| = 2t + 1 - a$ , where  $a \geq 0$ . Then  $|D \cap V| = 2t + 2 + a$ . Observe that  $D \cap U$  dominates at most 6t + 3 - 3a vertices of V, and so  $6t + 3 - 3a \geq 5t + 3 = |V|$ , since  $D \cap U$  dominates V. By Lemma 4, at most  $3|D \cap U| - |N(D \cap U)| = 3(2t + 1 - a) - (5t + 3) = t - 3a$  elements of the cyclic-sequence of  $D \cap U$  belong to  $\mathcal{M}_3$ . Hence, at least (2t + 1 - a) - (t - 3a) = t + 1 + 2a elements

of the cyclic-sequence of  $D \cap U$  do not belong to  $\mathcal{M}_3$  and are greater than 3. Then by Observation 3, we have

$$5t + 3 = \sum_{i=1}^{2t+1-a} n_i \ge 4(t+2+2a) + (t-3a) = 5t+8+5a,$$

a contradiction. Therefore,  $\gamma_t(W_{3,n}) = 4t + 4 = 4 \lceil \frac{n}{10} \rceil$ .

**Case 5:**  $n \equiv 8 \pmod{10}$ . Let n = 10t + 8, where  $t \geq 0$ . Then the set  $D_5 = \{u_{5k+b}, v_{5k+b} : k = 0, 1, \ldots, t; b = 1, 2\}$  is a total dominating set for  $W_{3,n}$  and thus  $\gamma_t(W_{3,n}) \leq |D_5| = 4t + 4 = 4\lceil \frac{n}{10} \rceil$ . We show that  $\gamma_t(W_{3,n}) = 4t + 4$ . Suppose to the contrary, that  $\gamma_t(W_{3,n}) < 4t + 4$ . Let D be a total dominating set with 4t + 3 elements. Then by the Pigeonhole Principle either  $|D \cap U| \leq 2t + 1$  or  $|D \cap V| \leq 2t + 1$ . Without loss of generality, assume that  $|D \cap U| \leq 2t + 1$ . Let  $|D \cap U| = 2t + 1 - a$  and  $a \geq 0$ . Then  $|D \cap V| = 2t + 2 + a$ . Observe that  $D \cap U$  dominates at most 6t + 3 - 3a vertices of V, and so  $6t + 3 - 3a \geq 5t + 4 = |V|$ , since  $D \cap U$  dominates V. By Lemma 4, at most  $3|D \cap U| - |N(D \cap U)| = 3(2t+1-a) - (5t+4) = t-1-3a$  elements of the cyclic-sequence of  $D \cap U$  belong to  $\mathcal{M}_3$ . Hence, at least (2t+1-a) - (t-1-3a) = t+2+2a elements of the cyclic-sequence of  $D \cap U$  do not belong to  $\mathcal{M}_3$  and are greater than 3. Then by Observation 3, we have

$$5t + 4 = \sum_{i=1}^{2t+1-a} n_i \ge 4(t+2+2a) + (t-1-3a) = 5t+7+5a,$$

a contradiction. Therefore  $\gamma_t(W_{3,n}) = 4t + 2 = 4 \lceil \frac{n}{10} \rceil$ .

#### References

- J.-C. Bermond, H.A. Harutyunyan, A.L. Liestman, and S. Perennes, A note on the dimensionality of modified Knödel graphs, Int. J. Foundations Comput. Sci. 8 (1997), no. 2, 109–116.
- [2] G. Fertin and A. Raspaud, Families of graphs having broadcasting and gossiping properties, International Workshop on Graph-Theoretic Concepts in Computer Science, Springer, 1998, pp. 63–77.
- [3] \_\_\_\_\_, A survey of Knödel graphs, Discrete Appl. Math. 137 (2004), no. 2, 173–196.
- [4] P. Fraigniaud and J.G. Peters, Minimum linear gossip graphs and maximal linear (δ, k)-gossip graphs, Networks 38 (2001), no. 3, 150–162.
- [5] H. Grigoryan and H.A. Harutyunyan, *Broadcasting in the Knödel graph*, Ninth International Conference on Computer Science and Information Technologies, IEEE, 2013, pp. 1–6.
- [6] \_\_\_\_\_, The shortest path problem in the Knödel graph, J. Discrete Algorithms 31 (2015), 40–47.

- H.A. Harutyunyan, Multiple message broadcasting in modified Knödel graph, SIROCCO, vol. 7, 2000, pp. 157–165.
- [8] \_\_\_\_\_, Minimum multiple message broadcast graphs, Networks 47 (2006), no. 4, 218–224.
- [9] \_\_\_\_\_, An efficient vertex addition method for broadcast networks, Internet Math. 5 (2008), no. 3, 211–225.
- [10] H.A. Harutyunyan and Z. Li, A new construction of broadcast graphs, Discrete Appl. Math. 280 (2020), 144–155.
- [11] H.A. Harutyunyan and A.L. Liestman, More broadcast graphs, Discrete Appl. Math. 98 (1999), no. 1-2, 81–102.
- [12] \_\_\_\_\_, Upper bounds on the broadcast function using minimum dominating sets, Discrete Math. **312** (2012), no. 20, 2992–2996.
- [13] H.A. Harutyunyan and C.D. Morosan, On the minimum path problem in Knödel graphs, Networks 50 (2007), no. 1, 86–91.
- [14] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, *Domination in Graphs- Advanced Topics*, Marcel Dekker, Inc., New York, 1998.
- [15] M.A. Henning and A. Yeo, Total Domination in Graphs, Springer, 2013.
- [16] L. Khachatrian and H. Harutounian, On optimal broadcast graphs, Fourth International Colloquium on Coding Theory, Dilijan, Armenia, 1991, pp. 36–40.
- [17] W. Knödel, New gossips and telephones, Discrete Math. 13 (1975), no. 1, 95.
- [18] D.A. Mojdeh, S.R. Musawi, and E. Nazari, *Domination critical Knödel graphs*, Iran J. Sci. Technol. Trans. Sci. 43 (2019), no. 5, 2423–2428.
- [19] S. Varghese, A. Vijayakumar, and A.M. Hinz, Power domination in Knödel graphs and Hanoi graphs, Discuss. Math. Graph Theory 38 (2018), no. 1, 63–74.
- [20] F. Xueliang, X. Xu, Y. Yuansheng, and X. Feng, On the domination number of Knödel graph W(3, n), International Journal of Pure and Applied Mathematics 50 (2009), no. 4, 553–558.