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Abstract: The variable sum exdeg index of a graph G is defined as SEIa(G) =∑
u∈V (G) dG(u)adG(u), where a 6= 1 is a positive real number, dG(u) is the degree of a

vertex u ∈ V (G). In this paper, we characterize the graphs with the extremum variable
sum exdeg index among all the graphs having a fixed number of vertices and cut edges,
for every a > 1.
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1. Introduction

We start by defining some basic notions related to graph theory. All the graphs we

consider in this article are finite, simple and connected. Let G be a graph with the

∗ Corresponding author
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vertex set V (G) and edge set E(G). The vertex u is called neighbor of a vertex v

if there is an edge between them. The set of neighbors of a vertex u is denoted by

NG(u) and let NG[u] = NG(u) ∪ {u}. The degree of a vertex u is denoted by dG(u)

and is defined as the cardinality of the set of neighbors of u. A sequence consisting

of all the vertex degrees of G is called the degree sequence of G. The minimum and

maximum degree of G are denoted by δ(G) and ∆(G), respectively. We will use the

notations G− u and G− uv for the graphs obtained from G by removing a vertex u

and an edge uv, respectively. Similarly G+uv is a graph obtained by adding an edge

uv 6∈ E(G), where u, v ∈ V (G). A pendent vertex of G is a vertex of degree 1 and a

vertex with degree more than 2 is called a branching vertex. Let P : v0, v1, . . . , vr be

a path in G such that dv1 = dv2 = · · · = dvr−1
= 2 for r ≥ 2. The path P is a pendent

path of G if one of the vertices v0, vr is pendent and the other one is branching. The

path P is said to be an internal path of G if both the vertices v0, vr are branching.

A cut edge in G is an edge whose deletion increase the number of components of G.

Let Gk
n be the set of graphs on n vertices and k cut edges. We denote by Kk

n the

graph arises from the complete graph Kn−k (on n− k vertices) by joining k pendent

vertices to one of its vertex. Let Ck
n be the graph arises from the cycle graph Cn−k

(on n−k vertices) by joining k pendent vertices to one of its vertex. Also, we assume

that P k
n is the graph obtained by Cn−k by attaching a path graph Pk+1 (on k + 1

vertices) to one of its vertex. For undefined terminology and notations, we refer the

reader to [2].

The variable sum exdeg index of a graph G is defined as SEIa(G) =∑
u∈V (G) dG(u)adG(u), where a 6= 1 is a positive real number. From the definition,

it is obvious that any two graphs with the same degree sequence have also the same

variable sum exdeg index. The variable sum exdeg index was firstly introduced by

Vukicević [10, 11] to predict some physicochemical properties of chemical compounds.

It was observed that this index is very well correlated with octanol-water partition

coefficient of octane isomers. Yarahmadi and Ashrafi [13] presented the polynomial

form of this index and discussed this polynomial under several graph operations. De-

tails about the mathematical properties of the variable sum exdeg index can be found

in the papers [1, 3–9, 12].

The main purpose of the present paper is to find graph(s) having maximal/minimal

value of the variable sum exdeg index SEIa among all the graphs with n vertices and

k cut edges for n ≥ 4, k ≥ 1 and a > 1.

2. Some Useful Lemmas

In this section, we prove some lemmas which will be very helpful in proving our main

results.

Lemma 1. Let s, t ∈ V (G) and let s1, s2, . . . , sn ∈ N(s) \ N(t) and t1, t2, . . . , tm ∈
N(t) \ N(s), where 1 ≤ n ≤ dG(s), 1 ≤ m ≤ dG(t). Let G′ = G \ {tt1, tt2, . . . , ttm} +
{st1, st2, . . . , stm} and G′′ = G \ {ss1, ss2, . . . , ssn} + {ts1, ts2, . . . , tsn}. Also, assume that
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a > 1.

(1) if dG(s) ≥ dG(t), then SEIa(G
′) > SEIa(G),

(2) if dG(s) ≤ dG(t), then SEIa(G
′′) > SEIa(G).

Proof. Note that dG′(s) = dG(s) +m, dG′(t) = dG(t)−m, dG′′(s) = dG(s)− n and

dG′′(t) = dG(t) + n and for any vertex w ∈ V (G) \ {s, t}, we have dG(w) = dG′(w) =

dG′′(w). By definition of variable sum exdeg index, we have

SEIa(G′)− SEIa(G) = dG′(s)a
dG′ (s) − dG(s)adG(s) + dG′(t)a

dG′ (t)

−dG(t)adG(t)

= (dG(s) +m)adG(s)+m − dG(s)adG(s)

+(dG(t)−m)adG(t)−m − dG(t)adG(t)

= dG(s)(adG(s)+m − adG(s)) + dG(t)(adG(t)−m − adG(t))

+m(adG(s)+m − adG(t)−m).

Using Mean Value Theorem, we get

SEIa(G′)− SEIa(G) = mdG(s)an1(1 + ln a)−mdG(t)an2(1 + ln a)

+m(adG(s)+m − adG(t)−m)

= m(1 + ln a)(an1dG(s)− an2dG(t))

+m(adG(s)+m − adG(t)−m) (1)

where dG(s) < n1 < dG(s) +m and dG(t)−m < n2 < dG(t).

Similarly, using the definition and Mean Value Theorem, we have,

SEIa(G′′)− SEIa(G) = dG′′(t)a
dG′′ (t) − dG(t)adG(t) + dG′′(s)a

dG′′ (s)

−dG(s)adG(s)

= (dG(t) + n)adG(t)+n − dG(t)adG(t)

+(dG(s)− n)adG(s)−n − dG(s)adG(s)

= dG(t)(adG(t)+n − adG(t)) + dG(s)(adG(s)−n − adG(s))

+n(adG(t)+n − adG(s)−n)

= n(1 + ln a)(an
′
1dG(t)− an

′
2dG(s))

+n(adG(t)+n − adG(s)−n) (2)

where dG(t) < n′1 < dG(t) + n and dG(s)− n < n′2 < dG(s).

If a ∈ (1,∞) and dG(s) ≥ dG(t), then n1 > n2 and from Equation (1) it follows

that SEIa(G′) > SEIa(G). Similarly, when dG(s) ≤ dG(t), then n′1 > n′2 and from

Equation (2) it follows that SEIa(G′′) > SEIa(G).
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Lemma 2. Let Cm = s0s1 . . . sm−1s0 and Cn = t0t1 . . . tn−1t0 be two cycle in G such that
Cm is connected with Cn by a path Pl (l ≥ 2), and the end vertices of this path are s0 and
t1. Suppose the vertex ui (respectively vj) on the cycle Cm (respectively Cn) in G is either
of degree 2 or has a subgraph Gi (respectively Hj)attached, 0 ≤ i ≤ m − 1, 0 ≤ j ≤ n − 1.
Let G′ = G− {s0s1, t0t1, t1t2}+ {s0t2, t0s1}, then SEIa(G

′) < SEIa(G)

Proof. Observe that dG′(s0) = dG(s0), dG′(s1) = dG(s1), dG′(t0) = dG(t0),

dG′(t2) = dG(t2), dG′(t1) = dG(t1) − 2 and dG′(u) = dG(u) for any vertex

u ∈ V ′ = V \ {s0, s1, t0, t1, t2}. By using the definition of variable sum exdeg in-

dex and mean value theorem, we get

SEIa(G)− SEIa(G′) = dG(t1)adG(t1)− dG′(t1)adG′ (t1)

= dG(t1)adG(t1)− (dG(t1)− 2)adG−2(t1)

= 2dG(t1)an1(1 + ln a) + 2adG(t1)−2, (3)

where dG(t1)−2 < n1 < dG(t1). Observe that dG(t1) ≥ 3 and hence 1 < n1 < dG(t1).

Therefore, from Equation (3), we have SEIa(G) > SEIa(G′)

Lemma 3. Let G be a graph with u, v ∈ V (G) such that uv /∈ E(G), then SEIa(G+uv) >
SEIa(G).

Proof. Let V ′ = V \ {u, v}, then by definition of variable sum exdeg index we get

SEIa(G+ uv)− SEIa(G) = (d(u) + 1)ad(u)+1 + (d(v) + 1)ad(u)+1

− (d(u)ad(u) + d(v)ad(v))

= (1 + ln a)(d(u)an1 + d(v)an2) + ad(u)+1

+ ad(v)+1 (4)

where d(u) < n1 < d(u) + 1, d(v) < n2 < d(v) + 1. Form Equation (4) it is clear that

SEIa(G+ uv) > SEIa(G).

3. Main Results

Let K1,k be the a star graph with vertex set V (K1,k) = {u0, u1, . . . , uk} with center

vertex u0. Let K(b0, {b1, b2, . . . , bk}) be a graph obtained from K1,k by replacing ui
by clique Kbi , where bi ≥ 1 for i = 0, 1, 2, . . . , k. Now represent

Kn,k = {K(b0, {b1, b2, . . . , bk}) : bi ≥ 1(0 ≤ i ≤ k) and

k∑
i=0

bi = n}.
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Clearly, it is easy to observe that Kk
n = {K(n − k, {1, 1, . . . , 1︸ ︷︷ ︸})}. Let G ∈ Gk

n and

E = {e1, e2, . . . , ek} be the set of cut edges of G.

In this section, we calculate the maximum and minimum value of variable sum exdeg

index for connected graphs with n vertices and k cut edges. We get the maximum

sum exdeg index value at Kk
n and minimum sum exdeg index value at P k

n .

Theorem 1. Let a > 1, then from the class of connected graph with n vertices and k cut
edges the maximum value of variable sum exdeg index (SEIa) is obtained at Kk

n.

Proof. To prove this theorem, we will show that if G ∈ Gn,k, then

SEIa(G) ≤ SEIa(Kk
n) and the equality holds iff G ∼= Kk

n. If k = 0, then

G = Kn and the theorem follows from Fact 1. Now suppose k ≥ 1, then again by

Fact 1, each component of G − E is a clique. Let Kb0 ,Kb1 ,Kb2 , . . . ,Kbk be the

components of G − E, where b0, b1, b2, . . . , bk are the number of vertices of each

component respectively. Then b0 + b1 + b2 + · · ·+ bk = n. Let Vbi be the set of those

vertices of the clique Kbi which are the end vertex of cut edge in G. Let G ∈ Gk
n

such that it SEIa value is maximum. Then there are few facts which are important:

Fact 1. Let G ∈ Gn,k such that the value of it variable sum exdeg index is maximum,

then each block of G− E is a clique.

Proof. By Lemma 3, we can immediately deduce this fact.

Fact 2. | Vbi |= 1 for 0 ≤ i ≤ k.

Proof. Suppose on contrary | Vbi |> 1 for some 0 ≤ i ≤ k. Let

u, v ∈ Vbi and without loss of generality we can assume that dG(u) ≥ dG(v).

Take N(v) \ N [u] = x1, x2, . . . , xt. Since v ∈ Vbi , so t ≥ 1. Let

G′ = G − {vx1, vx2, . . . , vxt} + {ux1, ux2, . . . , uxt}, then G′ ∈ Gn,k and by

Lemma 1 SEIa(G′) > SEIa(G), a contradiction. Hence | Vbi |= 1.

Fact 3. G ∈ Kn,k.

Proof. Suppose G /∈ Kn,k, then there exist u ∈ Kbi and v ∈ Kbj ( 0 ≤ i, j ≤ k, i 6= j)

with uv ∈ E(G) and |N(u) − V (Kbi)| ≥ 2, |N(v) − V (Kbj )| ≥ 2. Let Vbi = {u}
and Vbi = {v}(by Fact 2) and assume that dG(v) ≥ dG(u). Take N(v) − N [u] =

{t1, t2, . . . , tp}, (p ≥ 2) and consider G′ = G−{vt1, vt2, . . . , vtp}+{ut1, ut2, . . . , utp}.
Then G′ ∈ Gk

n and by Lemma 1 SEIa(G′) > SEIa(G) a contradiction.

Now by Fact 2 we can assume Vbi = ui, where 0 ≤ i ≤ k and by Fact 3 we

can assume that u0uj ∈ E(G) (1 ≤ i ≤ k). Without loss of Generality, we

can further assume that bk ≥ bk−1 ≥ · · · ≥ b1 ≥ 1. Next we will show that

G ∼= K(b0, {1, 1, . . . , 1︸ ︷︷ ︸, n− b0 − k + 1}).

Fact 4. G ∼= K(b0, {1, 1, . . . , 1︸ ︷︷ ︸, n− b0 − k + 1}).

Proof. Suppose bi ≥ 2 for some 1 ≤ i ≤ k − 1. Then bk ≥ 2

and dG(uk) ≥ dG(ui). Let N(ui) − {u0} = {t1, t2, . . . , tai−1} and take
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G′ = G − {uit1, uit2, . . . , uitai−1}} + {ukt1, ukt2, . . . , uktai−1}. Then G′ ∈ Gk
n

and by Lemma 1 SEIa(G′) > SEIa(G) a contradiction.

Fact 5. b0 = n− k.

Proof. Clearly b0 ≤ n − k. Suppose b0 < n − k, then by Fact

4, bk > 1. Let N(uk) − {u0} = {t1, t2, . . . , tak−1} and N(u0) −
{uk} = {s1, s2, . . . , sa0−1, u1, u2, . . . , uk−1}. If dG(u0) ≥ dG(uk), we take

G′ = G − {ukt1, ukt2, . . . , uktak−1}} + {u0t1, u0t2, . . . , u0tak−1}. If dG(uk) ≥
dG(u0), we take G′ = G − {u0s1, u0s2, . . . , u0sa0−1, u0u1, u0u2, . . . , u0uk−1}} +

{uks1, uks2, . . . , uksa0−1, uku1, uku2, . . . , ukuk−1}. In both the cases, we have G′ ∈
Gk

n and by Lemma 1 SEIa(G′) > SEIa(G) a contradiction.

Thus b0 = n− k and G ∼= K(n− k, 1, 1, . . . , 1︸ ︷︷ ︸) = Kk
n, which completes the proof.

Now we find the graph in the class of Gk
n which have minimum SEIa index value.

Lemma 4. Let a > 0//(a 6= 1) and G ∈ Gk
n such that SEIa(G) is minimum. Then each

component of G− E is a cycle or a pendent vertex.

Proof. Suppose there is a component H in G − E which is neither a pen-

dent vertex nor a cycle. Then H is 2-connected graph. Let Ct =

v1v2 . . . vs−1vsvs+1 . . . vt−1vtvt+1 . . . v1 be the largest cycle in H. Also by assumption,

H is not a clique. Hence there exists vi, vj ∈ V (Ct) such that they are connected by

a path P and V (P ) ∩ V (Ct) = {vi, vj}. Now, there are two possibilities.

(1) Suppose the length of P is 1. Take G′ = G− vivj , then by Lemma 3 SEIa(G) >

SEIa(G′), a contradiction.

(2) Suppose length of P is greater or equal to 2. Let P = vsu1u2 . . . ul−1ul. If l = l,

then there does not exist k ∈ {s−1, s+1, t−1, t+1} such that u1vk ∈ E(G), otherwise

a cycle of length t+ 1 appears in Ct, a contradiction. Let G′ = G− {vsu1, vtvt+1}+

u1vt+1, then d′G(vs) = dG(vs)−1, d′G(vt) = dG(vt)−1 and for all w ∈ V (G)−{vs, vt},
we have d′G(w) = dG(w). By definition of variable sum exdeg index, we have

SEIa(G)− SEIa(G′) = dG(vs)a
dG(vs) + dG(vt)a

dG(vt)

−((dG(vs)− 1)adG(vs)−1 + (dG(vt)− 1)adG(vt)−1)

= (1 + ln a)(dG(vs)a
n1 + dG(vt)a

n2) + adG(vs)−1 + ad(vt)−1

where dG(vs)−1 < n1 < dG(vs), dG(vt)−1 < n2 < dG(vt). It is clear that SEIa(G) >

SEIa(G′), a contradiction. Similarly, when l ≥ 2, {u1vs−1, u1vs+1, ulvt−1, ulvt+1} *
E. Let G′ = G − {usvs−1, vtvt+1, ulul−1} + {ulvt+1, ul−1vs−1}, then in the similar

way we can show that SEIa(G) > SEIa(G′), a contradiction. This completes the

proof.

Theorem 2. Let a > 1 and G ∈ Gk
n, then SEIa(G) attains its minimum value uniquely

at G = P k
n .
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Proof. Let a > 1 and G ∈ Gk
n, we will show that SEIa(G) ≥ SEIa(P k

n ) and the

equality holds iff G ∼= P k
n . If k = 0, then by Lemma 4 G ∼= Cn and the theorem

follows. Now assume that k ≥ 1. In the following we will prove some important fact

from which the theorem follows.

Claim 1. G contains exactly one cycle of length n− k.

Proof. By Lemma 4, G − E is either an pendent vertex or a cycle. If G contains

exactly one cycle then the result follows. Hence G contains at least two cycles

with no common vertex. Then by Lemma 2 there exists G′ ∈ Gk
n, such that

SEIa(G′) < SEIa(G), a contradiction. Hence the length of cycle is n − k follows

from our assumption that G has k cut edges.

Claim 2. G ∼= P k
n .

Proof. By Lemma 1 there is only one pendent tree T attached to the cycle Cn−k.

Assume that T is attached to Cn−k at u0 and let us suppose that T is not a path. Let

P = u0u1 . . . ut be a longest path in T which connects u0 with a pendent vertex say

ut. Then there exist a vertex uj such that dG(uj) ≥ 3 or uj = u0 with dG(uj) ≥ 4.

Take u′ ∈ N(uj)\P ∪Cn−k and consider G′ = G−uju′+u′ut. Clearly G′ ∈ Gk
n with

dG′(uj) = dG(uj) − 1, dG′(ut) = 2, dG(ut) = 1 and for all w ∈ V (G) − {uj , ut}, we

have dG′(w) = dG(w). By definition of variable sum exdeg index, we get

SEIa(G′)− SEIa(G) = (dG(uj)− 1)adG(uj)−1 + 2a2 − (dG(uj)a
dG(uj) + a)

= 2a2 − a− (1 + ln a)dG(uj)a
n1 − adG(uj)−1

where dG(uj)− 1 < n1 < dG(uj). As a > 1, this implies that SEIa(G′) < SEIa(G),

a contradiction. This completes the proof.

4. Conclusion

After simple calculations, we obtain SEIa(Kk
n) = (n−k−1)2an−k−1+(n−1)an−1+ka,

and SEIa(P k
n ) = 2(n−2)a2+a+3a3. Thus, by Theorems 1 and 2, whenever a > 1, we

get the sharp lower and upper bounds for the variable sum exdeg index of connected

graphs on n vertices with k cut edges, given in the following theorem.

Theorem 3. Let a > 1 and G ∈ Gk
n, then

2(n− 2)a2 + a+ 3a3 ≤ SEIa(G) ≤ (n− k − 1)2an−k−1 + (n− 1)an−1 + ka

where the left equality holds if and only if G ∼= P k
n and the right equality holds if and only if

G ∼= Kk
n.

Observe that we have not given the sharp bounds for SEIa(G) for connected graphs

on n vertices and k cut edges whenever 0 < a < 1. Hence the following research
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problem is open to consider.

Problem: Determine the sharp bounds for SEIa(G) for connected graphs on n

vertices and k cut edges whenever 0 < a < 1.
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