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generalized Petersen graphs G(p, k) for various vertex partitions such as independent,
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them.
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1. Terminology and introduction

In the present article we consider simple, finite and undirected graphs of order n and

size m. The graph and spectral theoretic terminologies are taken from Cvetković et

al. and West [5, 18]. For the notations and concepts dealing with domination and

related concepts, we refer to Hedetniemi et al. [9], Cockayne et al. [2], Cockayne and

Hedetniemi [3] and Zelinka [19].

Earlier to 1940’s, the concept of energy of a molecular graph was restricted to chem-

istry. Later, in 1978 Gutman brought this concept to graph theory for an arbitrary

graph [7]. He defined the energy of a graph G as the sum of the absolute values of
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2 P-energy of generalized Petersen graphs

the eigenvalues of the adjacency matrix of G. This concept gained popularity among

researchers due to its applications and scope for further expansions and variations.

For more details about spectral graph theory and related studies one may refer to

Cvetković et al. [5] and Li et al. [8].

One of the variations of graph energy that considers the vertex partitions of a graph

is the k-partition energy EPk
(G) defined by Sampathkumar et al. [16]. Recently, Pra-

jakta and Mayamma [10], introduced P-energy EP(G) of a graph G as an extension

of EPk
(G), wherein the number of elements in the sets in the partition P is taken into

consideration. They defined it as the sum of the absolute values of the eigenvalues of

the P-matrix AP(G) [10]. If G is a graph having a vertex partition P consisting of

k elements, then the matrix AP(G) is of order n× n with the elements

aij =



|Vr| if vi = vj ∈ Vr, for r = 1, 2, . . . k

2 if vivj ∈ E(G) with vi, vj ∈ Vr,
1 if vivj ∈ E(G) with vi ∈ Vr and vj ∈ Vs for r 6= s,

−1 if vivj /∈ E(G) with vi, vj ∈ Vr,
0 otherwise.

The authors have obtained a few bounds for P-energy in [10] along with its exact

values for a variety of graph classes such as complete graphs, star graphs, complete

bipartite graphs and double star graph as well as P-energy of join of graphs [11, 12].

Vertex partition problems have several applications in networks such as wireless sensor

network system. In such networks, nodes are represented by vertices, and an edge

between two vertices exists if and only if they are in each other’s communication

range. One challenge that such networks face is the limited battery power and life

time of the nodes. Hence the energy conservation is a core issue to be addressed

in sensor network systems. Moscibroda and Wattenhofer [13] provided a solution to

this by maximizing the number of distinct dominating sets and rotating the active

state for each domatic partition. For instance, if {V1, V2, . . . , Vk} is a partition of the

vertices of a network into dominating sets, then vertices in V1 are active or awake

and take the responsibility of all the activities in the network for a specific period of

time while other nodes are asleep. After a certain time interval the active state will

be transferred to V2 and the process continues. This process of successive activation

of nodes in each Vi’s results in less energy consumption. It has been observed in

[13, 14] that this process works better if we use maximum number of disjoint domatic

partitions. This observation motivates us to study the concept of energy with respect

to various types of vertex partitions.

In the present study, we examine the P-energy of G(p, k) with respect to vertex parti-

tions of various types: independent, domatic, total domatic, k-ply domatic partitions,

and partition containing a perfect matching in G(p, k).

Petersen graph was generalized by Coxeter [4] and later Watkin [17] named its gen-

eralization as generalized Petersen graph G(p, k). It is a graph of order n = 2p
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where p ≥ 3 with vertex and edge set as follows: For 1 ≤ k ≤ p − 1 and 2k 6= n,

V [G(p, k)] = {ui, vi : 0 ≤ i ≤ p − 1} and E[G(p, k)] = {uivi, uiui+1, vivi+k : i ∈
Zp, group of integers modulo p}. It is a connected cubic graph consisting of an inner

star polygon with vertices u0, u1, . . . , up−1 and an outer regular polygon on vertices

v0, v1, . . . , vp−1. The edges
p−1⋃
i=0

uivi are called spokes.

We limit the present study to the family of generalized Petersen graphs because of

the significance of these graphs in wireless sensor networks. Zitnik et al. [21] in 2009

have proved that all generalized Petersen graphs are unit distance graphs which are

important in the study of networks in the context of maximizing the lifespan of a

network.

2. P-energy of G(p, k)

As evident from the definition, the value P-energy of a graph depends on the nature of

the partition P of the vertex set. We examine the P-energy of generalized Petersen

graphs G(p, k) by considering the trivial partitions Pr and Ps, partition P(pm)

containing a perfect matching, independent partition P(i), domatic partition P(d),

total domatic partition P(td), and k-ply domatic partitions P(dk) for k = 2, 3.

We begin by examining EP(G) for the trivial partitions. It is to be noted that, the

P-energy of a graph G with vertex partition Pr = V (G) is the robust P-energy

EPr
(G) and the P-energy of G with vertex partition Ps containing all the singleton

set of vertices is the shear P-energy EPs
(G) [10].

We would be using the following result for further discussions.

Lemma 1. [5] If C =
(
A B
B A

)
is a symmetric block matrix of order 2×2, then the spectrum

of C is the union of the spectra of A+B and A−B.

Theorem 1. For the generalized Petersen graph G(p, k), EPr (G(p, k)) = n2.

Proof. For Pr = V (G), the corresponding P-matrix is positive semi-definite and

hence the result is direct.

EPr
(G(p, k)) =

n∑
i=1

|λi| =
n∑

i=1

λi = trace(APr
(G(p, k))) = n2.

In the next theorem we consider the vertex partition

Ps = {{u0}, {u1}, {u2}, . . . , {up−1}, {v0}, {v1}, {v2}, . . . , {vp−1}}

of V (G(p, 1)) and investigate the corresponding P-energy.
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Theorem 2. Let G(p, 1) be the generalized Petersen graph. Then

EPs(G(p, 1)) =

p∑
j=1

∣∣∣∣2 + 2cos

(
2πj

p

)∣∣∣∣+

p∑
l=1

∣∣∣∣2cos(2πl

p

)∣∣∣∣. (1)

Proof. The P-matrix of G(p, 1) is of the form

(
A I
I A

)
, where A is a block matrix

of order p× p such that

A =


1 1 0 0 . . . 0 0 1

1 1 1 0 . . . 0 0 0

0 1 1 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...

1 0 0 0 . . . 0 1 1


and I be an identity matrix of order p× p. Therefore by Lemma 1, it is sufficient to

find eigenvalues of (A+ I) and (A− I). It has been shown in [1] that the eigenvalues

of a circulant matrix of order p are

λj = a1 + a2w
j + a3w

2j + . . .+ apw
(n−1)j for 1 ≤ j ≤ p (2)

where w is a primitive pth root of unity and (a1, a2, a3, . . . , ap) is the first row of

the given circulant matrix. Hence, by Equality (2) we know that the eigenvalues of

(A+ I) are

λj =2 + wj + w(p−1)j

=2 + cos

(
2πj

p

)
+ cos

(
2π(p− 1)j

p

)
+ i

[
sin

(
2πj

p

)
+ sin

(
2π(p− 1)j

p

)]
.

On simplifying, we get

λj = 2 + 2cos

(
2πj

p

)
; j = 1, 2, . . . , p. (3)

Similarly, the eigenvalues of (A− I) are

λl = 2cos

(
2πl

p

)
; l = 1, 2, . . . , p. (4)

Hence by Equations (3), (4) and Lemma 1, the result holds.
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2.1. Partition with perfect matching

A perfect matching is a matching in a graph G such that it saturates all its vertices

[18]. Now, we consider the perfect matching containing all spokes in G(p, k) as a

vertex partition P(pm) and compute the corresponding P-energy.

Theorem 3. For the generalized Petersen graph G(p, 1) with vertex partition P(pm) =
p−1⋃
i=0

{{ui, vi}},

EP(pm)(G(p, 1)) =

p∑
i=1

∣∣∣∣4 + 2cos

(
2πi

p

)∣∣∣∣+

p∑
j=1

∣∣∣∣2cos(2πj

p

)∣∣∣∣. (5)

Proof. The P-matrix of G(p, 1) is

(
A 2I
2I A

)
, where I is an identity matrix of order

p× p and A is a block matrix which is also of order p× p

A =


2 1 0 0 . . . 0 0 1

1 2 1 0 . . . 0 0 0

0 1 2 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...

1 0 0 0 . . . 0 1 2

 .

Note that,

A+ 2I =


4 1 0 0 . . . 0 0 1

1 4 1 0 . . . 0 0 0

0 1 4 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...

1 0 0 0 . . . 0 1 4


and

A− 2I =


0 1 0 0 . . . 0 0 1

1 0 1 0 . . . 0 0 0

0 1 0 1 . . . 0 0 0
...

...
...

...
. . .

...
...

...

1 0 0 0 . . . 0 1 0

 .

Both these matrices are circulant. Thus by Equation (2), the eigenvalues of A + 2I

are given by

λi = 4 + wi + w(n−1)i, for 1 ≤ i ≤ p (6)

so that

λi = 4 + 2cos

(
2πi

p

)
, for 1 ≤ i ≤ p. (7)
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On the other hand, the matrix A− 2I can be interpreted as the adjacency matrix of

a cycle of order p. Therefore, its eigenvalues are

λj = 2cos

(
2πj

p

)
, for 1 ≤ j ≤ p. (8)

Thus, by Equations (7), (8) and Lemma 1, we have

EP(pm)(G(p, 1)) =

p∑
i=1

∣∣∣∣4 + 2cos

(
2πi

p

)∣∣∣∣+

p∑
j=1

∣∣∣∣2cos(2πj

p

)∣∣∣∣.

It has been verified that for p ≥ 3 and k = 1, there is a beautiful relation between

EP(pm)(G(p, k)) and the shear P-energy EPs(G(p, k)). However it has not yet been

proved theoretically. Hence we present it as a conjecture.

Conjecture 4. For p ≥ 3 and k = 1, EP(pm)(G(p, k))− EPs(G(p, k)) = 2p.

Now, we consider another perfect matching in G(p, k) and let P(pm) ={{⋃
i

{ui, ui+1},
⋃
i

{vi, vi+1}
}

: i ≡ 0( mod 2), 0 ≤ i ≤ p − 2

}
. In the next theo-

rem, we obtain its corresponding P-energy. We omit its proof as it is similar to the

proof of Theorem 3.

Theorem 5. For the generalized Petersen graph G(p, 1) such that p is even,

EP(pm)(G(p, 1)) =

p∑
t=1

∣∣∣∣3 + 3cos

(
2πt

p

)
+ isin

(
2πt

p

)∣∣∣∣+ p∑
l=1

∣∣∣∣1 + 3cos

(
2πl

p

)
+ isin

(
2πl

p

)∣∣∣∣.
(9)

where P(pm) =

{{⋃
i

{ui, ui+1},
⋃
i

{vi, vi+1}
}

: i ≡ 0 (mod 2), 0 ≤ i ≤ p− 2

}
.

2.2. Independent Partition

Now we proceed to examine P-energy when the vertex partitions are indepen-

dent sets. We consider the special case when G(p, k) is bipartite with the bi-

partition P(i) = {V1, V2} where V1 = {u0, u2, u4, . . . , up−2, v1, v3, v5, . . . , vp−1} and

V2 = {u1, u3, u5, . . . , up−1, v0, v2, v4, . . . , vp−2} which is in fact an independent parti-

tion. It has been proved in [15] that G(p, k) is bipartite if and only if p is even and

k is odd. Thus in Theorem 6, we determine the P-energy of G(p, k) with respect to

the vertex partition P(i) for even p and odd k.
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Theorem 6. If G(p, k) is a generalized Petersen graph such that p ≡ 0( mod 2) and k =
1 and P(i) is an independent vertex partition with minimum cardinality χ(G(p, k)), then

EP(i)(G(p, k)) =

p∑
l=1

∣∣∣∣p+ 6cos

(
2πl

p

)
+ 2cos

(
6πl

p

)∣∣∣∣+

p∑
j=1

∣∣∣∣p+ 2 + 2cos

(
2πj

p

)∣∣∣∣. (10)

Proof. The P-matrix of G(p, 1) is in the form

(
A B
B A

)
, where A and B are block

matrices of order p× p such that

A =


p 1 −1 0 −1 . . . 1

1 p 1 −1 0 . . . −1

−1 1 p 1 −1 . . . 0
...

...
...

...
...

. . .
...

1 −1 0 −1 0 . . . p


and

B =


1 −1 0 −1 . . . −1

−1 1 −1 0 . . . 0

0 −1 1 −1 . . . −1
...

...
...

...
. . .

...

−1 0 −1 0 . . . 1

 .

Now we consider the the matrices A+ B and A−B to determine the eigenvalues of

the P-matrix

(
A B
B A

)
.

A+B =


p+ 1 0 −1 −1 −1 . . . −1 0

0 p+ 1 0 −1 −1 . . . −1 −1

−1 0 p+ 1 0 −1 . . . −1 −1
...

...
...

...
...

. . .
...

...

0 −1 −1 −1 −1 . . . 0 p+ 1


and

A−B =


p− 1 2 −1 1 −1 . . . −1 2

2 p− 1 2 −1 1 . . . −1 −1

−1 2 p− 1 2 −1 . . . −1 −1
...

...
...

...
...

. . .
...

...

2 −1 −1 −1 −1 . . . 2 p− 1

 .

As in the preceding cases, both A+B and A−B are circulant, so that by Equation

(2) the eigenvalues of A+B are

λj = p+ 1− [w2j + w3j + · · ·+ w(p−2)j ] for 1 ≤ j ≤ p.
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Simplifying this expression we have

λj = p+ 2 + 2cos

(
2πj

p

)
for 1 ≤ j ≤ p. (11)

Similarly, the eigenvalues of A−B are

λl = p− 1 + 2wl + w3l − [w2l + w3l + · · ·+ w(p−2)l] + 2w(p−1)l for 1 ≤ l ≤ p.

Therefore,

λl = p+ 6cos

(
2πl

p

)
+ 2cos

(
6πl

p

)
for 1 ≤ l ≤ p. (12)

Hence by Equations (11), (12) and Lemma 1, we get

EP(i)(G(p, k)) =

p∑
l=1

∣∣∣∣p+ 6cos

(
2πl

p

)
+ 2cos

(
6πl

p

)∣∣∣∣+

p∑
j=1

∣∣∣∣p+ 2 + 2cos

(
2πj

p

)∣∣∣∣.

Observation 7. For even values of p, it has been verified that EP(i)(G(p, 1)) = 2p2 + 4.

2.3. Partitions related with domination

Now, we consider vertex partitions related with the concept of domination. First,

we determine the P-energy of G(p, k) with respect to the domatic partition. It can

be observed that the P-matrix of G(p, k) corresponding to a domatic partition is

positive semi-definite. Hence the value of EP(d)(G(p, k)) can be determined using

the approach followed in Theorem 1.

Theorem 8. For the generalized Petersen graph G(p, k) having domatic partition P(d),

EP(d)(G(p, k)) = p2. (13)

In the next theorem, we consider total domatic partition of the vertex set of G(p, k)

and obtain the corresponding P-energy in the special case when k = 1.

Theorem 9. For the generalised Petersen graph G(p, 1) with a total domatic partition

P(td) =

{
p−1⋃
i=0

{ui},
p−1⋃
i=0

{vi}
}
,
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EP(td)(G(p, 1)) =



14 +

1∑
j=0

p−1∑
s=1

∣∣∣∣p+ (−1)s+1 + (−1)j

+ 4cos

(
2sπ

p

)
− 2

p/2−1∑
r=2

cos

(
2srπ

p

)∣∣∣∣, when p is even

14 +

1∑
j=0

p−1∑
s=1

∣∣∣∣p+ (−1)j

+ 4cos

(
2sπ

p

)
− 2

(p−1)/2∑
r=2

cos

(
2srπ

p

)∣∣∣∣, when p is odd.

Proof. The P-matrix of G(p, 1) is



p 2 −1 . . . 2 1 0 0 . . . 0

2 p 2 . . . −1 0 1 0 . . . 0
−1 2 p . . . −1 0 0 1 . . . 0
...

...
...

. . .
...

...
...

...
. . .

...

2 −1 −1 . . . p 0 0 0 . . . 1
1 0 0 . . . 0 p 2 −1 . . . 2

0 1 0 . . . 0 2 p 2 . . . −1

0 0 1 . . . 0 −1 2 p . . . −1
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 . . . 1 2 −1 −1 . . . p


n×n

.

It is a block circulant matrix with circulant blocks. Therefore by Theorem 4 in [20],

its eigenvalues are given by Equations (14) and (15).

If p is even,

λj,s =



8 for j = 0, s = 0,

6 for j = 1, s = 0,

p+ (−1)s+1 + (−1)j

+ 4cos

(
2sπ

p

)
− 2

p/2−1∑
r=2

cos

(
2srπ

p

)
for j = 0, 1 and

1 ≤ s ≤ p− 1.

(14)

If p is odd,

λj,s =



8 for j = 0, s = 0,

6 for j = 1, s = 0,

p+ (−1)j + 4cos

(
2sπ

p

)
− 2

(p−1)/2∑
r=2

cos

(
2srπ

p

)
for j = 0, 1 and

1 ≤ s ≤ p− 1.

(15)

Hence, the result follows.
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Remark 1. It can be verified through calculation that EP(td)(G(p, 1)) = 2p2.

The P-matrix of G(p, k) for p > 4, k > 1 with total domatic partition is a semi-

definite matrix. Therefore, it leads to the following theorem.

Theorem 10. For generalized Petersen graph G(p, k) such that p > 4, k > 1 with the

total domatic partition P(td) =

{
p−1⋃
i=0

{ui},
p−1⋃
i=0

{vi}
}
,

EP(td)(G(p, k)) = 2p2. (16)

Now, we obtain the P-energy of G(p, k) with doubly domatic partition. We omit the

proof of the next theorem as it is similar to that of Theorem 1.

Theorem 11. Let G(p, k) be a generalized Petersen graph where p is even. If P(d2) is
a doubly domatic partition of G(p, k) such that it is not a triply domatic partition and order
of each member of P is same, then

EP(d2)(G(p, k)) = 2p2. (17)

Observation 12. Combining all the results of P-energy of G(p, 1) corresponding to the
various vertex partitions we have considered so far, we obtain the following interesting chain
of inequalities.

1. If p is even and k = 1, then

EPr (G(p, k)) > EP(i)(G(p, k)) = EP(d3)(G(p, k)) > EP(td)(G(p, k))

= EP(d2)(G(p, k)) > EP(d)(G(p, k)) > EP(pm)(G(p, k)) > EPs(G(p, k)). (18)

2. If p is odd and k = 1, then

EPr (G(p, k)) > EP(d2)(G(p, k)) > EP(td)(G(p, k)) > EP(i)(G(p, k))

> EP(d)(G(p, k)) > EP(pm)(G(p, k)) > EPs(G(p, k)). (19)

3. A python program to obtain EP(G(p, k))

In this section, we present a python program to determine the values of EP(G(p, k))

for any value of p and k, and four particular cases of partition P : the trivial partitions

Pr and Ps, independent partition P(i) and partition P(pm) with perfect matching

containing all spokes in G(p, k).
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1 import networkx as nx
2 import matplotlib.pyplot as plt
3 import numpy as np
4 import numpy.linalg
5 def Graph(n):
6 G=nx.circular_ladder_graph(n)
7 return G
8 def Robust_Partition(n):
9 G0=Graph(n)

10 adj_mat = nx.adjacency_matrix(G0)
11 x=nx.to_numpy_matrix(G0)
12 mat = []
13 for i in range (0,2*n):
14 mat.append ([])
15 for i in range (0,2*n):
16 for j in range (0,2*n):
17 mat[i]. append(j)
18 mat[i][j]=0
19 for i in range (0,2*n):
20 for j in range (0,2*n):
21 if (i==j):
22 mat[i][j] = 2*n
23 else:
24 if (x.item((i,j)) ==1):
25 mat[i][j] = 2
26 else:
27 mat[i][j] = -1
28 P_matrix=np.array(mat)
29 return mat
30 def Shear_partition(n):
31 G1=Graph(n)
32 adj_mat = nx.adjacency_matrix(G1)
33 x=nx.to_numpy_matrix(G1)
34 smat = []
35 for i in range (0,2*n):
36 smat.append ([])
37 for i in range (0,2*n):
38 for j in range (0,2*n):
39 smat[i]. append(j)
40 smat[i][j]=0
41 for i in range (0,2*n):
42 for j in range (0,2*n):
43 if (i==j):
44 smat[i][j] = 1
45 else:
46 if (x.item((i,j)) ==1):
47 smat[i][j] = 1
48 else:
49 smat[i][j] = 0
50 P_s_matrix=np.array(smat)
51 return smat
52 def independent_partition(n):
53 G2=Graph(n)
54 colors_m =[]
55 for i in range (0,n) :
56 if (i %2) ==0:
57 colors_m.append(‘blue’)
58 else :
59 colors_m.append(‘red’)
60 for i in range (n,2*n) :
61 if (i %2) ==0:
62 colors_m.append(‘red’)
63 else :
64 colors_m.append(‘blue’)
65 adj_mat = nx.adjacency_matrix(G2)
66 y=nx.to_numpy_matrix(G2)
67 imat = []
68 for i in range (0,2*n):
69 imat.append ([])
70 for i in range (0,2*n):
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71 for j in range (0,2*n):
72 imat[i]. append(j)
73 imat[i][j]=0
74 for i in range (0,2*n):
75 for j in range (0,2*n):
76 if (i==j):
77 imat[i][j] = n
78 elif (y.item((i,j)) ==1):
79 imat[i][j] = 1
80 elif colors_m[i]== colors_m[j]:
81 imat[i][j] = -1
82 else:
83 imat[i][j] = 0
84 P_I_matrix=np.array(imat)
85 matrix=np.matrix(P_I_matrix)
86 return matrix
87 def spokes_partition(n):
88 G3=Graph(n)
89 colors_m =[]
90 for i in range (0,n) :
91 colors_m.append(i+1)
92 for i in range (n,2*n) :
93 colors_m.append(i-(n-1))
94 adj_mat = nx.adjacency_matrix(G3)
95 z=nx.to_numpy_matrix(G3)
96 pmat = []
97 for i in range (0,2*n):
98 pmat.append ([])
99 for i in range (0,2*n):

100 for j in range (0,2*n):
101 pmat[i]. append(j)
102 pmat[i][j]=0
103 for i in range (0,2*n):
104 for j in range (0,2*n):
105 if (i==j):
106 pmat[i][j] = 2
107 elif (z.item((i,j)) ==1) and colors_m[i]== colors_m[j]:
108 pmat[i][j] = 2
109 elif (z.item((i,j)) ==1) and colors_m[i]!= colors_m[j]:
110 pmat[i][j] = 1
111 else:
112 pmat[i][j] = 0
113 P_p_matrix=np.array(pmat)
114 matrix1=np.matrix(P_p_matrix)
115 return matrix1
116 def robust_energy(n):
117 a=Robust_Partition(n)
118 spec=np.linalg.eigvals(a)
119 spec_abs=np.abs(spec)
120 E=np.sum(spec_abs)
121 return E
122 def shear_energy(n):
123 b=Shear_partition(n)
124 spec_s=np.linalg.eigvals(b)
125 spec_abs_s=np.abs(spec_s)
126 E_s=np.sum(spec_abs_s)
127 return E_s
128 def independent_energy(n):
129 c=independent_partition(n)
130 spec_i=np.linalg.eigvals(c)
131 spec_abs_i=np.abs(spec_i)
132 E_i=np.sum(spec_abs_i)
133 return E_i
134 def spokes_energy(n):
135 d=spokes_partition(n)
136 spec_p=np.linalg.eigvals(d)
137 spec_abs_p=np.abs(spec_p)
138 E_p=np.sum(spec_abs_p)
139 return E_p
140 def plot():
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141 rb_e = []
142 sh_e = []
143 in_e = []
144 sp_e = []
145 x_axis = []
146 x_range=int (48)
147 xmin= int(4)
148 xmax=int(xmin +2* x_range)
149 for i in range (0,x_range):
150 x_axis.append ([])
151 rb_e.append ([])
152 sh_e.append ([])
153 in_e.append ([])
154 sp_e.append ([])
155 for i in range (xmin ,xmax ,2):
156 index=int((i-4)/2)
157 x_axis[index]. append(i)
158 e1 = robust_energy(i)
159 rb_e[index]. append(e1)
160 e2 = shear_energy(i)
161 sh_e[index]. append(e2)
162 e3 = independent_energy(i)
163 in_e[index]. append(e3)
164 e4 = spokes_energy(i)
165 sp_e[index]. append(e4)
166 t = np.arange(xmin , xmax , 2)
167 plt.figure(figsize =(12 ,6))
168 plt.subplot (221)
169 sh_e_plot1 , = plt.plot(t,sh_e ,’r+’)
170 sp_e_plot1 , = plt.plot(t,sp_e ,’y*’)
171 plt.legend(handles = [sp_e_plot1 ,sh_e_plot1],labels =[’$E_{\ mathscr{P}(pm)}(G(p,k)

)$’,’$E_{\ mathscr{P}_s}(G(p,k))$’])
172 plt.xlim(xmin ,xmax)
173 plt.xlabel(’p’)
174 plt.ylabel(’ $\mathscr{P}$-energy ’)
175 plt.subplot (222)
176 in_e_plot , = plt.plot(t,in_e ,’mo’)
177 rb_e_plot , = plt.plot(t,rb_e ,’c^’)
178 plt.legend(handles = [rb_e_plot ,in_e_plot],labels =[’$E_{\ mathscr{P}_r}(G(p,k))$’,

’$E_{\ mathscr{P}(i)}(G(p,k))$’])
179 plt.xlim(xmin ,xmax)
180 plt.xlabel(’p’)
181 plt.ylabel(’ $\mathscr{P}$-energy ’)
182 plt.subplot (223)
183 in_e_plot , = plt.plot(t,in_e ,’mo’)
184 rb_e_plot , = plt.plot(t,rb_e ,’c^’)
185 sh_e_plot , = plt.plot(t,sh_e ,’r+’)
186 sp_e_plot , = plt.plot(t,sp_e ,’y*’)
187 plt.legend(handles = [rb_e_plot ,in_e_plot ,sp_e_plot ,sh_e_plot],labels =[’$E_{\

mathscr{P}_r}(G(p,k))$’,’$E_{\ mathscr{P}(i)}(G(p,k))$’,’$E_{\ mathscr{P}(pm)}(G
(p,k))$’,’$E_{\ mathscr{P}_s}(G(p,k))$’])

188 plt.xlim (4 ,50)
189 plt.ylim (4 ,500)
190 plt.xlabel(’p’)
191 plt.ylabel(’ $\mathscr{P}$-energy ’)
192 plt.subplot (224)
193 in_e_plot , = plt.plot(t,in_e ,’mo’)
194 rb_e_plot , = plt.plot(t,rb_e ,’c^’)
195 sh_e_plot , = plt.plot(t,sh_e ,’r+’)
196 sp_e_plot , = plt.plot(t,sp_e ,’y*’)
197 plt.legend(handles = [rb_e_plot ,in_e_plot ,sp_e_plot ,sh_e_plot],labels =[’$E_{\

mathscr{P}_r}(G(p,k))$’,’$E_{\ mathscr{P}(i)}(G(p,k))$’,’$E_{\ mathscr{P}(pm)}(G
(p,k))$’,’$E_{\ mathscr{P}_s}(G(p,k))$’])

198 plt.xlim(xmin ,xmax)
199 plt.xlabel(’p’)
200 plt.ylabel(’ $\mathscr{P}$-energy ’)
201 plt.savefig("Plot5.png")
202 plt.show()
203 if __name__ == "__main__":
204 plot()
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Figure 1. The comparison of P-energy of G(p, k) for different vertex partitions P

Remark 2. Inference from Figure 1, leads us to the formulation of the following chain of
inequalities for G(p, k).

EPr (G(p, k)) > EP(i)(G(p, k)) > EP(pm)(G(p, k)) > EPs(G(p, k)).

4. Conclusion

Our exploration of P-energy of G(p, k) for various vertex partitions has revealed

many interesting relations among the P-energy corresponding to various partitions.

In Observation 12, we have established a chain of inequalities for G(p, k) when k = 1.

It is worth examining these inequalities for other families of graphs.

It has also been found that the domatic partition for G(p, k) where p ≡ 0( mod 4)

gives rise to achromatic coloring. We can view the achromatic number of a graph G

χa(G) as the maximum number of independent sets in the partition of V (G) such

that between any two different such sets there is at least one edge [6]. In this con-

text, we observe that P-energy for independent partition with maximum cardinality

χa(G(p, k)) is less than P-energy for independent partition with minimum cardinality

χ(G(p, k)) where χ(G(p, k)) is chromatic number of G(p, k). Our study of P-energy

of common classes graphs also revealed that, P-energy of these graphs with indepen-

dent vertex partition is lesser than that of their P-energy with respect to domatic

partition. On the other hand, when we consider generalized Petersen graphs, we have

EP(d)(G(p, k)) < EP(i)(G(p, k)). Hence it would be interesting to explore further

and characterize those classes of graphs G for which EP(d)(G) < EP(i)(G).
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