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Abstract: Let k ≥ 1 be an integer. A weak signed Roman k-dominating function

on a graph G is a function f : V (G) −→ {−1, 1, 2} such that
∑

u∈N [v] f(u) ≥ k for

every v ∈ V (G), where N [v] is the closed neighborhood of v. A set {f1, f2, . . . , fd}
of distinct weak signed Roman k-dominating functions on G with the property that∑d

i=1 fi(v) ≤ k for each v ∈ V (G), is called a weak signed Roman k-dominating family

(of functions) on G. The maximum number of functions in a weak signed Roman k-
dominating family on G is the weak signed Roman k-domatic number of G, denoted

by dkwsR(G). In this paper we initiate the study of the weak signed Roman k-domatic

number in graphs, and we present sharp bounds for dkwsR(G). In addition, we determine
the weak signed Roman k-domatic number of some graphs.

Keywords: weak signed Roman k-dominating function, weak signed Roman k-
domination number, weak signed Roman k-domatic number.
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1. Terminology and introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi

and Slater [4]. Specifically, let G be a simple graph with vertex set V = V (G) and

edge set E = E(G). The order |V | of G is denoted by n = n(G). For every vertex

v ∈ V , the open neighborhood N(v) is the set {u ∈ V (G) | uv ∈ E(G)} and the

closed neighborhood of v is the set N [v] = N(v) ∪ {v}. The degree of a vertex v ∈ V
is d(v) = |N(v)|. The minimum and maximum degree of a graph G are denoted by

δ = δ(G) and ∆ = ∆(G), respectively. A graph G is regular or r-regular if d(v) = r

for each vertex v of G. The complement of a graph G is denoted by G. We write Kn

for the complete graph of order n, Kp,q for the complete bipartite graph with partite

sets X and Y , where |X| = p and |Y | = q, and Cn for the cycle of length n.
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In this paper we continue the study of Roman dominating functions in graphs and

digraphs. If k ≥ 1 is an integer, then the signed Roman k-dominating function

(SRkDF) on a graph G is defined in [5] as a function f : V (G) −→ {−1, 1, 2} such

that
∑

u∈N [v] f(u) ≥ k for each v ∈ V (G), and such that every vertex u ∈ V (G) for

which f(u) = −1 is adjacent to at least one vertex w for which f(w) = 2. The weight

of an SRkDF f is the value ω(f) =
∑

v∈V f(v). The signed Roman k-domination

number of a graph G, denoted by γksR(G), equals the minimum weight of an SRkDF

on G. A γksR(G)-function is a signed Roman k-dominating function of G with weight

γksR(G). If k = 1, then we write γ1sR(G) = γsR(G). This case was introduced and

studied in [1]. The signed Roman domination number of digraphs was investigated in

[8].

A weak signed Roman k-dominating function (WSRkDF) on a graph G is defined

in [12] as a function f : V (G) −→ {−1, 1, 2} such that
∑

u∈N [v] f(u) ≥ k for each

v ∈ V (G). The weight of a WSRkDF f is the value ω(f) =
∑

v∈V f(v). The weak

signed Roman k-domination number of a graph G, denoted by γkwsR(G), equals the

minimum weight of a WSRkDF on G. A γkwsR(G)-function is a weak signed Roman k-

dominating function of G with weight γkwsR(G). The special case k = 1 was introduced

and investigated by Volkmann [11].

The weak signed Roman k-domination number exists when δ ≥ k
2 − 1. Therefore we

assume in this paper that δ ≥ k
2 − 1. The definitions lead to γkwsR(G) ≤ γksR(G).

A concept dual in a certain sense to the domination number is the domatic number,

introduced by Cockayne and Hedetniemi [3]. They have defined the domatic number

d(G) of a graph G by means of sets. A partition of V (G), all of whose classes are

dominating sets in G, is called a domatic partition. The maximum number of classes

of a domatic partition of G is the domatic number d(G) of G. But Rall has defined

a variant of the domatic number of G, namely the fractional domatic number of G,

using functions on V (G). (This was mentioned by Slater and Trees in [9].) Analogous

to the fractional domatic number we may define the (weak) signed Roman k-domatic

number.

A set {f1, f2, . . . , fd} of distinct (weak) signed Roman k-dominating functions on G

with the property that
∑d

i=1 fi(v) ≤ k for each v ∈ V (G), is called a (weak) signed

Roman k-dominating family (of functions) on G. The maximum number of functions

in a (weak) signed Roman k-dominating family ((W)SRkD family) on G is the (weak)

signed Roman k-domatic number of G, denoted by (dkwsR(G)) dksR(G). The (weak)

signed Roman k-domatic number is well-defined and dkwsR(G) ≥ dksR(G) ≥ 1 for all

graphs G with δ(G) ≥ k
2 − 1, since the set consisting of any (W)SRkDF forms a

(W)SRkD family on G. For more information on the Roman domatic problem, we

refer the reader to the survey article [2].

Our purpose in this paper is to initiate the study of the weak signed Roman

k-domatic number in graphs. We first derive basic properties and bounds for the

weak signed Roman k-domatic number of a graph. In addition, we determine the

weak signed Roman k-domatic number of some classes of graphs.

We make use of the following known results in this paper.
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Proposition A. ([7, 10],) If n ≥ k ≥ 1 are integers, then dksR(Kn) = n, unless n = 3 and
k = 1 or n = k = 2, in which cases d1sR(K3) = 1 or d2sR(K2) = 1.

Proposition B. ([12]) If n ≥ k ≥ 2 are integers, then γk
wsR(Kn) = k.

Proposition C. ([12]) If G is an r-regular graph of order n with r ≥ k
2
− 1, then

γk
wsR(G) ≥ kn

r + 1
.

Proposition D. ([5]) If G is a graph of order n with δ(G) ≥ k − 1, then

γk
wsR(G) ≤ γk

sR(G) ≤ n.

Proposition E. ([12]) Let G be a graph of order n with δ(G) ≥ d k
2
e−1. Then γk

wsR(G) ≤
2n, with equality if and only if k is even, δ(G) = k

2
− 1, and each vertex of G is of minimum

degree or adjacent to a vertex of minimum degree.

2. Bounds on the weak signed Roman k-domatic number

In this section we present basic properties of dkwsR(G) and sharp bounds on the weak

signed Roman k-domatic number of a graph.

Theorem 1. If G is a graph, then dkwsR(G) ≤ δ(G)+1. Moreover, if dkwsR(G) = δ(G)+1,
then for each WSRkD family {f1, f2, . . . , fd} on G with d = dkwsR(G) and each vertex v of
minimum degree,

∑
x∈N [v] fi(x) = k for each function fi and

∑d
i=1 fi(x) = k for all x ∈ N [v].

Proof. Let {f1, f2, . . . , fd} be a WSRkD family on G such that d = dkwsR(G). If v

is a vertex of minimum degree δ(G), then we deduce that

kd ≤
d∑

i=1

∑
x∈N [v]

fi(x) =
∑

x∈N [v]

d∑
i=1

fi(x)

≤
∑

x∈N [v]

k = k(δ(G) + 1)

and thus dkwsR(G) ≤ δ(G) + 1.

If dkwsR(G) = δ(G) + 1, then the two inequalities occurring in the proof become

equalities. Hence for the WSRkD family {f1, f2, . . . , fd} on G and for each vertex v

of minimum degree,
∑

x∈N [v] fi(x) = k for each function fi and
∑d

i=1 fi(x) = k for

all x ∈ N [v].

Example 1. If n ≥ k ≥ 1 are integers, then dkwsR(Kn) = n, unless n = k = 2, in which
case d2wsR(K2) = 1.
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Proof. Theorem 1 implies dkwsR(Kn) ≤ n. It is easy to see that d2wsR(K2) = 1 and

d1wsR(K3) = 3. In all other cases, Proposition A leads to dkwsR(Kn) ≥ dksR(Kn) = n,

and the proof is complete.

Theorem 2. If G is a graph of order n, then

γk
wsR(G) · dkwsR(G) ≤ kn.

Moreover, if γk
wsR(G)·dkwsR(G) = kn, then for each WSRkD family {f1, f2, . . . , fd} on G with

d = dkwsR(G), each function fi is a γk
wsR(G)-function and

∑d
i=1 fi(v) = k for all v ∈ V (G).

Proof. Let {f1, f2, . . . , fd} be a WSRkD family on G such that d = dkwsR(G) and

let v ∈ V (G). Then

d · γkwsR(G) =

d∑
i=1

γkwsR(G) ≤
d∑

i=1

∑
v∈V (G)

fi(v)

=
∑

v∈V (G)

d∑
i=1

fi(v) ≤
∑

v∈V (G)

k = kn.

If γkwsR(G) · dkwsR(G) = kn, then the two inequalities occurring in the proof be-

come equalities. Hence for the WSRkD family {f1, f2, . . . , fd} on G and for each

i,
∑

v∈V (G) fi(v) = γkwsR(G). Thus each function fi is a γkwsR(G)-function, and∑d
i=1 fi(v) = k for all v ∈ V (G).

Example 2. If k, n ≥ 1 are integers such that n+ 1 ≤ k ≤ 2n− 1, then dkwsR(Kn) = n.

Proof. Theorem 1 implies dkwsR(Kn) ≤ n. Now let x1, x2, . . . , xn be the vertices of

Kn, and let k = n+ t for an integer 1 ≤ t ≤ n− 1. For 1 ≤ i ≤ n, define the function

fi : V (Kn) −→ {−1, 1, 2} by

fi(xi) = fi(xi+1) = . . . = fi(xi+t−1) = 2

and

fi(xi+t) = fi(xi+t+1) = . . . = fi(xi+n−1) = 1,

where the indices are taken modulo n. It is easy to verify that fi is a weak

signed Roman k-dominating function on Kn for 1 ≤ i ≤ n and {f1, f2, . . . , fn} is

a weak signed Roman k-dominating family on Kn. Hence dkwsR(Kn) ≥ n and thus

dkwsR(Kn) = n.

Examples 1, 2 and Proposition B demonstrate that Theorems 1 and 2 are both sharp.
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Theorem 3. Let G be a graph of order n ≥ 2 with δ(G) ≥ d k
2
e − 1. Then dkwsR(G) = n

if and only if G = Kn, with exception of the cases k = 2n or k = n = 2, in which cases
d2nwsR(Kn) = 1 or d2wsR(K2) = 1.

Proof. Let G = Kn. If k = 2n, then the function f with f(x) = 2 for each

vertex x ∈ V (G) is the unique weak signed Roman dominating function on G and so

d2nwsR(Kn) = 1. In addition, it follows from Examples 1 and 2 that d2wsR(K2) = 1,

d1wsR(K3) = 3 and dkwsR(Kn) = n in the remaining cases.

Conversely, assume that dkwsR(G) = n. Then we deduce from Theorem 1 that n =

dkwsR(G) ≤ δ(G) + 1, and so δ(G) ≥ n− 1. Thus G = Kn, and the proof is complete.

Theorem 3 shows that Theorem 1 is sharp.

Theorem 4. Let k ≥ 3 be an integer, and let G be a graph of order n with δ(G) ≥ d k
2
e−1.

If γk
wsR(G) ≤ 2n− 1, then dkwsR(G) ≥ 2.

Proof. Assume first that k ≥ 4. Since γkwsR(G) ≤ 2n − 1, there exists a WSRkDF

f1 with f1(v) ≤ 1 for at least one vertex v ∈ V (G). Note that f2 : V (G) −→
{−1, 1, 2} with f2(x) = 2 for each vertex x ∈ V (G) is another WSRkDF on G. As

f1(x) + f2(x) ≤ 4 ≤ k for each vertex x ∈ V (G), {f1, f2} is a weak signed Roman

k-dominating family on G and thus dkwsR(G) ≥ 2.

Assume next that k = 3. If H is a component of G of order two with the vertices

u and v, then define f1(u) = 1 and f1(v) = 2 and f2(u) = 2 and f2(v) = 1. If x

is a vertex of a component of order at least three, then define f1(x) = 1 if x is a

leaf and f1(x) = 2 if x is not a leaf and f2(x) = 2 if x is a leaf and f2(x) = 1 if x

is not a leaf. Then f1, f2 are WSR3DF on G such that f1(x) + f2(x) = 3 for each

x ∈ V (G). Therefore {f1, f2} is a weak signed Roman 3-dominating family on G and

so d3wsR(G) ≥ 2.

The next examples demonstrate that Theorem 4 is not valid for k = 1 or k = 2 in

general.

Example 3. Let G = H ◦K1 be the graph constructed from a graph H, where for each
vertex v ∈ V (H), a new vertex v′ and a pendant edge vv′ are added. If f is WSR2DF
on G, then it is easy to see that f(x) ≥ 1 for each vertex x ∈ V (G). Theorem 1 implies
d2wsR(G) ≤ δ(G)+1 = 2. Suppose that d2wsR(G) = 2, and let {f1, f2} be a weak signed Roman
2-dominating family on G. The condition f1(x) + f2(x) ≤ 2 leads to f1(x) = f2(x) = 1 for
each vertex x ∈ V (G), a contradiction. Consequently, d2wsR(G) = 1.

Example 4. Let G = K1,n−1 for an integer n ≥ 3 with the center vertex w and the leaves
v1, v2, . . . , vn−1. According to Theorem 1, we note that d1wsR(G) ≤ δ(G) + 1 = 2. Suppose
that d1wsR(G) = 2, and let {f1, f2} be a weak signed Roman 1-dominating family on G. The
condition f1(x) + f2(x) ≤ 1 leads to f1(x) = −1 or f2(x) = −1 for each vertex x ∈ V (G).
Assume, without loss of generality, that f1(w) = −1. The condition

∑
x∈N [vi]

f1(x) ≥ 1
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implies f1(vi) = 2 for each 1 ≤ i ≤ n − 1. Using this fact, we observe that f2(vi) = −1 for
each 1 ≤ i ≤ n − 1. Since n ≥ 3, we conclude that

∑
x∈N [w] f2(x) ≤ 2 − (n − 1) ≤ 0, a

contradiction. Thus d1wsR(G) = 1.

Corollary 1. Let G be a graph of order n with δ(G) ≥ 1. If 2n− 1 ≥ γ3
wsR(G) ≥ n+ 1,

then d3wsR(G) = 2.

Proof. Theorem 4 implies d3wsR(G) ≥ 2.

Conversely, it follows from Theorem 2 that

d3wsR(G) ≤ 3n

γ3wsR(G)
≤ 3n

n+ 1
< 3.

Thus d3wsR(G) ≤ 2, and the proof is complete.

If C3t is a cycle of length 3t with an integer t ≥ 1, then Volkmann [10] showed

that d3sR(C3t) = 3. We deduce that d3wsR(C3t) ≥ d3sR(C3t) = 3, and therefore

d3wsR(C3t) = 3 according to Theorem 1. Since γ3wsR(C3t) = n = 3t (see [12]), we note

that the condition γ3wsR(G) ≥ n+ 1 in Corollary 1 is best possible in some sense.

Corollary 2. Let G be a graph of order n with δ(G) ≥ 1. If 2n − 1 ≥ γ4
wsR(G) > 4n

3
,

then d4wsR(G) = 2.

Proof. Theorem 4 implies d4wsR(G) ≥ 2.

Conversely, it follows from Theorem 2 that

d4wsR(G) ≤ 4n

γ4wsR(G)
<

4n
4n
3

= 3.

Thus d4wsR(G) ≤ 2, and the proof is complete.

Example 5. If C3t is a cycle of length 3t with an integer t ≥ 1, then d4wsR(C3t) = 3.

Proof. According to Theorem 1, d4wsR(C3t) ≤ 3. Let C3t = v0v1 . . . v3t−1v0. Define

the functions f1, f2 and f3 by

f1(v3i+1) = 1, f1(v3i+2) = 1, f1(v3i) = 2,

f2(v3i+1) = 2, f2(v3i+2) = 1, f2(v3i) = 1,

f3(v3i+1) = 1, f3(v3i+2) = 2, f3(v3i) = 1

for 0 ≤ i ≤ t − 1. It is easy to see that fi is a weak signed Roman 4-dominating

function on C3t of weight 4t for 1 ≤ i ≤ 3, and {f1, f2, f3} is a weak signed Roman

4-dominating family on C3t. Therefore d4wsR(C3t) ≥ 3 and so d4wsR(C3t) = 3.
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Since γ4wsR(C3t) = d 4n3 e = d 12t3 e = 4t (see [12]), Example 5 shows that the condition

γ4wsR(G) > 4n
3 in Corollary 2 is best possible in some sense.

For some regular graphs we will improve the upper bound given in Theorem 1.

Theorem 5. Let G be a δ-regular graph of order n with δ ≥ k
2
−1 such that n = p(δ+1)+r

with integers p ≥ 1 and 1 ≤ r ≤ δ and kr = t(δ + 1) + s with integers t ≥ 0 and 1 ≤ s ≤ δ.
Then dkwsR(G) ≤ δ.

Proof. Let {f1, f2, . . . , fd} be a WSRkD family on G such that d = dkwsR(G). It

follows that

d∑
i=1

ω(fi) =

d∑
i=1

∑
v∈V (G)

fi(v) =
∑

v∈V (G)

d∑
i=1

fi(v) ≤
∑

v∈V (G)

k = kn.

Proposition C implies

ω(fi) ≥ γkwsR(G) ≥
⌈
kn

δ + 1

⌉
=

⌈
kp(δ + 1) + kr

δ + 1

⌉
= kp+

⌈
kr

δ + 1

⌉
= kp+

⌈
t(δ + 1) + s

δ + 1

⌉
= kp+ t+ 1,

for each i ∈ {1, 2, . . . , d}. If we suppose to the contrary that d = δ+1, then the above

inequality chains lead to the contradiction

kn ≥
d∑

i=1

ω(fi) ≥ d(kp+ t+ 1) = (δ + 1)(kp+ t+ 1)

= kp(δ + 1) + (δ + 1)(t+ 1) = kp(δ + 1) + t(δ + 1) + δ + 1

= kp(δ + 1) + kr − s+ δ + 1 > kp(δ + 1) + kr = k(p(δ + 1) + r) = kn.

Thus d ≤ δ, and the proof is complete.

Examples 1, 2 and 5 demonstrate that Theorem 5 is not valid in general.

3. Upper bounds on the sum γkwsR(G) + dkwsR(G)

Theorem 6. If G is a graph of order n ≥ 1 and δ(G) ≥ k − 1, then

γk
wsR(G) + dkwsR(G) ≤ n+ k.
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Proof. If dkwsR(G) ≤ k, then Proposition D implies γkwsR(G) + dkwsR(G) ≤ n + k

immediately. Let now dkwsR(G) ≥ k. It follows from Theorem 2 that

γkwsR(G) + dkwsR(G) ≤ kn

dkwsR(G)
+ dkwsR(G).

According to Theorem 1, we have k ≤ dkwsR(G) ≤ n. Using these bounds, and the

fact that the function g(x) = x+(kn)/x is decreasing for k ≤ x ≤
√
kn and increasing

for
√
kn ≤ x ≤ n, we obtain

γkwsR(G) + dkwsR(G) ≤ kn

dkwsR(G)
+ dkwsR(G) ≤ max{n+ k, k + n} = n+ k,

and the desired bound is proved.

Theorem 7. Let G be a graph of order n ≥ 2 and δ(G) ≥ d k
2
e − 1. Then

γk
wsR(G) + dkwsR(G) ≤ 2n+ k − 1,

with equality if and only if k = 2 and G = Kn.

Proof. If δ = δ(G) ≥ k − 1, then Theorem 6 implies

γkwsR(G) + dkwsR(G) ≤ n+ k < 2n+ k − 1.

Assume next that dk2 e − 1 ≤ δ ≤ k − 2. Then k ≥ 2 and according to Proposition E

and Theorem 1, we obtain

γkwsR(G) + dkwsR(G) ≤ 2n+ δ + 1 ≤ 2n+ k − 1. (1)

If we have equality in (1), then γkwsR(G) = 2n and dkwsR(G) = k − 1. Therefore

Theorem 2 leads to 2n(k − 1) = γkwsR(G) · dkwsR(G) ≤ kn and so k = 2. Thus

Proposition E yields to δ = 0 and hence G = Kn.

Clearly, if G = Kn, then γ2wsR(G) = 2n and d2wsR(G) = 1 and thus γ2wsR(G) +

d2wsR(G) = 2n+ 1 = 2n+ 2− 1.

Theorem 8. Let k ≥ 3 be an integer, and let G be a graph of order n with δ(G) ≥ d k
2
e−1.

If k = 2n, then G = Kn and γk
wsR(G) + dkwsR(G) = 2n+ 1. If k ≤ 2n− 1, then

γk
wsR(G) + dkwsR(G) ≤ 2n+

⌈
k

2

⌉
− 1.
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Proof. Since n ≥ δ(G) + 1 ≥ dk2 e ≥
k
2 , we observe that k ≤ 2n.

If k = 2n, then δ(G) + 1 = n and thus G = Kn. Proposition E implies γkwsR(G) = 2n.

Clearly, dkwsR(G) = 1 and therefore γkwsR(G) + dkwsR(G) = 2n+ 1.

Let now k ≤ 2n−1. In this case, it is straightforward to verify that n+k ≤ 2n+dk2 e−1.

If δ = δ(G) ≥ k−1, then the last inequality and Theorem 6 lead to the desired bound.

Assume next that dk2 e − 1 ≤ δ ≤ k − 1. If γkwsR(G) = 2n, then the definitions lead to

dkwsR(G) = 1 and thus

γkwsR(G) + dkwsR(G) = 2n+ 1 ≤ 2n+

⌈
k

2

⌉
− 1.

Let now γkwsR(G) ≤ 2n− 1. If dkwsR(G) ≤ dk2 e, then the desired bound is immediate.

Finally, let dkwsR(G) ≥ dk2 e+ 1. Using Theorem 1, we observe that⌈
k

2

⌉
+ 1 ≤ dkwsR(G) ≤ δ + 1 ≤ k.

We deduce from Theorem 2 that

γkwsR(G) + dkwsR(G) ≤ kn

dkwsR(G)
+ dkwsR(G).

Using these bounds, we obtain analogously to the proof of Theorem 6 that

γkwsR(G) + dkwsR(G) ≤ max

{
kn

dk/2e+ 1
+

⌈
k

2

⌉
+ 1, n+ k

}
.

Since n ≥ δ + 1 ≥ dk2 e+ 1, it is straightforward to verify that

kn

dk/2e+ 1
+

⌈
k

2

⌉
+ 1 ≤ 2n+

⌈
k

2

⌉
− 1,

and this leads to the desired bound.

Let k and n be integers such that n ≥ 3 and 2n− 2 ≤ k ≤ 2n− 1. Example 2 implies

dkwsR(Kn) = n, and it follows from Proposition C that γkwsR(Kn) ≥ k. Thus

γkwsR(Kn) + dkwsR(Kn) ≥ n+ k. (2)

If k = 2n− 1, then we deduce from inequality (2) and Theorem 8 that

3n− 1 = n+ k ≤ γkwsR(Kn) + dkwsR(Kn) ≤ 2n+

⌈
k

2

⌉
− 1 = 3n− 1

and therefore γkwsR(Kn) + dkwsR(Kn) = 2n+
⌈
k
2

⌉
− 1 and γkwsR(Kn) = k.

If k = 2n− 2, then we deduce from inequality (2) and Theorem 8 that

3n− 2 = n+ k ≤ γkwsR(Kn) + dkwsR(Kn) ≤ 2n+

⌈
k

2

⌉
− 1 = 3n− 2

and therefore γkwsR(Kn) + dkwsR(Kn) = 2n+
⌈
k
2

⌉
− 1 and γkwsR(Kn) = k.

These examples demonstrate that the upper bound in Theorem 8 is sharp.
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4. Nordhaus-Gaddum type results

Results of Nordhaus-Gaddum type study the extreme values of the sum or the product

of a parameter on a graph and its complement. In their current classical paper [6],

Nordhaus and Gaddum discussed this problem for the chromatic number. We note

such inequalities for the weak signed Roman k-domatic number. Using Theorems 1,

2 and 5, one can prove the nexts results analogue to the corresponding one in [10].

Theorem 9. If G is a graph of order n with δ(G), δ(G) ≥ d k
2
e − 1, then dkwsR(G) +

dkwsR(G) ≤ n+ 1. Furthermore, if dkwsR(G) + dkwsR(G) = n+ 1, then G is regular.

Theorem 10. If G is a graph of order n such that δ(G), δ(G) ≥ 1, then d2wsR(G) +
d2wsR(G) ≤ n.

If n ≥ 3, then d2wsR(Kn) = n by Example 1 and d2wsR(Kn) = 1 and therefore

d2wsR(Kn)+d2wsR(Kn) = n+1. This example shows that the condition δ(G), δ(G) ≥ 1

in Theorem 10 is necessary.

Theorem 11. Let k ≥ 3 be an integer. Then there is only a finite number of graphs G
with δ(G), δ(G) ≥ k − 1 such that dkwsR(G) + dkwsR(G) = n(G) + 1.
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