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Abstract: Let k > 1 be an integer. A weak signed Roman k-dominating function
on a graph G is a function f : V(G) — {—1,1,2} such that }° ¢y, f(u) > k for
every v € V(G), where N[v] is the closed neighborhood of v. A set {f1, f2,..., fa}
of distinct weak signed Roman k-dominating functions on G with the property that

;-121 fi(v) < k for each v € V(G), is called a weak signed Roman k-dominating family
(of functions) on G. The maximum number of functions in a weak signed Roman k-
dominating family on G is the weak signed Roman k-domatic number of GG, denoted
by deSR(G). In this paper we initiate the study of the weak signed Roman k-domatic
number in graphs, and we present sharp bounds for dﬁ;sR(G)' In addition, we determine
the weak signed Roman k-domatic number of some graphs.
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1. Terminology and introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi
and Slater [4]. Specifically, let G be a simple graph with vertex set V = V(G) and
edge set E = E(G). The order |V|] of G is denoted by n = n(G). For every vertex
v € V, the open neighborhood N(v) is the set {u € V(G) | uv € E(G)} and the
closed neighborhood of v is the set N[v] = N(v) U {v}. The degree of a vertex v € V
is d(v) = |N(v)|. The minimum and mazimum degree of a graph G are denoted by
0 = 0(G) and A = A(G), respectively. A graph G is regular or r-regular if d(v) = r
for each vertex v of G. The complement of a graph G is denoted by G. We write K,
for the complete graph of order n, K, 4 for the complete bipartite graph with partite
sets X and Y, where |X| =p and |Y| = ¢, and C,, for the cycle of length n.
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18 Weak signed Roman k-domatic number of a graph

In this paper we continue the study of Roman dominating functions in graphs and
digraphs. If £ > 1 is an integer, then the signed Roman k-dominating function
(SRKDF) on a graph G is defined in [5] as a function f : V(G) — {-1,1,2} such
that 3°,c vy, f(w) = k for each v € V(G), and such that every vertex u € V(G) for
which f(u) = —1 is adjacent to at least one vertex w for which f(w) = 2. The weight
of an SRKDF f is the value w(f) = > oy f(v). The signed Roman k-domination
number of a graph G, denoted by VfR(G), equals the minimum weight of an SRkDF
on G. A v*(G)-function is a signed Roman k-dominating function of G with weight
v¥5(G). If k = 1, then we write 75(G) = vsr(G). This case was introduced and
studied in [1]. The signed Roman domination number of digraphs was investigated in
8]

A weak signed Roman k-dominating function (WSRKDF) on a graph G is defined
in [12] as a function f : V(G) — {-1,1,2} such that > .y, f(u) = k for each
v € V(G). The weight of a WSRKDF f is the value w(f) = >, oy f(v). The weak
signed Roman k-domination number of a graph G, denoted by 7 »(G), equals the
minimum weight of a WSRKDF on G. A 7 _.(G)-function is a weak signed Roman k-
dominating function of G with weight v* _(G). The special case k = 1 was introduced
and investigated by Volkmann [11].

The weak signed Roman k-domination number exists when ¢ > g — 1. Therefore we
assume in this paper that § > £ — 1. The definitions lead to 7% .(G) < v¥4(G).

A concept dual in a certain sense to the domination number is the domatic number,
introduced by Cockayne and Hedetniemi [3]. They have defined the domatic number
d(@) of a graph G by means of sets. A partition of V(G), all of whose classes are
dominating sets in G, is called a domatic partition. The maximum number of classes
of a domatic partition of G is the domatic number d(G) of G. But Rall has defined
a variant of the domatic number of G, namely the fractional domatic number of G,
using functions on V(G). (This was mentioned by Slater and Trees in [9].) Analogous
to the fractional domatic number we may define the (weak) signed Roman k-domatic
number.

A set {f1, fo,..., fa} of distinct (weak) signed Roman k-dominating functions on G
with the property that Zle filv) < k for each v € V(G), is called a (weak) signed
Roman k-dominating family (of functions) on G. The maximum number of functions
in a (weak) signed Roman k-dominating family ((W)SRkD family) on G is the (weak)
signed Roman k-domatic number of G, denoted by (d* »(G)) d*z(G). The (weak)
signed Roman k-domatic number is well-defined and d* _,(G) > d*;(G) > 1 for all
graphs G with §(G) > & — 1, since the set consisting of any (W)SRKDF forms a
(W)SRKD family on G. For more information on the Roman domatic problem, we
refer the reader to the survey article [2].

Our purpose in this paper is to initiate the study of the weak signed Roman
k-domatic number in graphs. We first derive basic properties and bounds for the
weak signed Roman k-domatic number of a graph. In addition, we determine the
weak signed Roman k-domatic number of some classes of graphs.

We make use of the following known results in this paper.
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Proposition A. ([7,10],) If n > k > 1 are integers, then d*p(K,) =n, unless n = 3 and
k=1 orn==Fk=2, in which cases dip(K3) =1 or d2z(Ks) = 1.

Proposition B. ([12]) If n > k > 2 are integers, then v5 5 (K,) = k.
Proposition C. ([12]) If G is an r-regular graph of order n with r > % — 1, then

kn

k
’szR(G) = rr 1

Proposition D. ([5]) If G is a graph of order n with §(G) > k — 1, then
k k
’szR(G) S 'YSR(G) S n.

Proposition E. ([12]) Let G be a graph of order n with §(G) > [£]—1. Then vj.r(G) <
2n, with equality if and only if k is even, §(G) = % — 1, and each vertex of G is of minimum
degree or adjacent to a vertex of minimum degree.

2. Bounds on the weak signed Roman k-domatic number

In this section we present basic properties of dfus r(G) and sharp bounds on the weak
signed Roman k-domatic number of a graph.

Theorem 1. If G is a graph, then d%,5(G) < §(G)+1. Moreover, if d¥ 5 (G) = §(G) +1,
then for each WSRKD family {f1, f2,..., fa} on G with d = d*,(G) and each vertex v of
minimum degree, > c v, fi(#) = k for each function fi and Zle fi(z) =k for all z € NJv].

Proof. Let {f1, fa,-.., fa} be a WSRkD family on G such that d = d* ,(G). If v
is a vertex of minimum degree §(G), then we deduce that

d d
kd < Y0 Y fila)= Y D filw)

i=1 z€N[v] zEN[v] i=1
< ) k=k6(G)+1)
TEN[v]

and thus d* ,(G) < §(G) + 1.

If d* »(G) = 6(G) + 1, then the two inequalities occurring in the proof become
equalities. Hence for the WSRkD family {f1, fa,..., fa} on G and for each vertex v
of minimum degree, >_ 1, fi(z) = k for each function f; and Zle fi(z) = k for
all z € N[v]. O

Example 1. Ifn >k > 1 are integers, then dv g(K,) = n, unless n = k = 2, in which
case d2, p(K2) = 1.
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Proof. Theorem 1 implies d* p(K,) < n. It is easy to see that d2 ,(K3) = 1 and
dl . r(K3) = 3. In all other cases, Proposition A leads to d* (K,) > d“s(K,) = n,
and the proof is complete. O
Theorem 2. If G is a graph of order n, then

’Yff)sR(G) : dZsR(G) < kn.

Moreover, if ¥ . r(G)-d¥ .z (G) = kn, then for each WSRkD family {fi1, fz, ..., fa} on G with
d = d¥,r(G), each function f; is a V¥, (G)-function and Zle fi(v) =k for all v € V(G).

Proof.  Let {f1, f2,..., fa} be a WSRKD family on G such that d = d* ,(G) and
let v € V(G). Then

d d
d-75sr(G) = Y Yhsr(G) < filv)
i=1 i=1veV(Q)
d
= Z Zfi(v)g Z k= kn.
veV(Q) i=1 veEV(Q)

If 4% =(G) - dt p(G) = kn, then the two inequalities occurring in the proof be-
come equalities. Hence for the WSRKD family {fi, fo,..., fa} on G and for each
b Yvev(e) filv) = vk (G). Thus each function f; is a v%_ ,(G)-function, and

S filv) = k for all v € V(G). 0
Example 2. Ifk,n > 1 are integers such that n +1 < k < 2n — 1, then d* g (K,) = n.

Proof. Theorem 1 implies d?’fst(Kn) < n. Now let x1,xo,...,x, be the vertices of
K,, and let kK = n 4+t for an integer 1 <t <n —1. For 1 <i < n, define the function
fi : V(Kn) — {713 1a2} by

filwi) = fi(ziz1) = ... = fi(@it1-1) =2
and
fil@ize) = fil@izirr) = ... = fil@ign-1) =1,
where the indices are taken modulo n. It is easy to verify that f; is a weak
signed Roman k-dominating function on K, for 1 < i < n and {f1, fa,..., fn} is
a weak signed Roman k-dominating family on K,. Hence dﬁ)s r(Kyp) > n and thus
dt m(K,) =n. O

Examples 1, 2 and Proposition B demonstrate that Theorems 1 and 2 are both sharp.
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Theorem 3. Let G be a graph of order n > 2 with §(G) > [£] — 1. Then d},.z(G) =n
if and only if G = K,, with exception of the cases k = 2n or k = n = 2, in which cases
duir(Kn) =1 or diy p(K2) = 1.

Proof. Let G = K,. If k = 2n, then the function f with f(x) = 2 for each

vertex x € V(@) is the unique weak signed Roman dominating function on G and so

d?n o (K,) = 1. In addition, it follows from Examples 1 and 2 that d2 z(K2) = 1,

dL r(K3) =3 and d* ,(K,)=n in the remaining cases.

Conversely, assume that d* »(G) = n. Then we deduce from Theorem 1 that n =

d* 2(G) < 6(G)+1, and so 6(G) > n — 1. Thus G = K, and the proof is complete.
[

Theorem 3 shows that Theorem 1 is sharp.

Theorem 4. Let k > 3 be an integer, and let G be a graph of order n with §(G) > [£]—1.
If ’Y’IIESR(G) < 2n — 17 then dZsR(G) > 2.

Proof.  Assume first that k > 4. Since 7*_,(G) < 2n — 1, there exists a WSRkDF
fi with fi(v) < 1 for at least one vertex v € V(G). Note that f» : V(G) —
{—1,1,2} with fo(x) = 2 for each vertex x € V(G) is another WSRkKDF on G. As
fi(z) + fo(z) < 4 < k for each vertex x € V(QG), {f1, fo} is a weak signed Roman
k-dominating family on G and thus d* _,(G) > 2.

Assume next that £ = 3. If H is a component of G of order two with the vertices
u and v, then define f1(u) = 1 and f1(v) = 2 and fo(u) = 2 and fa(v) = 1. If =
is a vertex of a component of order at least three, then define fi(z) = 1 if z is a
leaf and fi(x) = 2 if = is not a leaf and fa(x) = 2 if z is a leaf and fo(z) = 1 if x
is not a leaf. Then fi, fo are WSR3DF on G such that fi(x) 4+ fo(z) = 3 for each
x € V(G). Therefore {f1, f2} is a weak signed Roman 3-dominating family on G and
sod3 o(G) > 2. O

The next examples demonstrate that Theorem 4 is not valid for k =1 or £k = 2 in
general.

Example 3. Let G = H o K be the graph constructed from a graph H, where for each
vertex v € V(H), a new verter v' and a pendant edge vv' are added. If f is WSR2DF
on G, then it is easy to see that f(x) > 1 for each vertex x € V(G). Theorem 1 implies
d2 r(G) < 6(G)+1 =2. Suppose that d2,,x(G) = 2, and let { f1, f2} be a weak signed Roman
2-dominating family on G. The condition fi(x) + f2(z) < 2 leads to fi(z) = fa(x) =1 for
each vertex x € V(Q), a contradiction. Consequently, d2 r(G) = 1.

Example 4. Let G = Ki,n—1 for an integer n > 3 with the center vertex w and the leaves
V1,V2,...,Vn_1. According to Theorem 1, we note that di,r(G) < §(G) +1 = 2. Suppose
that dy,,5(G) = 2, and let {f1, f2} be a weak signed Roman I1-dominating family on G. The
condition f1(x) + fo(x) < 1 leads to fi(x) = —1 or fa(x) = —1 for each vertex x € V(G).
Assume, without loss of generality, that fi(w) = —1. The condition ZzEN[vi] fi(z) > 1
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implies fi(vi) = 2 for each 1 < i < n —1. Using this fact, we observe that fo(vi) = —1 for
each 1 < i < n—1. Since n > 3, we conclude that ZzeN[w] fo(z) <2—-(n-1) <0, a
contradiction. Thus di,(G) = 1.

Corollary 1. Let G be a graph of order n with §(G) > 1. If 2n — 1 > 43 z(G) > n+1,
then d3,,z(G) = 2.

Proof. Theorem 4 implies d3  (G) > 2.
Conversely, it follows from Theorem 2 that

3.

3n 3n
d3 r(G) < < <
wsR( ) — 73,3R(G) “n4+1

Thus d2 _(G) < 2, and the proof is complete. O

If O3 is a cycle of length 3t with an integer ¢ > 1, then Volkmann [10] showed
that d35(Cs) = 3. We deduce that d3 (Cs) > d3(Cs) = 3, and therefore
d3 . r(Cs;) = 3 according to Theorem 1. Since v2 ,(C3;) = n = 3t (see [12]), we note
that the condition 'VS;SR(G) >n+ 1 in Corollary 1 is best possible in some sense.

Corollary 2. Let G be a graph of order n with §(G) > 1. If 2n — 1 > v5,.r(G) > 22,
then do, z(G) = 2.

Proof. Theorem 4 implies d? p(G) > 2.
Conversely, it follows from Theorem 2 that

4n 4n
dysr(G) € 1 < @
f fy;l)sR(G) 4?”

Thus d} -(G) < 2, and the proof is complete. O

Example 5. If Cs; is a cycle of length 3t with an integer t > 1, then dob g (Cat) = 3.

Proof.  According to Theorem 1, dt ,(Cs;) < 3. Let C3; = vovy ... v34—1v. Define
the functions fi, fo and f3 by

fi(vaiv1) =1, fi(vsire) =1, fi(vsi) =2,

fo(vsit1) =2, fo(vsiza) =1, fo(vs) =1,
fa(vziv1) =1, fa(vsiz2) =2, fa(vs) =1

for 0 <4 <t —1. It is easy to see that f; is a weak signed Roman 4-dominating
function on Cs; of weight 4t for 1 < < 3, and {f1, fo, f3} is a weak signed Roman
4-dominating family on C3;. Therefore di  ,(Cs:) > 3 and so d}  p(Cst) = 3. O
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Since i z(Cs) = [4] = [13] = 4t (see [12]), Example 5 shows that the condition

ya r(G) > @ in Corollary 2 is best possible in some sense.
For some regular graphs we will improve the upper bound given in Theorem 1.

Theorem 5. Let G be a d-regular graph of order n with § > ——1 such that n = p(6+1)+r
with integers p > 1 and 1 <r < § and kr = ¢(6 + 1) + s with mtegers t>0and 1 <s <§.
Then d* ,z(G) < 6.

Proof. Let {f1, f2,..., fa} be a WSRkKD family on G such that d = d* (G). Tt
follows that

M=

w(fi>=2dj > filw Z zjj < Y k=kn

i=1 i=1 veV(Q)
Proposition C implies

w(fi) = Yuer(G) 2 L;]fm = {WW

kr ] to+1)+s]

for each i € {1,2,...,d}. If we suppose to the contrary that d = § 4 1, then the above
inequality chains lead to the contradiction
d
kn > > w(fi) > d(kp+t+1) = (5+1)(kp+t+1)

G+ + @ +D)E+1)=kp(+1)+t0+1)+6+1
= kp(0+1)+kr—s+06+1>kp(d+1)+kr=k(pd+1)+r)=kn.

Thus d < §, and the proof is complete. O
Examples 1, 2 and 5 demonstrate that Theorem 5 is not valid in general.

3. Upper bounds on the sum v* ,(G) + d* .(G)

Theorem 6. If G is a graph of order n > 1 and 6(G) > k — 1, then

Ve r(G) +d (G) < n+k.
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Proof. If d* n(G) < k, then Proposition D implies v*_ (G) + d* o(G) < n +k
immediately. Let now d . (G) > k. It follows from Theorem 2 that

kn
Fp(@) +df o (GQ) < ——— +d° L(G).
’szR( )+ wsR( ) = d,ﬁ,SR(G) + wsR( )

According to Theorem 1, we have k < df‘USR(G) < n. Using these bounds, and the

fact that the function g(x) = z+ (kn)/z is decreasing for k < 2 < v/kn and increasing
for vVkn < x <n, we obtain

kn
Fr(G)+dE p(G) < ————
szR( )+ wsR( ) = dﬁ;SR(G)

+d¥ p(G) <max{n+k,k+n}=n+k,
and the desired bound is proved. O
Theorem 7. Let G be a graph of order n > 2 and §(G) > [4] — 1. Then
Vs (G) + dusr(G) < 2n+ k-1,
with equality if and only if k = 2 and G = K.
Proof. 1f 6 = 6(G) > k — 1, then Theorem 6 implies

Assume next that f%} — 1< <k—2. Then k£ > 2 and according to Proposition E
and Theorem 1, we obtain

Ak (@G +dE H(G)<2n+64+1<2n+4+k—1. (1)

If we have equality in (1), then v*_-(G) = 2n and d¥ »(G) = k — 1. Therefore
Theorem 2 leads to 2n(k — 1) = V¥ o(G) - d* .x(G) < kn and so k = 2. Thus
Proposition E yields to § = 0 and hence G = K,,.

Clearly, if G = K, then 72 x(G) = 2n and d? z(G) = 1 and thus 72 ,(G) +

2@ =2n+1=2n+2-1. m

Theorem 8. Let k > 3 be an integer, and let G be a graph of order n with 6(G) > [£]-1.
If k = 2n, then G = K,, and v z(G) + d¥,zr(G) =2n + 1. If k < 2n — 1, then



L. Volkmann 25

Proof. Sincen > 6(G)+1> fg} > g, we observe that k < 2n.

If k = 2n, then §(G) + 1 = n and thus G = K,,. Proposition E implies ¥ . (G) = 2n.
Clearly, d* .(G) =1 and therefore 7% p(G) + d* R(G) =2n + 1.

Let now k < 2n—1. In this case, it is straightforward to verify that n+k < 2n+ %1 —1.
If § = §(G) > k—1, then the last inequality and Theorem 6 lead to the desired bound.
Assume next that [£] —1<§ <k—1. If % _.(G) = 2n, then the definitions lead to
d¥ .r(G) =1 and thus

k

Let now 7% o(G) < 2n— 1. If d¥_(G) < [£], then the desired bound is immediate.
Finally, let d¥_.(G) > [£] + 1. Using Theorem 1, we observe that

[ﬂ +1<dh W(G)<5+1<k

We deduce from Theorem 2 that

kn

k dk) <
’szR(G) + wsR(G) — dﬁ,SR(G)

+ dwsR(G)

Using these bounds, we obtain analogously to the proof of Theorem 6 that

Four(6) + () < max{ ottt | B Ln k.

Sincen>d+1> f%] + 1, it is straightforward to verify that

LN ) I L
k2] +1 ' |2 R )
and this leads to the desired bound. O

Let k£ and n be integers such that n > 3 and 2n — 2 < k < 2n — 1. Example 2 implies
d* r(K,) =n, and it follows from Proposition C that v _,(K,) > k. Thus

Vosr(Kn) + diysp(Kn) > 1+ k. (2)
If k = 2n — 1, then we deduce from inequality (2) and Theorem 8 that

k
3n_1:n+kj§7§)sR(K )+dwsR(K )<2n+ ’72-‘ —1:3TL—1

and therefore v% o (K,) +d¥ o (K,) =2n+ [£] — 1 and % . (K,) = k.
If £ = 2n — 2, then we deduce from 1nequahty (2) and Theorem 8 that

k
3n—2=n+k<" (K, +d¥ p(K,) <2n+ LW ~1=3n-2

and therefore v% o (K,) +d¥ o (K,) =2n+ [£] —1 and % . (K,) = k.
These examples demonstrate that the upper bound in Theorem 8 is sharp.
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4. Nordhaus-Gaddum type results

Results of Nordhaus-Gaddum type study the extreme values of the sum or the product
of a parameter on a graph and its complement. In their current classical paper [6],
Nordhaus and Gaddum discussed this problem for the chromatic number. We note
such inequalities for the weak signed Roman k-domatic number. Using Theorems 1,
2 and 5, one can prove the nexts results analogue to the corresponding one in [10].

Theorem 9. If G is a graph of order n with §(G),5(G) > [%£] — 1, then df . z(G) +
d® r(G) < n+ 1. Furthermore, if d*,(G) + d%,5(G) = n + 1, then G is regular.

Theorem 10. If G is a graph of order n such that §(G),8(G) > 1, then d2 g(G) +
d?usR(é) S .

If n > 3, then d?,z(K,) = n by Example 1 and d? (K,) = 1 and therefore
d? R (Kp)+d2, s (K,) =n+1. This example shows that the condition §(G),§(G) > 1
in Theorem 10 is necessary.

Theorem 11. Let k > 3 be an integer. Then there is only a finite number of graphs G
with §(GQ),5(G) > k — 1 such that d¥ 5 (G) + d% . r(G) = n(G) + 1.
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