Weak signed Roman k-domatic number of a graph

Lutz Volkmann

Lehrstuhl II für Mathematik, RWTH Aachen University, 52056 Aachen, Germany
volkm@math2.rwth-aachen.de

Received: 12 November 2020; Accepted: 24 February 2021
Published Online: 26 February 2021

Abstract: Let $k \geq 1$ be an integer. A weak signed Roman k-dominating function on a graph G is a function $f : V(G) \rightarrow \{-1,1,2\}$ such that $\sum_{u \in N[v]} f(u) \geq k$ for every $v \in V(G)$, where $N[v]$ is the closed neighborhood of v. A set $\{f_1, f_2, \ldots, f_d\}$ of distinct weak signed Roman k-dominating functions on G with the property that $\sum_{i=1}^{d} f_i(v) \leq k$ for each $v \in V(G)$, is called a weak signed Roman k-dominating family (of functions) on G. The maximum number of functions in a weak signed Roman k-dominating family on G is the weak signed Roman k-domatic number of G, denoted by $d_{w,R}^{k}(G)$. In this paper we initiate the study of the weak signed Roman k-domatic number in graphs, and we present sharp bounds for $d_{w,R}^{k}(G)$. In addition, we determine the weak signed Roman k-domatic number of some graphs.

Keywords: weak signed Roman k-dominating function, weak signed Roman k-domination number, weak signed Roman k-domatic number.

AMS Subject classification: 05C69

1. Terminology and introduction

For notation and graph theory terminology, we in general follow Haynes, Hedetniemi and Slater [4]. Specifically, let G be a simple graph with vertex set $V = V(G)$ and edge set $E = E(G)$. The order $|V|$ of G is denoted by $n = n(G)$. For every vertex $v \in V$, the open neighborhood $N(v)$ is the set $\{u \in V(G) \mid uv \in E(G)\}$ and the closed neighborhood of v is the set $N[v] = N(v) \cup \{v\}$. The degree of a vertex $v \in V$ is $d(v) = |N(v)|$. The minimum and maximum degree of a graph G are denoted by $\delta = \delta(G)$ and $\Delta = \Delta(G)$, respectively. A graph G is regular or r-regular if $d(v) = r$ for each vertex v of G. The complement of a graph G is denoted by \overline{G}. We write K_n for the complete graph of order n, $K_{p,q}$ for the complete bipartite graph with partite sets X and Y, where $|X| = p$ and $|Y| = q$, and C_n for the cycle of length n.

© 2022 Azarbaijan Shahid Madani University
In this paper we continue the study of Roman dominating functions in graphs and digraphs. If \(k \geq 1 \) is an integer, then the signed Roman \(k \)-dominating function (SRkDF) on a graph \(G \) is defined in [5] as a function \(f : V(G) \to \{-1,1,2\} \) such that \(\sum_{u \in N[v]} f(u) \geq k \) for each \(v \in V(G) \), and such that every vertex \(u \in V(G) \) for which \(f(u) = -1 \) is adjacent to at least one vertex \(w \) for which \(f(w) = 2 \). The weight of an SRkDF \(f \) is the value \(\omega(f) = \sum_{v \in V} f(v) \). The signed Roman \(k \)-domination number of a graph \(G \), denoted by \(\gamma_{sR}^k(G) \), equals the minimum weight of an SRkDF on \(G \). A \(\gamma_{sR}^k(G) \)-function is a signed Roman \(k \)-dominating function of \(G \) with weight \(\gamma_{sR}^k(G) \). If \(k = 1 \), then we write \(\gamma_{sR}^1(G) = \gamma_{sR}(G) \). This case was introduced and studied in [1]. The signed Roman domination number of digraphs was investigated in [8].

A weak signed Roman \(k \)-dominating function (WSRkDF) on a graph \(G \) is defined in [12] as a function \(f : V(G) \to \{-1,1,2\} \) such that \(\sum_{u \in N[v]} f(u) \geq k \) for each \(v \in V(G) \). The weight of a WSRkDF \(f \) is the value \(\omega(f) = \sum_{v \in V} f(v) \). The weak signed Roman \(k \)-domination number of a graph \(G \), denoted by \(\gamma_{wsR}^k(G) \), equals the minimum weight of a WSRkDF on \(G \). A \(\gamma_{wsR}^k(G) \)-function is a weak signed Roman \(k \)-dominating function of \(G \) with weight \(\gamma_{wsR}^k(G) \). The special case \(k = 1 \) was introduced and investigated by Volkmann [11].

The weak signed Roman \(k \)-domination number exists when \(\delta \geq \frac{k}{2} - 1 \). Therefore we assume in this paper that \(\delta \geq \frac{k}{2} - 1 \). The definitions lead to \(\gamma_{wsR}^k(G) \leq \gamma_{sR}^k(G) \).

A concept dual in a certain sense to the domination number is the domatic number, introduced by Cockayne and Hedetniemi [3]. They have defined the domatic number \(d(G) \) of a graph \(G \) by means of sets. A partition of \(V(G) \), all of whose classes are dominating sets in \(G \), is called a domatic partition. The maximum number of classes of a domatic partition of \(G \) is the domatic number \(d(G) \) of \(G \). But Rall has defined a variant of the domatic number of \(G \), namely the fractional domatic number of \(G \), using functions on \(V(G) \). (This was mentioned by Slater and Trees in [9].) Analogous to the fractional domatic number we may define the (weak) signed Roman \(k \)-domatic number.

A set \(\{f_1,f_2,\ldots,f_d\} \) of distinct (weak) signed Roman \(k \)-dominating functions on \(G \) with the property that \(\sum_{i=1}^d f_i(v) \leq k \) for each \(v \in V(G) \), is called a (weak) signed Roman \(k \)-dominating family (of functions) on \(G \). The maximum number of functions in a (weak) signed Roman \(k \)-dominating family ((W)SRkD family) on \(G \) is the (weak) signed Roman \(k \)-domatic number of \(G \), denoted by \((d^k_{wsR}(G)) \) \(d^k_{sR}(G) \). The (weak) signed Roman \(k \)-domatic number is well-defined and \(d^k_{wsR}(G) \geq d^k_{sR}(G) \geq 1 \) for all graphs \(G \) with \(\delta(G) \geq \frac{k}{2} - 1 \), since the set consisting of any (W)SRkDF forms a (W)SRkD family on \(G \). For more information on the Roman domatic problem, we refer the reader to the survey article [2].

Our purpose in this paper is to initiate the study of the weak signed Roman \(k \)-domatic number in graphs. We first derive basic properties and bounds for the weak signed Roman \(k \)-domatic number of a graph. In addition, we determine the weak signed Roman \(k \)-domatic number of some classes of graphs.

We make use of the following known results in this paper.
Proposition A. ([7, 10]) If $n \geq k \geq 1$ are integers, then $d^k_G(K_n) = n$, unless $n = 3$ and $k = 1$ or $n = k = 2$, in which cases $d^1_G(K_3) = 1$ or $d^2_G(K_2) = 1$.

Proposition B. ([12]) If $n \geq k \geq 2$ are integers, then $\gamma^k_G(K_n) = k$.

Proposition C. ([12]) If G is an r-regular graph of order n with $r \geq \frac{k}{2} - 1$, then

$$\gamma^k_{wsR}(G) \geq \frac{kn}{r+1}.$$

Proposition D. ([5]) If G is a graph of order n with $\delta(G) \geq k - 1$, then

$$\gamma^k_{wsR}(G) \leq \gamma^k_{sR}(G) \leq n.$$

Proposition E. ([12]) Let G be a graph of order n with $\delta(G) \geq \lceil \frac{k}{2} \rceil$. Then $\gamma^k_{wsR}(G) \leq 2n$, with equality if and only if k is even, $\delta(G) = \frac{k}{2} - 1$, and each vertex of G is of minimum degree or adjacent to a vertex of minimum degree.

2. Bounds on the weak signed Roman k-domatic number

In this section we present basic properties of $d^k_{wsR}(G)$ and sharp bounds on the weak signed Roman k-domatic number of a graph.

Theorem 1. If G is a graph, then $d^k_{wsR}(G) \leq \delta(G) + 1$. Moreover, if $d^k_{wsR}(G) = \delta(G) + 1$, then for each WSRkD family $\{f_1, f_2, \ldots, f_d\}$ on G with $d = d^k_{wsR}(G)$ and each vertex v of minimum degree, $\sum_{x \in N[v]} f_i(x) = k$ for each function f_i and $\sum_{i=1}^d f_i(x) = k$ for all $x \in N[v]$.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a WSRkD family on G such that $d = d^k_{wsR}(G)$. If v is a vertex of minimum degree $\delta(G)$, then we deduce that

$$kd \leq \sum_{i=1}^d \sum_{x \in N[v]} f_i(x) = \sum_{x \in N[v]} \sum_{i=1}^d f_i(x) \leq \sum_{x \in N[v]} k = k(\delta(G) + 1)$$

and thus $d^k_{wsR}(G) \leq \delta(G) + 1$.

If $d^k_{wsR}(G) = \delta(G) + 1$, then the two inequalities occurring in the proof become equalities. Hence for the WSRkD family $\{f_1, f_2, \ldots, f_d\}$ on G and for each vertex v of minimum degree, $\sum_{x \in N[v]} f_i(x) = k$ for each function f_i and $\sum_{i=1}^d f_i(x) = k$ for all $x \in N[v].$ \hfill \square

Example 1. If $n \geq k \geq 1$ are integers, then $d^k_{wsR}(K_n) = n$, unless $n = k = 2$, in which case $d^2_{wsR}(K_2) = 1$.

Proof. Theorem 1 implies $d_{wsR}^k(K_n) \leq n$. It is easy to see that $d_{wsR}^2(K_2) = 1$ and $d_{wsR}^1(K_3) = 3$. In all other cases, Proposition A leads to $d_{wsR}^k(K_n) \leq d_{sR}^k(K_n) = n$, and the proof is complete.

Theorem 2. If G is a graph of order n, then

$$\gamma_{wsR}^k(G) \cdot d_{wsR}^k(G) \leq kn.$$

Moreover, if $\gamma_{wsR}^k(G) \cdot d_{wsR}^k(G) = kn$, then for each WSRkD family $\{f_1, f_2, \ldots, f_d\}$ on G with $d = d_{wsR}^k(G)$, each function f_i is a $\gamma_{wsR}^k(G)$-function and $\sum_{i=1}^d f_i(v) = k$ for all $v \in V(G)$.

Example 2. If $k, n \geq 1$ are integers such that $n + 1 \leq k \leq 2n - 1$, then $d_{wsR}^k(K_n) = n$.

Proof. Theorem 1 implies $d_{wsR}^k(K_n) \leq n$. Now let x_1, x_2, \ldots, x_n be the vertices of K_n, and let $k = n + t$ for an integer $1 \leq t \leq n - 1$. For $1 \leq i \leq n$, define the function $f_i : V(K_n) \rightarrow \{-1, 1, 2\}$ by

$$f_i(x_1) = f_i(x_{i+1}) = \ldots = f_i(x_{i+t-1}) = 2$$

and

$$f_i(x_{i+t}) = f_i(x_{i+t+1}) = \ldots = f_i(x_{i+n-1}) = 1,$$

where the indices are taken modulo n. It is easy to verify that f_i is a weak signed Roman k-dominating function on K_n for $1 \leq i \leq n$ and $\{f_1, f_2, \ldots, f_n\}$ is a weak signed Roman k-dominating family on K_n. Hence $d_{wsR}^k(K_n) \geq n$ and thus $d_{wsR}^k(K_n) = n$.

Examples 1, 2 and Proposition B demonstrate that Theorems 1 and 2 are both sharp.
Theorem 3. Let G be a graph of order $n \geq 2$ with $\delta(G) \geq \lceil \frac{n}{2} \rceil - 1$. Then $d_{wsR}^k(G) = n$ if and only if $G = K_n$, with exception of the cases $k = 2n$ or $k = n = 2$, in which cases $d_{wsR}^{2n}(K_n) = 1$ or $d_{wsR}^n(K_2) = 1$.

Proof. Let $G = K_n$. If $k = 2n$, then the function f with $f(x) = 2$ for each vertex $x \in V(G)$ is the unique weak signed Roman dominating function on G and so $d_{wsR}^{2n}(K_n) = 1$. In addition, it follows from Examples 1 and 2 that $d_{wsR}^2(K_2) = 1$, $d_{wsR}^1(K_3) = 3$ and $d_{wsR}^k(K_n) = n$ in the remaining cases.

Conversely, assume that $d_{wsR}^k(G) = n$. Then we deduce from Theorem 1 that $n = d_{wsR}^k(G) \leq \delta(G) + 1$, and so $\delta(G) \geq n - 1$. Thus $G = K_n$, and the proof is complete.

Theorem 3 shows that Theorem 1 is sharp.

Theorem 4. Let $k \geq 3$ be an integer, and let G be a graph of order n with $\delta(G) \geq \lceil \frac{n}{2} \rceil - 1$. If $\gamma_{wsR}^k(G) \leq 2n - 1$, then $d_{wsR}^k(G) \geq 2$.

Proof. Assume first that $k \geq 4$. Since $\gamma_{wsR}^k(G) \leq 2n - 1$, there exists a WSR$k$DF f_1 with $f_1(v) \leq 1$ for at least one vertex $v \in V(G)$. Note that $f_2 : V(G) \rightarrow \{-1, 1, 2\}$ with $f_2(x) = 2$ for each vertex $x \in V(G)$ is another WSRkDF on G. As $f_1(x) + f_2(x) \leq 4 \leq k$ for each vertex $x \in V(G)$, the family $\{f_1, f_2\}$ is a weak signed Roman k-dominating family on G and thus $d_{wsR}^k(G) \geq 2$.

Assume next that $k = 3$. If H is a component of G of order two with the vertices u and v, then define $f_1(u) = 1$ and $f_1(v) = 2$ and $f_2(u) = 2$ and $f_2(v) = 1$. If x is a vertex of a component of order at least three, then define $f_1(x) = 1$ if x is a leaf and $f_1(x) = 2$ if x is not a leaf and $f_2(x) = 2$ if x is a leaf and $f_2(x) = 1$ if x is not a leaf. Then f_1, f_2 are WSR3DF on G such that $f_1(x) + f_2(x) = 3$ for each $x \in V(G)$. Therefore $\{f_1, f_2\}$ is a weak signed Roman 3-dominating family on G and so $d_{wsR}^3(G) \geq 2$.

The next examples demonstrate that Theorem 4 is not valid for $k = 1$ or $k = 2$ in general.

Example 3. Let $G = H \circ K_1$ be the graph constructed from a graph H, where for each vertex $v \in V(H)$, a new vertex v' and a pendant edge vv' are added. If f is WSR2DF on G, then it is easy to see that $f(x) \geq 1$ for each vertex $x \in V(G)$. Theorem 1 implies $d_{wsR}^1(G) \leq \delta(G) + 1 = 2$. Suppose that $d_{wsR}^1(G) = 2$, and let $\{f_1, f_2\}$ be a weak signed Roman 2-dominating family on G. The condition $f_1(x) + f_2(x) \leq 2$ leads to $f_1(x) = f_2(x) = 1$ for each vertex $x \in V(G)$, a contradiction. Consequently, $d_{wsR}^1(G) = 1$.

Example 4. Let $G = K_{1,n-1}$ for an integer $n \geq 3$ with the center vertex w and the leaves $v_1, v_2, \ldots, v_{n-1}$. According to Theorem 1, we note that $d_{wsR}^1(G) \leq \delta(G) + 1 = 2$. Suppose that $d_{wsR}^1(G) = 2$, and let $\{f_1, f_2\}$ be a weak signed Roman 1-dominating family on G. The condition $f_1(x) + f_2(x) \leq 1$ leads to $f_1(x) = -1$ or $f_2(x) = -1$ for each vertex $x \in V(G)$. Assume, without loss of generality, that $f_1(w) = -1$. The condition $\sum_{x \in N[v_1]} f_1(x) \geq 1$
implies \(f_1(v_i) = 2 \) for each \(1 \leq i \leq n - 1 \). Using this fact, we observe that \(f_2(v_i) = -1 \) for each \(1 \leq i \leq n - 1 \). Since \(n \geq 3 \), we conclude that \(\sum_{x \in N[w]} f_2(x) \leq 2 - (n - 1) \leq 0 \), a contradiction. Thus \(d_{wsR}^1(G) = 1 \).

Corollary 1. Let \(G \) be a graph of order \(n \) with \(\delta(G) \geq 1 \). If \(2n - 1 \geq \gamma_{wsR}^3(G) \geq n + 1 \), then \(d_{wsR}^3(G) = 2 \).

Proof. Theorem 4 implies \(d_{wsR}^3(G) \geq 2 \). Conversely, it follows from Theorem 2 that

\[
d_{wsR}^3(G) \leq \frac{3n}{\gamma_{wsR}^3(G)} \leq \frac{3n}{n + 1} < 3.
\]

Thus \(d_{wsR}^3(G) \leq 2 \), and the proof is complete.

If \(C_{3t} \) is a cycle of length \(3t \) with an integer \(t \geq 1 \), then Volkmann [10] showed that \(d_{wsR}^3(C_{3t}) = 3 \). We deduce that \(d_{wsR}^3(C_{3t}) \geq d_{sR}^3(C_{3t}) = 3 \), and therefore \(d_{wsR}^3(C_{3t}) = 3 \) according to Theorem 1. Since \(\gamma_{wsR}^3(C_{3t}) = n = 3t \) (see [12]), we note that the condition \(\gamma_{wsR}^3(G) \geq n + 1 \) in Corollary 1 is best possible in some sense.

Corollary 2. Let \(G \) be a graph of order \(n \) with \(\delta(G) \geq 1 \). If \(2n - 1 \geq \gamma_{wsR}^4(G) > \frac{4n}{3} \), then \(d_{wsR}^4(G) = 2 \).

Proof. Theorem 4 implies \(d_{wsR}^4(G) \geq 2 \). Conversely, it follows from Theorem 2 that

\[
d_{wsR}^4(G) \leq \frac{4n}{\gamma_{wsR}^4(G)} < \frac{4n}{\frac{4n}{3}} = 3.
\]

Thus \(d_{wsR}^4(G) \leq 2 \), and the proof is complete.

Example 5. If \(C_{3t} \) is a cycle of length \(3t \) with an integer \(t \geq 1 \), then \(d_{wsR}^4(C_{3t}) = 3 \).

Proof. According to Theorem 1, \(d_{wsR}^4(C_{3t}) \leq 3 \). Let \(C_{3t} = v_0v_1 \ldots v_{3t-1}v_0 \). Define the functions \(f_1, f_2 \) and \(f_3 \) by

\[
\begin{align*}
f_1(v_{3i+1}) &= 1,
&f_1(v_{3i+2}) &= 1,
&f_1(v_{3i}) &= 2,
\end{align*}
\[
\begin{align*}
f_2(v_{3i+1}) &= 2,
&f_2(v_{3i+2}) &= 1,
&f_2(v_{3i}) &= 1,
\end{align*}
\[
\begin{align*}
f_3(v_{3i+1}) &= 1,
&f_3(v_{3i+2}) &= 2,
&f_3(v_{3i}) &= 1
\end{align*}
\]

for \(0 \leq i \leq t - 1 \). It is easy to see that \(f_i \) is a weak signed Roman 4-dominating function on \(C_{3t} \) of weight \(4t \) for \(1 \leq i \leq 3 \), and \(\{f_1, f_2, f_3\} \) is a weak signed Roman 4-dominating family on \(C_{3t} \). Therefore \(d_{wsR}^4(C_{3t}) \geq 3 \) and so \(d_{wsR}^4(C_{3t}) = 3 \).
Since $\gamma_{wsR}(C_{3t}) = \lceil \frac{4n}{3} \rceil = \lceil \frac{12t}{3} \rceil = 4t$ (see [12]), Example 5 shows that the condition $\gamma_{wsR}(G) > \frac{4n}{3}$ in Corollary 2 is best possible in some sense.

For some regular graphs we will improve the upper bound given in Theorem 1.

Theorem 5. Let G be a δ-regular graph of order n with $\delta \geq \frac{k}{2} - 1$ such that $n = p(\delta + 1) + r$ with integers $p \geq 1$ and $1 \leq r \leq \delta$ and $kr = t(\delta + 1) + s$ with integers $t \geq 0$ and $1 \leq s \leq \delta$. Then $d_{wsR}^k(G) \leq \delta$.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a WSR$k\text{D}$ family on G such that $d = d_{wsR}^k(G)$. It follows that

$$\sum_{i=1}^{d} \omega(f_i) = \sum_{i=1}^{d} \sum_{v \in V(G)} f_i(v) = \sum_{v \in V(G)} \sum_{i=1}^{d} f_i(v) \leq \sum_{v \in V(G)} k = kn.$$

Proposition C implies

$$\omega(f_i) \geq \gamma_{wsR}^k(G) \geq \lceil \frac{kn}{\delta + 1} \rceil = \lceil \frac{kp(\delta + 1) + kr}{\delta + 1} \rceil = kp + \left\lfloor \frac{kr}{\delta + 1} \right\rfloor = kp + \left\lfloor \frac{t(\delta + 1) + s}{\delta + 1} \right\rfloor = kp + t + 1,$$

for each $i \in \{1, 2, \ldots, d\}$. If we suppose to the contrary that $d = \delta + 1$, then the above inequality chains lead to the contradiction

$$kn \geq \sum_{i=1}^{d} \omega(f_i) \geq d(kp + t + 1) = (\delta + 1)(kp + t + 1) = kp(\delta + 1) + (\delta + 1)(t + 1) = kp(\delta + 1) + t(\delta + 1) + \delta + 1 = kp(\delta + 1) + kr - s + \delta + 1 > kp(\delta + 1) + kr = k(p(\delta + 1) + r) = kn.$$

Thus $d \leq \delta$, and the proof is complete.

Examples 1, 2 and 5 demonstrate that Theorem 5 is not valid in general.

3. Upper bounds on the sum $\gamma_{wsR}^k(G) + d_{wsR}^k(G)$

Theorem 6. If G is a graph of order $n \geq 1$ and $\delta(G) \geq k - 1$, then

$$\gamma_{wsR}^k(G) + d_{wsR}^k(G) \leq n + k.$$
Proof. If \(d_{w_{\mathcal{R}}}^k(G) \leq k \), then Proposition D implies \(\gamma_{w_{\mathcal{R}}}^k(G) + d_{w_{\mathcal{R}}}^k(G) \leq n + k \) immediately. Let now \(d_{w_{\mathcal{R}}}^k(G) \geq k \). It follows from Theorem 2 that

\[
\gamma_{w_{\mathcal{R}}}^k(G) + d_{w_{\mathcal{R}}}^k(G) \leq \frac{kn}{d_{w_{\mathcal{R}}}^k(G)} + d_{w_{\mathcal{R}}}^k(G).
\]

According to Theorem 1, we have \(k \leq d_{w_{\mathcal{R}}}^k(G) \leq n \). Using these bounds, and the fact that the function \(g(x) = x + (kn)/x \) is decreasing for \(k \leq x \leq \sqrt{kn} \) and increasing for \(\sqrt{kn} \leq x \leq n \), we obtain

\[
\gamma_{w_{\mathcal{R}}}^k(G) + d_{w_{\mathcal{R}}}^k(G) \leq \frac{kn}{d_{w_{\mathcal{R}}}^k(G)} + d_{w_{\mathcal{R}}}^k(G) \leq \max\{n + k, k + n\} = n + k,
\]

and the desired bound is proved. □

Theorem 7. Let \(G \) be a graph of order \(n \geq 2 \) and \(\delta(G) \geq \lceil \frac{k}{2} \rceil - 1 \). Then

\[
\gamma_{w_{\mathcal{R}}}^k(G) + d_{w_{\mathcal{R}}}^k(G) \leq 2n + k - 1,
\]

with equality if and only if \(k = 2 \) and \(G = K_n \).

Proof. If \(\delta = \delta(G) \geq k - 1 \), then Theorem 6 implies

\[
\gamma_{w_{\mathcal{R}}}^k(G) + d_{w_{\mathcal{R}}}^k(G) \leq n + k < 2n + k - 1.
\]

Assume next that \(\lceil \frac{k}{2} \rceil - 1 \leq \delta \leq k - 2 \). Then \(k \geq 2 \) and according to Proposition E and Theorem 1, we obtain

\[
\gamma_{w_{\mathcal{R}}}^k(G) + d_{w_{\mathcal{R}}}^k(G) \leq 2n + \delta + 1 \leq 2n + k - 1.
\]

(1)

If we have equality in (1), then \(\gamma_{w_{\mathcal{R}}}^k(G) = 2n \) and \(d_{w_{\mathcal{R}}}^k(G) = k - 1 \). Therefore Theorem 2 leads to \(2n(k - 1) = \gamma_{w_{\mathcal{R}}}^k(G) \cdot d_{w_{\mathcal{R}}}^k(G) \leq kn \) and so \(k = 2 \). Thus Proposition E yields to \(\delta = 0 \) and hence \(G = K_n \). Clearly, if \(G = K_n \), then \(\gamma_{w_{\mathcal{R}}}^2(G) = 2n \) and \(d_{w_{\mathcal{R}}}^2(G) = 1 \) and thus \(\gamma_{w_{\mathcal{R}}}^2(G) + d_{w_{\mathcal{R}}}^2(G) = 2n + 1 = 2n + 2 - 1 \). □

Theorem 8. Let \(k \geq 3 \) be an integer, and let \(G \) be a graph of order \(n \) with \(\delta(G) \geq \lceil \frac{k}{2} \rceil - 1 \). If \(k = 2n \), then \(G = K_n \) and \(\gamma_{w_{\mathcal{R}}}^k(G) + d_{w_{\mathcal{R}}}^k(G) = 2n + 1 \). If \(k \leq 2n - 1 \), then

\[
\gamma_{w_{\mathcal{R}}}^k(G) + d_{w_{\mathcal{R}}}^k(G) \leq 2n + \left\lceil \frac{k}{2} \right\rceil - 1.
\]
Proof. Since $n \geq \delta(G) + 1 \geq \lceil \frac{k}{2} \rceil \geq \frac{k}{2}$, we observe that $k \leq 2n$.

If $k = 2n$, then $\delta(G) + 1 = n$ and thus $G = K_n$. Proposition E implies $\gamma_{wsR}^k(G) = 2n$. Clearly, $d_{wsR}^k(G) = 1$ and therefore $\gamma_{wsR}^k(G) + d_{wsR}^k(G) = 2n + 1$.

Let now $k \leq 2n - 1$. In this case, it is straightforward to verify that $n + k \leq 2n + \lceil \frac{k}{2} \rceil - 1$. If $\delta = \delta(G) \geq k - 1$, then the last inequality and Theorem 6 lead to the desired bound. Assume next that $\lceil \frac{k}{2} \rceil - 1 \leq \delta \leq k - 1$. If $\gamma_{wsR}^k(G) = 2n$, then the definitions lead to $d_{wsR}^k(G) = 1$ and thus

$$\gamma_{wsR}^k(G) + d_{wsR}^k(G) = 2n + 1 \leq 2n + \lceil \frac{k}{2} \rceil - 1.$$

Let now $\gamma_{wsR}^k(G) \leq 2n - 1$. If $d_{wsR}^k(G) \leq \lceil \frac{k}{2} \rceil$, then the desired bound is immediate. Finally, let $d_{wsR}^k(G) \geq \lceil \frac{k}{2} \rceil + 1$. Using Theorem 1, we observe that

$$\lceil \frac{k}{2} \rceil + 1 \leq d_{wsR}^k(G) \leq \delta + 1 \leq k.$$

We deduce from Theorem 2 that

$$\gamma_{wsR}^k(G) + d_{wsR}^k(G) \leq \frac{kn}{d_{wsR}^k(G)} + d_{wsR}^k(G).$$

Using these bounds, we obtain analogously to the proof of Theorem 6 that

$$\gamma_{wsR}^k(G) + d_{wsR}^k(G) \leq \max \left\{ \frac{kn}{\lceil k/2 \rceil + 1} + \left\lceil \frac{k}{2} \rceil + 1, n + k \right\}.$$

Since $n \geq \delta + 1 \geq \lceil \frac{k}{2} \rceil + 1$, it is straightforward to verify that

$$\frac{kn}{\lceil k/2 \rceil + 1} + \left\lceil \frac{k}{2} \rceil + 1 \leq 2n + \left\lceil \frac{k}{2} \rceil - 1,$$

and this leads to the desired bound. \square

Let k and n be integers such that $n \geq 3$ and $2n - 2 \leq k \leq 2n - 1$. Example 2 implies $d_{wsR}^k(K_n) = n$, and it follows from Proposition C that $\gamma_{wsR}^k(K_n) \geq k$. Thus

$$\gamma_{wsR}^k(K_n) + d_{wsR}^k(K_n) \geq n + k.$$

(2)

If $k = 2n - 1$, then we deduce from inequality (2) and Theorem 8 that

$$3n - 1 = n + k \leq \gamma_{wsR}^k(K_n) + d_{wsR}^k(K_n) \leq 2n + \left\lceil \frac{k}{2} \rceil - 1 = 3n - 1$$

and therefore $\gamma_{wsR}^k(K_n) + d_{wsR}^k(K_n) = 2n + \lceil \frac{k}{2} \rceil - 1$ and $\gamma_{wsR}^k(K_n) = k$.

If $k = 2n - 2$, then we deduce from inequality (2) and Theorem 8 that

$$3n - 2 = n + k \leq \gamma_{wsR}^k(K_n) + d_{wsR}^k(K_n) \leq 2n + \left\lceil \frac{k}{2} \rceil - 1 = 3n - 2$$

and therefore $\gamma_{wsR}^k(K_n) + d_{wsR}^k(K_n) = 2n + \lceil \frac{k}{2} \rceil - 1$ and $\gamma_{wsR}^k(K_n) = k$.

These examples demonstrate that the upper bound in Theorem 8 is sharp.
4. Nordhaus-Gaddum type results

Results of Nordhaus-Gaddum type study the extreme values of the sum or the product of a parameter on a graph and its complement. In their current classical paper [6], Nordhaus and Gaddum discussed this problem for the chromatic number. We note such inequalities for the weak signed Roman k-domatic number. Using Theorems 1, 2 and 5, one can prove the nexts results analogue to the corresponding one in [10].

Theorem 9. If G is a graph of order n with $\delta(G), \delta(\overline{G}) \geq \lceil \frac{k}{2} \rceil - 1$, then $d^k_{wsR}(G) + d^k_{wsR}(\overline{G}) \leq n + 1$. Furthermore, if $d^k_{wsR}(G) + d^k_{wsR}(\overline{G}) = n + 1$, then G is regular.

Theorem 10. If G is a graph of order n such that $\delta(G), \delta(\overline{G}) \geq 1$, then $d^2_{wsR}(G) + d^2_{wsR}(\overline{G}) \leq n$.

If $n \geq 3$, then $d^2_{wsR}(K_n) = n$ by Example 1 and $d^2_{wsR}(\overline{K_n}) = 1$ and therefore $d^2_{wsR}(K_n) + d^2_{wsR}(\overline{K_n}) = n + 1$. This example shows that the condition $\delta(G), \delta(\overline{G}) \geq 1$ in Theorem 10 is necessary.

Theorem 11. Let $k \geq 3$ be an integer. Then there is only a finite number of graphs G with $\delta(G), \delta(\overline{G}) \geq k - 1$ such that $d^k_{wsR}(G) + d^k_{wsR}(\overline{G}) = n(G) + 1$.

References

