Two upper bounds on the A_α-spectral radius of a connected graph

Shariefuddin Pirzada
Department of Mathematics, University of Kashmir, Srinagar, Kashmir, India
pirzadasd@kashmiruniversity.ac.in

Received: 25 December 2020; Accepted: 21 March 2021
Published Online: 23 March 2021

Abstract: If $A(G)$ and $D(G)$ are respectively the adjacency matrix and the diagonal matrix of vertex degrees of a connected graph G, the generalized adjacency matrix $A_\alpha(G)$ is defined as $A_\alpha(G) = \alpha D(G) + (1 - \alpha) A(G)$, where $0 \leq \alpha \leq 1$. The A_α (or generalized) spectral radius $\lambda(A_\alpha(G))$ (or simply λ_α) is the largest eigenvalue of $A_\alpha(G)$. In this paper, we show that

$$\lambda_\alpha \leq \alpha \Delta + (1 - \alpha) \sqrt{2m(1 - \frac{1}{\omega})},$$

where m, Δ and $\omega = \omega(G)$ are respectively the size, the largest degree and the clique number of G. Further, if G has order n, then we show that

$$\lambda_\alpha \leq \frac{1}{2} \max_{1 \leq i \leq n} \left[\alpha d_i + \sqrt{\alpha^2 d_i^2 + 4m_i(1 - \alpha)[\alpha + (1 - \alpha)m_j]} \right],$$

where d_i and m_i are respectively the degree and the average 2-degree of the vertex v_i.

Keywords: Adjacency matrix, generalized adjacency matrix, spectral radius, clique number

AMS Subject classification: 05C12, 05C50, 15A18

1. Introduction

Let $G(V, E)$ be a simple connected graph with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ and order $|V(G)| = n$. The degree $d(v_i)$ or d_i of a vertex v_i is the number of edges incident on v_i. A graph is regular if each of its vertices has the same degree. If vertex i is adjacent to vertex j, we write $i \sim j$. A clique is a maximal complete subgraph of G. Also, the clique number $\omega = \omega(G)$ of G is the order of the largest clique in G.

The generalized adjacency matrix $A_\alpha(G)$ \cite{6} is defined as $A_\alpha(G) = \alpha D(G) + (1 - \alpha) A(G)$, where $0 \leq \alpha \leq 1$, $A(G)$ and $D(G)$ are respectively
the adjacency matrix and the diagonal matrix of vertex degrees of G. The largest eigenvalue of $A_\alpha(G)$ is called the A_α (or generalized adjacency) spectral radius of G and we denote it by $\lambda(A_\alpha(G))$ (or simply λ_α). If G is connected, $A_\alpha(G)$ is non-negative and irreducible for $\alpha \neq 1$, and by the Perron-Frobenius theorem, λ_α is unique and there is a unique positive unit eigenvector X corresponding to λ_α, which is called the generalized adjacency Perron vector of G. From the last few years an enormous activity has been observed in the study of the spectral properties of the matrix $A_\alpha(G)$. For some recent results on λ_α, we refer to [2–4, 8] and the references therein. For standard definitions, we refer to [1, 7].

2. Upper bounds for $\lambda(A_\alpha(G))$

We consider a column vector $X = [x_1, x_2, \ldots, x_n]^T \in \mathbb{R}^n$ to be a function defined on $V(G)$ which maps vertex v_i to x_i, that is, $X(v_i) = x_i$ for $i = 1, 2, \ldots, n$. Therefore,

$$X^T A_\alpha(G) X = \alpha \sum_{i=1}^{n} d_i x_i^2 + 2(1 - \alpha) \sum_{j \sim i} x_i x_j,$$

and λ_α is an eigenvalue of $A_\alpha(G)$ corresponding to the eigenvector X if and only if $X \neq 0$ and

$$\lambda_\alpha x_i = \alpha d_i x_i + (1 - \alpha) \sum_{j \sim i} x_i x_j.$$

These equations are called as (λ_α, x)-eigen equations of G. For a normalized column vector $X \in \mathbb{R}^n$ with at least one non-negative component, by the Rayleigh’s principle, we have

$$\lambda_\alpha \geq X^T A_\alpha(G) X,$$

with equality if and only if X is the generalized adjacency Perron vector of G.

We have the following lemma [5].

Lemma 1. If $F = \{x = (x_1, x_2, \ldots, x_n)^T : x_i \geq 0, \ \sum_{i=1}^{n} x_i = 1\}$, then

$$1 - \frac{1}{\omega} = \max_{x \in F} (x, Ax)$$

(1)

Now, we obtain an upper bound for λ_α which involves the clique number and the largest degree of G.

Theorem 1. If λ_α is the A_α-spectral radius of G, then

$$\lambda_\alpha \leq \alpha \Delta + (1 - \alpha)\sqrt{2m \left(1 - \frac{1}{\omega}\right)},$$

(2)

where m, Δ and $\omega = \omega(G)$ are respectively the size, the largest degree and the clique number of G.

Proof. Corresponding to the eigenvalue λ_α of $A_\alpha(G)$, let $X = [x_1, x_2, \ldots, x_n]^T$ be the normalized eigenvector. Therefore,

$$\lambda_\alpha = \alpha \sum_{i=1}^{n} d_i x_i^2 + 2(1 - \alpha) \sum_{j \sim i} x_i x_j \leq \alpha \Delta \sum_{i=1}^{n} x_i^2 + 2(1 - \alpha) \sum_{j \sim i} x_i x_j = \alpha \Delta + 2(1 - \alpha) \sum_{j \sim i} x_i x_j.$$

From [6], for $0 \leq \alpha \leq \frac{1}{2}$, clearly we have $\lambda_\alpha \geq \alpha (\Delta + 1)$. Therefore, applying Cauchy’s inequality, we obtain

$$(\lambda_\alpha - \alpha \Delta)^2 \leq \left(2(1 - \alpha) \sum_{j \sim i} x_i x_j\right)^2 \leq 2(1 - \alpha)^2 m \left(2 \sum_{j \sim i} x_i^2 x_j^2\right).$$

(3)

Now, evidently $(x_1, x_2, \ldots, x_n)^T \geq 0$ and $x_1^2 + x_2^2 + \cdots + x_n^2 = 1$. Thus, using (1), we get

$$2 \sum_{j \sim i} x_i^2 x_j^2 \leq 1 - \frac{1}{\omega}.$$

(4)

Using (4) in (3), we obtain

$$(\lambda_\alpha - \alpha \Delta)^2 \leq 2(1 - \alpha)^2 m \left(1 - \frac{1}{\omega}\right)$$

which implies that

$$\lambda_\alpha \leq \alpha \Delta + (1 - \alpha)\sqrt{2m \left(1 - \frac{1}{\omega}\right)}$$

and the proof is complete. \square
In G, the average 2-degree of a vertex v_i, denoted by m_i, is defined as $m_i = \sum_{v_j, v_i \in E(G)} d_j$, with d_i being the degree of the vertex v_i. Now, we obtain an upper bound of λ_α in terms of vertex degrees and average 2-degrees.

Theorem 2. Let G be a connected graph of order n and let d_i and m_i be respectively the degree and the average 2-degree of the vertex v_i. Then

$$\lambda_\alpha \leq \frac{1}{2} \max_{1 \leq i \leq n} \left[\alpha d_i + \sqrt{\alpha^2 d_i^2 + 4m_i(1-\alpha)[\alpha + (1-\alpha)m_j]} \right]. \quad (5)$$

Proof. Consider the matrix $D = \text{diag}(d_1, d_2, \ldots, d_n)$, where $d_1 \geq d_2 \geq \cdots \geq d_n$ are the degrees of the vertices of G. Obviously $A_\alpha(G)$ and $D^{-1}A_\alpha(G)D$ are similar matrices and therefore have the same spectrum. Thus, λ_α is also the largest eigenvalue of $D^{-1}A_\alpha(G)D$. Let $X = (x_1, x_2, \ldots, x_n)^T$ be an eigenvector corresponding to the eigenvalue λ_α of $D^{-1}A_\alpha(G)D$. Assume that one of the eigencomponent, say x_i equals 1 and the remaining eigencomponents are less than or equal to 1.

Now, the (i, j)th entry of $D^{-1}A_\alpha(G)D$ is given by

$$[D^{-1}A_\alpha(G)D]_{ij} = \begin{cases} d_j, & \text{if } i = j \\ \frac{d_j}{\alpha}, & \text{if } j \sim i. \end{cases}$$

We have

$$D^{-1}A_\alpha(G)DX = A_\alpha X. \quad (6)$$

Taking the ith and jth equations of (6), we obtain

$$\lambda_\alpha x_i = \alpha d_i x_i + (1-\alpha) \left(\sum_{j \sim i} \frac{d_j}{d_i} x_j \right),$$

or

$$\lambda_\alpha = \alpha d_i + (1-\alpha) \left(\sum_{j \sim i} \frac{d_j}{d_i} x_j \right) \quad (7)$$

and

$$\lambda_\alpha x_j = \alpha d_j x_j + (1-\alpha) \left(\sum_{i \sim j} \frac{d_i}{d_j} x_i \right). \quad (8)$$

From (7), we get

$$\lambda^2_\alpha = \alpha d_i \lambda_\alpha + (1-\alpha) \left(\sum_{j \sim i} \frac{d_j}{d_i} x_j \right) \lambda_\alpha. \quad (9)$$

Now, using (8) in (9), we have
\[
\lambda_\alpha^2 = \alpha d_i \lambda + (1 - \alpha) \left(\sum_{j \sim i} \left(\frac{d_j}{d_i} \left(\alpha d_j x_j + (1 - \alpha) \sum_{t \sim j} \frac{d_t}{d_j} x_t \right) \right) \right) \\
= \alpha d_i \lambda + \alpha (1 - \alpha) \sum_{j \sim i} \frac{d^2_j}{d_i} x_j + (1 - \alpha)^2 \sum_{j \sim i} \sum_{t \sim j} \frac{d_t}{d_j} x_t \\
\leq \alpha d_i \lambda + \alpha (1 - \alpha) m_i + (1 - \alpha)^2 \sum_{j \sim i} \sum_{t \sim j} \frac{d_j}{d_i} \frac{d_t}{d_j} \\
= \alpha d_i \lambda + \alpha (1 - \alpha) m_i + (1 - \alpha)^2 m_i m_j.
\]

Therefore,
\[
\lambda_\alpha^2 - \alpha d_i \lambda - \alpha (1 - \alpha) m_i - (1 - \alpha)^2 m_i m_j \leq 0.
\tag{10}
\]

From (10), it follows that
\[
\lambda_\alpha \leq \frac{1}{2} \max_{1 \leq i \leq n} \left[\alpha d_i + \sqrt{\alpha^2 d_i^2 + 4 m_i (1 - \alpha) [\alpha + (1 - \alpha) m_j]} \right],
\]
completing the proof. \(\square\)

Acknowledgements. This research is supported by SERB-DST, New Delhi under the research project number MTR/2017/000084.

References