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Abstract: To extract some more information from the constructions of matroids that
arise from new operations, computing the Tutte polynomial, plays an important role.

In this paper, we consider applying three operations of splitting, element splitting and

splitting off to a binary matroid and then introduce the Tutte polynomial of resulting
matroids by these operations in terms of that of original matroids.
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1. Introduction

Throughout this paper we denote a singleton set {x} by x. A matroid M = (E, I)

is a finite ground set E together with a collection of sets I ⊆ 2E , known as the

independent sets, satisfying the following axioms.

(I1) I is non-empty.

(I2) Every subset of a member of I is also in I.

(I3) If X and Y are in I and |X| < |Y |, then there is an element e in Y −X such

that X ∪ e is in I.
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70 The Tutte polynomial of splitting matroids

A subset X of E which is not in I is called dependent set and if X is minimal, then

it is a circuit of M . Maximal members of I are called bases of M and the matroid

on (E,B∗) is called dual of M denoted by M∗ where B∗ is the collection of the

complement of any basis of M . The circuits of M∗ are called cocircuits of M . The

rank of M denoted by r(M) is the number of elements of its basis.

Let F be a field and let E ⊆ Fk be a finite set of vectors. Then a linear matroid

is a matroid whose independent sets are the linearly independent vectors in E over

F. A binary matroid is a linear matroid over the finite field GF (2). Let M be a

binary matroid on the set {1, 2, . . . , n} and A be a matrix that represents M over

GF (2). The cocircuit spaces of M are the subspaces of V (n, 2) that are generated by

the incidence vectors of the cocircuits of M and are equal to the row space of A. Also,

a non-loop element x of M is said to be equivalent [8] to another non-loop element y

of M and denoted by x ∼ y, if there is a row in the row space of A with entry 1 in

the columns corresponding to x and y, and entry 0 elsewhere. Now, by the fact that

all cocircuits of a matroid are minimal sets, we conclude that x is equivalent to y in

a binary matroid M if and only if the set {x, y} is a cocircuit of M or both of x and

y are coloops of M . We refer to Oxley [4] for basic definitions not given in this paper

such as minors of a matroid, matrix representations and rank functions of matroids.

Raghunathan et al. [5] extended the splitting operation and Azadi [1, 7] extended

the splitting off and the element splitting operations from graphs to binary matroids.

These operations are defined as follows.

Definition 1. Let M be a binary matroid on a set E and A be a matrix that represents
M over GF (2). Consider two elements x and y of E(M). Let Ax,y be the matrix that is
obtained by adjoining an extra row to A whose entries are zero everywhere except in the
columns corresponding to x and y. Let A′x,y be the matrix that is obtained by adjoining an
extra column to Ax,y with this column being zero everywhere except in the last row. Finally,
let Axy be the matrix that is obtained by adjoining an extra column to A which is the sum
of the columns corresponding to x and y, and then deleting the two columns corresponding
to x and y. Let Mx,y, M ′x,y and Mxy be the matroids represented by the matrices Ax,y,
A′x,y and Axy, respectively. Then the transition from M to Mx,y, M ′x,y and Mxy is called
the splitting operation, element splitting operation and splitting off operation (or in short
split-off ), respectively.

Throughout this paper, for notational convenience, letting α and β be the labels

of new elements that are added to an original matroid after applying split-off and

element splitting operations, respectively.

2. Some preliminaries

We will use the following propositions to prove our main results in the next section.

One can find the gathered parts of these propositions in [1], [5] and [8].

Proposition 1. Let M be a binary matroid and let x, y ∈ E(M). Then
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i)

r(Mxy) =

{
r(M), if x � y;

r(M)− 1, if x ∼ y.

ii)

r(Mx,y) =

{
r(M) + 1, if x � y;

r(M), if x ∼ y.

iii)

r(M ′x,y) = r(M) + 1.

Proposition 2. Let M be a binary matroid and let x, y ∈ E(M). Then

i) M ′x,y/β = M and M ′x,y \ β = Mx,y;

ii) Mx,y/x ∼= Mx,y/y ∼= Mxy;

iii) M ′x,y \ {β, x, y} = Mx,y \ x/y = Mx,y \ y/x = Mx,y \ {x, y} = Mxy \ α = M \ {x, y};

iv) y is a coloop of Mx,y \ x while x is a coloop of Mx,y \ y;

v) If x ∼ y in M , then Mxy
∼= M/{x} ∼= M/{y} and Mxy/{α} = M/{x, y};

vi) If at least one of x and y is a coloop of M , then α is a coloop of Mxy and both of x
and y are coloops of Mx,y.

Let M be a matroid and X be a subset of E(M). In the following, we will use the

fact that cocircuits of M \X, for X ⊆ E(M) are minimal members of

{C∗ −X ⊆ E(M)−X : C∗ is a cocircuit of M}.

We denote by M(X), the restriction of M with respect to X which is the matroid

M \ (E −X).

Proposition 3. Let r and r′ be the rank functions of the matroids M and Mxy, respec-
tively. Let T ⊆ E(Mxy). Then

i) if α /∈ T , then r′(T ) = r(T );

ii) if α ∈ T and α is not a coloop of Mxy(T ), then r′(T ) = r(T − α);

iii) if α ∈ T and α is a coloop of Mxy(T ), then r′(T ) = r(T − α) + 1.
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Note that, finding the subsets of a split-off matroid such that the restriction concerning

to them has α as a coloop or not is not difficult. To see this, let A be the matrix that

represents a binary matroid M . Let x, y ∈ E(M) and T ⊆ E(Mxy) such that α ∈ T .

Recall that the cocircuit space of Mxy equals the row space of Axy and consider the

following collection:

{
C∗ : C∗ is a cocircuit of Mxy and C∗ ∩ T = α

}
.

If this collection is empty, then α is not a coloop of Mxy(T ), otherwise, α is a coloop of

Mxy(T ). Moreover, to find the cocircuits of Mxy, the following theorem characterizes

the collection of all cocircuits of Mxy in terms of the cocircuits of M .

Theorem 1 could be reworded as follows.

Theorem 1. Let Mxy be the matroid obtained by split-off operation on a binary matroid
M and let X be a subset of E(Mxy). Let X be minimal and be a member of one of the
following collections.

i) C∗1 = {C∗ − {x, y} : C∗ is a cocircuit of M and x, y ∈ C∗};

ii) C∗2 = {C∗ : C∗ is a cocircuit of M and x, y /∈ C∗};

iii) C∗3 = {(C∗ − x) ∪ α : C∗ is a cocircuit of M and x ∈ C∗, y /∈ C∗};

iv) C∗4 = {(C∗ − y) ∪ α : C∗ is a cocircuit of M and y ∈ C∗, x /∈ C∗}.

v) C∗5 = {(C∗1∆C∗2 )−{x, y} : C∗1 and C∗2 are cocircuits of M such that C∗1 contains x but
not y and C∗2 contains y but not x}.

Then the set X is a cocircuit of Mxy.

Proof. Let A be a matrix that represents M over GF (2) and let C∗ be a cocircuit

of M such that x, y ∈ C∗. Then there is a row in the row space of A such that has

the following form

[E(M)−(C∗∪{x,y}) C∗ x y

0 0 ... 0
∣∣∣ 1 1 ... 1

∣∣∣ 1 1
]
.

Thus, after applying the split-off operation on M , we have the following row in the

row space of Axy

[E(M)−(C∗∪{x,y}) C∗ α

0 0 ... 0
∣∣∣ 1 1 ... 1

∣∣∣ 0
]
.

We conclude that C∗−{x, y} is in the cocircuit space of Mxy. Similarly, one can check

that if a subset X of E(Mxy) is a member of the collections in (ii)-(iv), then X is a
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cocircuit of Mxy. Finally, let X = (C∗1∆C∗2 )− {x, y} where C∗1 and C∗2 are cocircuits

of M such that C∗1 contains x but not y and C∗2 contains y but not x. Then, there

are two rows in the row space of A having the form,


E(M)−(C∗1∪C

∗
2 )−{x,y} C∗1 − C∗2 − x C∗1 ∩ C∗2 C∗2 − C∗1 − y x y

0 0 ... 0
∣∣∣ 1 1 ... 1

∣∣∣ 1 1 ... 1
∣∣∣ 0 0 ... 0

∣∣∣ 1 0

0 0 ... 0
∣∣∣ 0 0 ... 0

∣∣∣ 1 1 ... 1
∣∣∣ 1 1 ... 1

∣∣∣ 0 1

.
Thus, after applying the split-off operation on M , in the row space of Axy, we have

the row,

[E(M)−(C∗1∪C
∗
2 )−{x,y} C∗1 − C∗2 − x C∗1 ∩ C∗2 C∗2 − C∗1 − y α

0 0 ... 0
∣∣∣ 1 1 ... 1

∣∣∣ 0 0 ... 0
∣∣∣ 1 1 ... 1

∣∣∣ 0
]
.

We thus conclude that (C∗1∆C∗2 )−{x, y} is in the cocircuit space of Mxy. To complete

the proof, we must show that if X,Y ∈ C∗xy and are minimal, then X * Y and Y*X,

and X∆Y contains at least one member of C∗xy. There are fifteen cases to check and

checking them is straightforward.

3. Tutte polynomial of splitting, element splitting and split-
off matroids

The Tutte polynomial is a two-variable polynomial originally defined for graphs by

Tutte and Whitney and later generalized to matroids by Crapo [3]. It was first

conceived as an extension of the chromatic polynomial, but nowadays it is known to

have applications in many areas of combinatorics and other areas of mathematics.

Definition 2. The Tutte polynomial T (M,u, v) (or briefly T (M)) of a matroid M on the
set E is given by

T (M) =
∑
A⊆E

(u− 1)z(A)(v − 1)n(A)

where z(A) = r(M)− r(A) and n(A) = |A| − r(A).

Computing the Tutte polynomial of a matroid is known to be #P-hard, so some

formulas are presented to reduce this computation to simpler computations. The

next proposition shows some of the well-known formulas for the Tutte polynomial of

a given matroid.

Proposition 4. [2] Let M be a matroid. Then the Tutte polynomial T (M) has the
following properties
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i) Given a matroid N with M ∼= N , we have T (M) = T (N).

ii) If e ∈ E(M) and e is neither a loop nor a coloop of M , then T (M) = T (M \ e) +
T (M/e).

iii) If e is a loop of M , then T (M) = v
(
T (M \ e)

)
.

iv) If e is a coloop of M , then T (M) = u
(
T (M \ e)

)
.

In [6], the relation between a given binary matroid M and Mx,y is presented as

T (Mx,y, 2, 1) ≡ T (M, 2, 1) (mod 2)

where T (M, 2, 1) and T (Mx,y, 2, 1) count the number of independent sets in M and

Mx,y, respectively.

Now, we want to find some splitting formulas to compute the Tutte polynomial of

a matroid that is obtained by splitting, element splitting and split-off operation in

terms of the Tutte polynomial of original matroid or in terms of that of each other.

Theorem 2. Let M be a binary matroid and Let x, y ∈ E(M) such that x � y. Then

T (M ′x,y) = (u+ 1)T (M \ {x, y}) + T (Mxy/α) + T (M).

Proof. Consider two non-equivalent elements x and y from a given binary matroid

M . By using some parts of Proposition 2, we have the following formula.

T (M ′x,y) = T (M ′x,y \ β) + T (M ′x,y/β)

= T (Mx,y) + T (M).

Also, y is a coloop of Mx,y \ x. This means Mx,y \ x ∼= M \ {x, y} ⊕ U1,1. Therefore,

T (M ′x,y) = T (Mx,y \ x) + T (Mx,y/x) + T (M)

= uT (M \ {x, y}) + T (Mxy) + T (M).

or
T (M ′x,y) = T (Mx,y \ x) + T (Mx,y/x) + T (M)

= uT (M \ {x, y}) + T (Mx,y/x \ y) + T (Mx,y/{x, y}) + T (M)

= (u+ 1)T (M \ {x, y}) + T (Mxy/α) + T (M).

Corollary 1. Let M be a binary matroid and let x, y ∈ E(M). Then

T (Mx,y) = (u+ 1)T (M \ {x, y}) + T (Mxy/α).
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Proof. This formula has been extracted from the proof of Theorem 2.

To extend our formulas in Theorem 2 and Corollary 1, we must find Tutte polynomials

for split-off matroids in terms of the Tutte polynomials of original matroids.

Theorem 3. The Tutte polynomial of a split-off matroid Mxy from a given binary matroid
M with x, y ∈ E(M) has the following properties:

i) If at least one of x and y is a coloop of M , then T (Mxy) = uT (M \ {x, y}).

ii) If {x, y} is a circuit of M , then T (Mxy) = vT (M \ {x, y}).

iii) If {x, y} is a cocircuit of M which is not a circuit of M , then

T (Mxy) = T (M)− uT (M \ {x, y}).

Proof. Suppose that at least one of x and y is a coloop of M . Then, by Proposition

2(vi), the element α is a coloop of Mxy and by part (iii), Mxy \ {α} = M \ {x, y}.
Now, by Propositions 4(v), we have

T (Mxy) = uT (Mxy \ α) = uT (M \ {x, y}).

Suppose that {x, y} be a circuit of M . Then α is a loop of M . By a similar argument

we can establish that T (Mxy) = vT (M \ {x, y}). Finally, let {x, y} be a cocircuit of

M . Then x is a coloop of M \ y and M \ y/x = M \ {x, y}. By Proposition 4 (iii)

and (v), we have

T (M) = T (M \ x) + T (M/x)

= uT (M \ {x, y}) + T (M/x \ y)+

T (M/{x, y}).

Therefore

T (M) = (u+ 1)T (M \ {x, y}) + T (M/{x, y})

or
T (M) = (u)T (M \ {x, y}) + T (Mxy \ α) + T (Mxy/α)︸ ︷︷ ︸

T (Mxy)

.

We conclude that

T (Mxy) = T (M)− uT (M \ {x, y}).

The following corollary is an immediate consequence of combining Theorem 3 and

Proposition 2.
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Corollary 2. Let M be a binary matroid and Let x, y ∈ E(M). Then

i) If exactly one of x and y is a coloop of M , then
T (Mx,y) = u2T (M \ {x, y}) and T (M ′x,y) = u2T (M \ {x, y}) + T (M).

ii) If {x, y} is a circuit of M , then
T (Mx,y) = (u+ v)T (M \ {x, y}) and T (M ′x,y) = (u+ v)T (M \ {x, y}) + T (M).

iii) If x ∼ y, then T (Mx,y) = T (M) and T (M ′x,y) = uT (M)

Given a binary matroid M , Theorem 3 introduces Tutte polynomial of Mxy when

x ∼ y or {x, y} is a circuit of M or exactly one of x and y is a coloop of M . Now we

want to provide a splitting formula for such a Tutte polynomial when x � y.

Let Mxy be the split-off of a binary matroid M with x, y ∈ E(M) and x � y in M .

Then there is a partition of the collection of all subsets of E(Mxy) into non-empty

subsets A1,A2,A3 such that

• A1 = {A ⊂ E(Mxy) : α /∈ A};

• A2 = {A ⊆ E(Mxy) : α is not a coloop of Mxy(A)};

• A3 = {A ⊆ E(Mxy) : α is a coloop of Mxy(A)}.

Clearly, any of A1 and B1 ∪ B2 where

Bi = {Z − α : Z ∈ Ai, for i ∈ {2, 3}}

is a collection of all subsets of E(M \ {x, y}).
Therefore,

T (M \ {x, y}) =

2∑
i=1

∑
A∈Bi

(u− 1)z(A)(v − 1)n(A).

We denote two non-zero terms of this summation formula by Ti(M). Indeed,

T (M \ {x, y}) = T1(M) + T2(M).

The following theorem will help compute the Tutte polynomial of a matroid obtained

by applying split-off operation on two non-equivalent elements of a given binary ma-

troid. Could be deleted: We use the notation above to prove it.

Theorem 4. Let M be a binary matroid and x, y ∈ E(M) such that x � y in M . Then
the Tutte polynomial of Mxy can be computed by the following formula.

T (Mxy) = vT1(M) +
u

(u− 1)
T2(M).
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Proof. Let x and y be two elements of a given binary matroid M such that x � y

in M . Consider the partition A1,A2,A3 of all subsets of E(Mxy) as above. Then

T (Mxy) =

3∑
i=1

∑
A∈Ai

(u− 1)z(A)(v − 1)n(A).

This means that

T (Mxy) =
∑
A∈A1

(u− 1)z(A)(v − 1)n(A)+

∑
(X∪α)∈A2

(u− 1)z(X∪α)(v − 1)n(X∪α)+

∑
(X′∪α)∈A3

(u− 1)z(X
′∪α)(v − 1)n(X

′∪α)

such that X ∈ B1 and X ′ ∈ B2. Let r and r′ be the rank functions of M and

Mxy, respectively. By using Propositions 3 and 1, we have r′(Mxy) = r(M) and the

following conditions.

• If A ∈ A1, then z(A) = r′(Mxy)−r′(A) = r(M)−r(A) and n(A) = |A|−r′(A) =

|A| − r(A).

• If A ∈ A2, then α is not a coloop of Mxy(A). Suppose that A = X ∪ α. Then

r′(A) = r(A− α) = r(X). and so z(A) = r′(Mxy)− r′(A) = r(M)− r(X) and

n(A) = |A| − r′(A) = |X| − r(X) + 1.

• If A ∈ A3, then α is a coloop ofMxy(A). Suppose that A = X ′∪α. Then r′(A) =

r(A− α) + 1 = r(X ′) + 1. and so z(A) = r′(Mxy)− r′(A) = r(M)− r(X ′)− 1

and n(A) = |A| − r′(A) = |X ′| − r(X ′).

Therefore,

T (Mxy) =
∑
A∈A1

(u− 1)z(A)(v − 1)n(A)+

(v − 1)
∑
X∈B1

(u− 1)z(X)(v − 1)n(X)+

1

u− 1

∑
X′∈B2

(u− 1)z(X
′)(v − 1)n(X

′).

Thus we conclude that

T (Mxy) = T (M \ {x, y}) + (v − 1)T1(M) +
T2(M)

u− 1

= vT1(M) +
u

(u− 1)
T2(M).
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The following corollaries are immediate consequences of the Theorem 4.

Corollary 3. Let M be a binary matroid and x, y ∈ E(M) such that x � y in M . Then
the Tutte polynomial of Mx,y can be computed by the following formula

T (Mx,y) = (u+ v)T1(M) +
u2

(u− 1)
T2(M).

Corollary 4. Let M be a binary matroid and x, y ∈ E(M) such that x � y in M . Then
the Tutte polynomial of M ′x,y can be computed by the following formula

T (M ′x,y) = (u+ v)T1(M) +
u2

(u− 1)
T2(M) + T (M).

Example 1. Consider the Fano matroid F7. Let M = F7 and A be a matrix that
represents M over GF (2) that is given as,

A =


1 2 3 4 5 6 7

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

.
Let x = 6 and y = 7. Clearly, x is not equivalent to y in M . Moreover, T (M) is equal to

v4 + u3 + 3v3 + 4u2 + 7uv + 6v2 + 3u+ 3v.

To compute T (Mxy), by using Theorem 1, we first determine the collection of all cocircuits
of Mxy which are containing the new elements α in terms of cocircuits of M . So by Theorem
1, there are four such cocircuits, C∗1 = {1, 2, 3, α}, C∗2 = {1, 3, 4, α}, C∗3 = {2, 3, 5, α} and
C∗4 = {3, 4, 5, α}. Now, we find those subsets of E(Mxy) such that α is a coloop in the
restriction of Mxy to them. We need to check that if T ⊆ E(Mxy) with α ∈ T , then there
is a C∗i , for i ∈ {1, 2, 3, 4} such that T ∩ C∗i = α. Therefore, the collection B2 in Theorem 4
is {∅, {1}, {2}, {4}, {5}, {1, 2}, {1, 4}, {2, 5}, {4, 5}} and so B1 = 2E(M\{x,y}) − B2 and hence
the two polynomials T1(M) and T2(M) are as follows.

T1(M) = u2 + v2 + 2uv + 2u+ v + 1

and

T2(M) = u3 + u2 − u− 1.

Therefore, by Theorem 4 and Corollaries 3 and 4, we have

T (Mxy) = u3 + v3 + u2v + 2uv2 + 2u2 + v2 + 2uv + u+ v.
T (Mx,y) = u4 + 3u3 + 3u2 + 3u2v + 3uv2 + 3uv + v3 + v2 + u+ v.
T (M ′xy) = u4 + v4 + 3u2v + 3uv2 + 4u3 + 4v3 + 10uv + 7u2 + 7v2 + 4u+ 4v.
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