Total outer-convex domination number of graphs

Rubelyn Yangyang ${ }^{1 a}$, Marylin Tarongoy ${ }^{1 b}$, Evangelyn Revilla ${ }^{1 c}$, Rona Mae Banlasan ${ }^{1 d}$ and Jonecis Dayap ${ }^{2 *}$
${ }^{1}$ School of Education, University of San Jose-Recoletos, Cebu, Philippines
${ }^{a}$ yangyang.rubelyn@gmail.com
${ }^{b}$ marylintarongoy@gmail.com
${ }^{c}$ revilla.evangelyn3138@gmail.com
${ }^{d}$ banlasan.rona@gmail.com
${ }^{2}$ School of Arts and Sciences, University of San Jose-Recoletos, Cebu, Philippines
*jdayap@usjr.edu.ph

Received: 17 February 2021; Accepted: 12 April 2021
Published Online: 15 April 2021

Abstract

In this paper, we initiate the study of total outer-convex domination as a new variant of graph domination and we show the close relationship that exists between this novel parameter and other domination parameters of a graph such as total domination, convex domination, and outer-convex domination. Furthermore, we obtain general bounds of total outer-convex domination number and, for some particular families of graphs, we obtain closed formulas.

Keywords: Domination number, total domination number, convex domination, total outer-convex domination number, grid graphs

AMS Subject classification: 05C69

1. Introduction

Graph theory is one of the most developed branches of modern mathematics and computer applications and dominations in graphs is its most researched sub branch [8]. Its interrelated general concepts allow different domination types to exist [10]. Dominating set and its variants have a wide range of applications and model various real-life problems. In this paper, we introduce total outer-convex domination as a new variant in graph domination and show the close relationship that exists between this novel parameter and other domination parameters of a graph. Further, general

[^0]bounds on total outer-convex domination and closed formulas for some families of graphs were obtained.
Let $G=(V(G), E(G))$ be a simple graph. A graph G is connected if there is at least one path that connects every two vertices $x, y \in V(G)$, otherwise, G is disconnected. For any two vertices u and v in a connected graph, the distance $d_{G}(u, v)$ between u and v is the length of the shortest path in G. A $u-v$ path of length $d_{G}(u, v)$ is also referred to as $u-v$ geodesic. The closed interval $I_{G}[u, v]$ consists of all those vertices lying on a $u-v$ geodesic in G. For a subset S of vertices of G, the union of all sets $I_{G}[u, v]$ for $u, v \in S$ is denoted by $I_{G}[S]$. Hence $x \in I_{G}[S]$ if and only if x lies on some $u-v$ geodesic, where $u, v \in S$. A set $S \subseteq V(G)$ is convex if $I_{G}[S]=S$. In other words, a set S is convex in G if, for every two vertices $u, v \in S$, the vertex set of every $u-v$ geodesic is contained in S. Certainly, if G is connected graph, then $V(G)$ is convex. Convexity and geodetic in graphs was studied in [1-5, 9]. Let $K_{n}, P_{n}, C_{n}, W_{n}, F_{n}\left(F_{r, s}\right.$ with $n=r+s$) and S_{n} denote a complete graph, the path, the cycle, the wheel, the fan and the star graph of order n, respectively.
A subset S of a vertex set $V(G)$ is a dominating set of G if for every vertex $v \in$ $V(G) \backslash S$, there exists a vertex $x \in S$ such that $x v$ is an edge of G. A dominating set S is an outer-convex dominating set if the subgraph induced by $V(G) \backslash S$, denoted $\langle V(G) \backslash S\rangle$, is convex. The set $S \subseteq V(G)$ is a total dominating set if every vertec $v \in V(G)$ is adjacent to an element of S. The minimum cardinality of a dominating set, a total dominating set, an outer-convex dominating set are the domination number $\gamma(G)$, the total domination number $\gamma_{t}(G)$, and the outer-convex domination number $\widetilde{\gamma}_{\text {con }}(G)$, respectively. The outer-convex domination was introduced by Dayap and Enriquez in 2020 [7] and further studied in [6] by using the said parameter as a tool in encrypting messages and as a new variation of domination parameter in [11].
Motivated by the definition of total domination and outer-convex domination in graphs, we define a new domination parameter in graphs called total outer-convex domination. A total dominating set S of vertices of a graph G is a total outer-convex dominating set if the subgraph induced by $V(G) \backslash S$ is convex. The total outer-convex domination number of G, denoted by $\widetilde{\gamma}_{t c o n}(G)$, is the minimum cardinality of a total outer-convex dominating set of G. A total outer-convex dominating set of cardinality $\widetilde{\gamma}_{\text {tcon }}(G)$ will be called a $\widetilde{\gamma}_{t c o n}$-set.
Since every total outer-convex dominating set of G is a total dominating set of G and an outer-convex dominating set of G, we have
\[

$$
\begin{equation*}
\gamma_{t}(G) \leq \widetilde{\gamma}_{t c o n}(G), \tag{1}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
\widetilde{\gamma}_{c o n}(G) \leq \widetilde{\gamma}_{t c o n}(G) . \tag{2}
\end{equation*}
$$

The next result is a direct consequence of inequalities (1) and (2).
Corollary 1. Let G be a non-trivial connected graph. Then, we have the following:
(i) $\gamma(G) \leq \widetilde{\gamma}_{\text {con }}(G) \leq \widetilde{\gamma}_{\text {tcon }}(G)$
(ii) $\gamma(G) \leq \gamma_{t}(G) \leq \widetilde{\gamma}_{\text {tcon }}(G)$.

2. Preliminary Results

In this section, we study basic properties of the total outer-convex domination number of graphs.

Proposition 1. Let G be a connected graph of order $n \geq 3$ and minimum degree $\delta(G)=1$. Then any $\widetilde{\gamma}_{\text {tcon }}$-set of G contains all support vertices of G.

Proof. Let S be a $\widetilde{\gamma}_{t c o n}(G)$ - set. Let p be a support vertex and q a leaf adjacent to p. Since S is a total dominating set in G, to total dominate q we must have $p \in S$. Thus, S contains all support vertices of G.

Proposition 2. Let G be a connected graph of order $n \geq 3$ with $\widetilde{\gamma}_{t c o n}(G) \leq n-2$. Then any $\widetilde{\gamma}_{\text {tcon }}$-set of G contains all leaves of G.

Proof. The result is trivial if $\delta(G) \geq 2$. Let $\delta(G)=1$ and S be a $\widetilde{\gamma}_{t c o n}(G)-$ set of G. Let q be a leaf of G and let p be its support vertex. By Proposition $1, p \in S$. If $q \notin S$, then since $V(G) \backslash S$ is convex we have $V(G) \backslash\{q\} \subseteq S$, a contrary to our assumption that $\widetilde{\gamma}_{\text {tcon }}(G) \leq n-2$. Thus S contains all leaves of G.

Proposition 3. For any connected graph G of order $n \geq 4$ and any edge uv, where $\min \{\operatorname{deg}(u), \operatorname{deg}(v)\} \geq 2, v$ is not a support vertex and $N(u) \subseteq N(v), \widetilde{\gamma}_{\text {tcon }}(G) \leq n-2$.

Proof. If $\operatorname{deg}(v)=2$, then $\operatorname{deg}(u)=2$ and clearly $V(G)-\{u, v\}$ is a total outerconvex dominating set of G. Assume that $\operatorname{deg}(v) \geq 3$. If u has a neighbor w different from v which is not a support vertex, then $V(G)-\{u, w\}$ is a total outer-convex dominating set of G. Let any neighbor of u different from v be a support vertex. Then $V(G)-\{u, v\}$ is a total outer-convex dominating set of G and thus $\widetilde{\gamma}_{t c o n}(G) \leq$ $n-2$.

Theorem 1. Let G be a connected graph of order $n \geq 3$. Then

$$
\tilde{\gamma}_{t c o n}(G) \leq n-1
$$

The equality holds if and only if for any vertex v of G with degree at least two either v is a support vertex or all neighbors of v are support vertices.

Figure 1. Families \mathcal{F}_{1} and \mathcal{F}_{2}

Proof. Let T be a spanning tree of G and u be a leaf of T. Clearly $V(G)-\{u\}$ is a total outer-convex dominating set of G implying that $\widetilde{\gamma}_{t c o n}(G) \leq n-1$.
Assume that $\widetilde{\gamma}_{t c o n}(G)=n-1$. Let v be a vertex of G with degree at least 2 . If v is a support vertex, then we are done. Suppose v is not a support vertex. By Proposition 3, we have $N(u) \backslash N[v] \neq \emptyset$ for any vertex $u \in N(v)$. If v has a neighbor w which is not a support vertex, then $V(G) \backslash\{v, w\}$ is a total outer-convex dominating set of G, a contradiction. Thus each neighbor of v is a support vertex.
Conversely, let G be a connected graph of order $n \geq 3$ such that for any vertex v of G with degree at least two either v is a support vertex or all neighbors of v are support vertices. Suppose S is a $\widetilde{\gamma}_{t c o n}(G)$-set. If G has a vertex v with degree at least two such that $v \notin S$, then by assumption all neighbors of v are in S and since $V(G) \backslash S$ is convex, we must have $V(G) \backslash\{v\} \subseteq S$ implying that $\widetilde{\gamma}_{t c o n}(G)=n-1$. Thus we may assume that S contains all non-leaf vertices of G. It follows from Proposition 2 that $\widetilde{\gamma}_{t c o n}(G)=n-1$ and the proof is complete.

Next we characterize all graphs G with $\widetilde{\gamma}_{t c o n}(G)=2$.
Let \mathcal{F}_{1} be the family of all graphs G obtained from some complete graph $K_{p}(p \geq 1)$ by adding a new vertex y and joining it to at least one vertex of K_{p} (see Figure 1).
Let $H_{p, q}(p, q \geq 1)$ be a graph obtained from two complete graphs K_{p} and K_{q} by adding some edges between $V\left(K_{p}\right)$ and $V\left(K_{q}\right)$ such that the resulting graph $H_{p, q}$ has diameter at most two, and let $G_{p, q}$ be a graph obtained from some $H_{p, q}$ by adding two new vertices x, y and joining x to all vertices of $V\left(K_{p}\right), y$ to x and all vertices of $V\left(K_{q}\right)$ and some vertices of $H_{p, q}$ with degree $p+q-1$ (see Figure 1). Let \mathcal{F}_{2} be the family of all graphs $G_{p, q}$.

Theorem 2. Let G be a connected graph of order $n \geq 2$. Then $\widetilde{\gamma}_{\text {tcon }}(G)=2$ if and only if $G \in \mathcal{F}_{1} \cup \mathcal{F}_{2}$.

Proof. If $G \in \mathcal{F}_{1}$ and x is a vertex of K_{p} adjacent to y, then clearly $\{x, y\}$ is a total outer-convex dominating set of G and so $\widetilde{\gamma}_{\text {tcon }}(G)=2$. If $G \in \mathcal{F}_{2}$, then obviously $\{x, y\}$ is a total outer-convex dominating set of G implying that $\widetilde{\gamma}_{\text {tcon }}(G)=2$.
Conversely, let $\widetilde{\gamma}_{\text {tcon }}(G)=2$ and let $S=\{x, y\}$ be a $\widetilde{\gamma}_{\text {tcon }}(G)$. This implies that S is a total dominating set and $V(G) \backslash S$ is a convex set by definition. Assume without

Figure 2. A graph G of order n with $\tilde{\gamma}_{\text {tcon }}(G)=m$ where $2 \leq m \leq n-1$
loss of generality that $\operatorname{deg}(x) \geq \operatorname{deg}(y)$. Since $V(G) \backslash S$ is a convex set, the subgraph induced by $N(x)$ is a complete graph. If $N(y) \subseteq N[x]$, then clearly $G \in \mathcal{F}_{1}$ and we are done. Assume that $N(y) \nsubseteq N[x]$. As before, the subgraph induced by $N(y)$ is a complete graph. Considering the set $N(x)$ as the set of vertices of a complete graph K_{p} and the set of $N(y) \backslash N[x]$ as the set of vertices of a complete graph K_{q}, we can see that $G \in \mathcal{F}_{2}$ and this completes the proof.

The proof of the next result is straightforward and therefore omitted.

Proposition 4. Let n be a positive integer.
(i) For $n \geq 2, \widetilde{\gamma}_{\text {tcon }}\left(K_{n}\right)=2$.
(ii) For $n \geq 3$,

$$
\widetilde{\gamma}_{\text {tcon }}\left(P_{n}\right)= \begin{cases}n-1 & \text { if } n \leq 5 \\ n-2 & \text { if } n>5\end{cases}
$$

(iii) For $n \geq 3$,

$$
\widetilde{\gamma}_{\text {tcon }}\left(C_{n}\right)= \begin{cases}2 & \text { if } n=3 \\ n-2 & \text { if } n>3\end{cases}
$$

(iv) For $n \geq 3$,

$$
\widetilde{\gamma}_{\text {tcon }}\left(W_{n}\right)= \begin{cases}\frac{n}{2} & i f n \equiv 2(\bmod 4) \\ 2\left\lfloor\frac{n+1}{4}\right\rfloor & i f n \not \equiv 2(\bmod 4)\end{cases}
$$

(v) For $n \geq 2, \widetilde{\gamma}_{\text {tcon }}\left(S_{n}\right)=n-1$.
(vi) For $n \geq 3$,

$$
\widetilde{\gamma}_{\text {tcon }}\left(F_{r, s}\right)= \begin{cases}\frac{s+1}{2} & \text { ifr }=1 \text { and } s \equiv 1(\bmod 4) \\ 2\left\lceil\frac{s}{4}\right\rceil & \text { ifr }=1 \text { and } s \equiv 1(\bmod 4) \\ r & \text { ifr } \geq 2 \text { and } s \leq 3 \\ r+s-3 & \text { ifr } \geq 2 \text { and } s>3\end{cases}
$$

Next we present a realization result.

Theorem 3. Given positive integers m and n where $n \geq 3$ and $2 \leq m \leq n-1$, there exists a connected graph G of order n with $\widetilde{\gamma}_{\text {tcon }}(G)=m$.

Proof. Let G_{m} be the graph obtained from a complete graph K_{n-m+1} by adding $m-1$ pendant edges $x a_{1}, \ldots, x a_{m-1}$ at a vertex x of K_{n-m+1} (see Figure 2). If $m=2$, then clearly $\widetilde{\gamma}_{\text {tcon }}\left(G_{m}\right)=m$. If $m=n-1$, then by Theorem 1 we have $\widetilde{\gamma}_{\text {tcon }}\left(G_{m}\right)=m$. Let $3 \leq m \leq n-2$. Clearly, the set $\left\{x, a_{1}, a_{2}, \ldots, a_{m-1}\right\}$ is a total outer-convex dominating set since every complete graph is convex. This implies that $\widetilde{\gamma}_{t c o n}\left(G_{m}\right) \leq m$. To show the inverse inequality, let S be a $\widetilde{\gamma}_{\text {tcon }}\left(G_{m}\right)-$ set. Since $\widetilde{\gamma}_{\text {tcon }}\left(G_{m}\right) \leq n-2$, it follows from Proposition 2 that $\left\{a_{1}, a_{2}, \ldots, a_{m-1}\right\} \subseteq S$. On the other hand, to dominate the vertices of K_{n-m+1}, we must have $\left|S \cap V\left(G_{m}\right)\right| \geq 1$ implying that $\widetilde{\gamma}_{t c o n}\left(G_{m}\right) \geq m$. Thus, $\widetilde{\gamma}_{t c o n}\left(G_{m}\right)=m$.

Figure 3. \quad A graph G with $\tilde{\gamma}_{\text {tcon }}(G)-\gamma(G)=m$ and $\tilde{\gamma}_{\text {tcon }}(G)-\gamma_{t}(G)=m$

Figure 4. A graph G with $\widetilde{\gamma}_{\text {tcon }}(G)-\widetilde{\gamma}_{c o n}(G)=m$

Proposition 5. The differences $\widetilde{\gamma}_{t c o n}(G)-\gamma(G), \widetilde{\gamma}_{t c o n}(G)-\gamma_{t}(G)$, and $\widetilde{\gamma}_{t c o n}(G)-\widetilde{\gamma}_{c o n}(G)$ can be made arbitrarily large.

Proof. Let m be a positive integer. To show that $\widetilde{\gamma}_{t c o n}(G)-\gamma(G), \widetilde{\gamma}_{\text {tcon }}(G)-\gamma_{t}(G)$, and $\widetilde{\gamma}_{\text {tcon }}(G)-\widetilde{\gamma}_{\text {con }}(G)$ can be made arbitrarily large, it is enough to show that there exists a graph such that $\widetilde{\gamma}_{\text {tcon }}(G)-\gamma(G)=m, \widetilde{\gamma}_{\text {tcon }}(G)-\gamma_{t}(G)=m$, and $\widetilde{\gamma}_{\text {tcon }}(G)-\widetilde{\gamma}_{\text {con }}(G)=m-1$. If G_{m+1} is the graph defined as before (see the first graph illustrated in Figure 3), then we have $\gamma(G)=1$ and $\widetilde{\gamma}_{t c o n}(G)=m+1$ by Theorem 3. Thus, $\widetilde{\gamma}_{\text {tcon }}(G)-\gamma(G)=(m+1)-1=m$. Now, let G be a graph obtained from G_{m} by
adding a pendant edge $u v$ (see the second graph in Figure 3). Clearly, the $\widetilde{\gamma}_{t c o n}(G)=$ $m+2$ and $\gamma_{t}(G)=2$. Thus, $\widetilde{\gamma}_{t c o n}(G)-\gamma_{t}(G)=(m+2)-2=m$. Now, consider the graph G obtained from G_{m+1} by adding the pendant edges, $a_{1} b_{1}, a_{2} b_{2}, \ldots, a_{m} b_{m}$ (see Figure 4). Clearly, the $\widetilde{\gamma}_{\text {tcon }}(G)=2 m+1$ and $\widetilde{\gamma}_{\text {con }}(G)=m+1$. Hence, $\widetilde{\gamma}_{t c o n}(G)-\widetilde{\gamma}_{c o n}(G)=(2 m+1)-(m+1)=m$. This proves the assertion.

3. Total outer-convex domination number of two-dimensional grid graphs

In this section we determine the total outer-convex domination number of twodimensional grid graphs. A two-dimensional grid graph, also known as a rectangular grid graph or two-dimensional lattice graph is the Cartesian product $P_{m} \square P_{n}$ of path graphs on m and n vertices. Let $V\left(P_{m} \square P_{n}\right)=\{(i, j) \mid 1 \leq i \leq m$ and $1 \leq j \leq n\}$ and $E\left(P_{m} \square P_{n}\right)=\{(i, j)(i, j+1) \mid 1 \leq i \leq m, 1 \leq j \leq n-1\} \cup\{(i, j)(i+1, j) \mid 1 \leq$ $i \leq m-1,1 \leq j \leq n\}$.

Proposition 6. For any $n \geq 2$, we have

$$
\widetilde{\gamma}_{t c o n}\left(P_{1} \square P_{n}\right)= \begin{cases}n-1 & \text { if } n \leq 5 \\ n-2 & \text { if } n>5 .\end{cases}
$$

Proof. Since $P_{1} \square P_{n} \cong P_{n}$, the result follows directly.
Proposition 7. For $n \geq 2, \widetilde{\gamma}_{t c o n}\left(P_{2} \square P_{n}\right)=n$.

Proof. Clearly, the set $S=\{(1, j) \mid j=1,2, \ldots, n\}$ is a total outer-convex dominating set of $P_{2} \square P_{n}$ and so $\widetilde{\gamma}_{\text {tcon }}\left(P_{2} \square P_{n}\right) \leq n$. To prove $\widetilde{\gamma}_{t c o n}\left(P_{2} \square P_{n}\right) \geq n$, let S be a $\widetilde{\gamma}_{\text {tcon }}\left(P_{2} \square P_{n}\right)$-set. Suppose, to the contrary, that $\widetilde{\gamma}_{t c o n}\left(P_{2} \square P_{n}\right)<n$. Then for some $1 \leq j \leq n$ we must have $(1, j),(2, j) \in V\left(P_{2} \square P_{n}\right) \backslash S$. If $j=1$ (the case $j=n$ is similar), then to dominate the vertices $(1,1),(2,1)$, we must have $(1,2),(2,2) \in S$. Since $V\left(P_{2} \square P_{n}\right) \backslash S$ is convex, we have $V\left(P_{2} \square P_{n}\right) \backslash\{(1,1),(2,1)\} \subseteq S$ implying that $|S| \geq 2 n-2 \geq n$, a contradiction. Let $1<j<n$. If $(1, j-1),(2, j-1)$, $(1, j+1),(2, j+1) \in S$, then as above we obtain a contradiction. Therefore, $\{(1, j-1),(2, j-1),(1, j+1),(2, j+1)\} \nsubseteq S$. Assume without loss of generality that $(1, j+1) \in V\left(P_{2} \square P_{n}\right) \backslash S$. Since $V\left(P_{2} \square P_{n}\right) \backslash S$ is convex, we must have $(2, j+1) \in V\left(P_{2} \square P_{n}\right) \backslash S$. To dominate the vertices $(1, j),(2, j),(1, j+1),(2, j+1)$, we have $(1, j-1),(2, j-1),(1, j+2),(2, j+2) \in S$ and since $V\left(P_{2} \square P_{n}\right) \backslash S$ is convex, we must have $V\left(P_{2} \square P_{n}\right) \backslash\{(1, j),(2, j),(1, j+1),(2, j+1)\} \subseteq S$. It follows that $|S| \geq 2 n-4 \geq n$ (note that $n \geq 4$) which is a contradiction. Thus $|S| \geq n$ and so $\widetilde{\gamma}_{\text {tcon }}\left(P_{2} \square P_{n}\right)=n$.

Proposition 8. For $n \geq 3$,

$$
\tilde{\gamma}_{\text {tcon }}\left(P_{3} \square P_{n}\right)= \begin{cases}3\left\lfloor\frac{2 n}{3}\right\rfloor & \text { if } n<6 \\ 2 n & \text { if } n \geq 6 .\end{cases}
$$

Proof. By a simple calculation we can verify the result for $n=3,4,5$. Assume that $n \geq 6$. Clearly, the set $S=\{(1, j),(3, j) \mid 1 \leq j \leq n\}$ is a total outer-convex dominating set of $P_{3} \square P_{n}$ and so $\widetilde{\gamma}_{t c o n}\left(P_{3} \square P_{n}\right) \leq 2 n$. To prove $\widetilde{\gamma}_{t c o n}\left(P_{3} \square P_{n}\right) \geq 2 n$, let S be a $\widetilde{\gamma}_{\text {tcon }}\left(P_{3} \square P_{n}\right)$-set. Suppose, to the contrary, that $\widetilde{\gamma}_{\text {tcon }}\left(P_{3} \square P_{n}\right)<2 n$. Then for some $1 \leq j \leq n$ we must have $\left|\{(1, j),(2, j),(3, j)\} \cap\left(V\left(P_{3} \square P_{n}\right) \backslash S\right)\right| \geq 2$. We distinguish two cases.
Case 1. $(1, j),(3, j) \in V\left(P_{3} \square P_{n}\right) \backslash S$.
Since $V\left(P_{3} \square P_{n}\right) \backslash S$ is convex, we have $(2, j) \in V\left(P_{3} \square P_{n}\right) \backslash S$. If $j=1$ (the case $j=n$ is similar), then to dominate the vertices $(1,1),(2,1),(3,1)$, we must have $(1,2),(2,2),(3,2) \in S$. Since $V\left(P_{3} \square P_{n}\right) \backslash S$ is convex, we have $V\left(P_{3} \square P_{n}\right) \backslash$ $\{(1,1),(2,1),(3,1)\} \subseteq S$ yielding $|S| \geq 3 n-3 \geq 2 n$, a contradiction. Let $1<j<n$. If $(1, j-1),(2, j-1),(3, j-1),(1, j+1),(2, j+1),(3, j+1) \in S$, then as before we get a contradiction. Let $\{(1, j-1),(2, j-1),(3, j-1),(1, j+1),(2, j+1),(3, j+1)\} \nsubseteq$ S. Assume without loss of generality that $(1, j+1) \in V\left(P_{3} \square P_{n}\right) \backslash S$. Since $V\left(P_{3} \square P_{n}\right) \backslash S$ is convex, we must have $(3, j+1) \in V\left(P_{3} \square P_{n}\right) \backslash S$. By repeating this process we deduce that $(3, j+1) \in V\left(P_{3} \square P_{n}\right) \backslash S$. To dominate the vertices $(1, j),(2, j),(3, j),(1, j+1),(2, j+1),(3, j+1)$, we must have $(1, j-1),(2, j-1)$, $(3, j-1),(1, j+2),(2, j+2),(3, j+2) \in S$ and we conclude from the convexity of $V\left(P_{3} \square P_{n}\right) \backslash S$ that $|S| \geq 3 n-6 \geq 2 n$ (note that $n \geq 6$) which is a contradiction.
Case 2. $(1, j),(2, j) \in V\left(P_{3} \square P_{n}\right) \backslash S$ (the case $(3, j),(2, j) \in V\left(P_{3} \square P_{n}\right) \backslash S$ is similar). According Case 1, we may assume that $(3, j) \in S$. To dominate $(1, j)$, we may assume without loss of generality that $(1, j+1) \in S$. It follows from the convexity of S that $(2, j+1),(3, j+1) \in S$ and $(3, j-1) \in S$ if $j \geq 2$. If $j=1$, then by the convexity of S we must have $V\left(P_{3} \square P_{n}\right) \backslash\{(1, j),(2, j)\} \subseteq S$ implying that $|S| \geq 3 n-2>2 n$ which is a contradiction. Let $j \geq 2$. Using above argument we can see that $|S| \geq 3 n-4>2 n$, a contradiction again.
Thus $|S| \geq 2 n$ and so $\widetilde{\gamma}_{t c o n}\left(P_{3} \square P_{n}\right)=2 n$. This completes the proof.
Proposition 9. For $n \geq 4, \widetilde{\gamma}_{\text {tcon }}\left(P_{4} \square P_{n}\right)=2 n$.

Proof. We can check that $S=\{(1, j),(4, j) \mid 1 \leq j \leq n\}$ is a total outer-convex dominating set of $P_{4} \square P_{n}$ and so $\widetilde{\gamma}_{t c o n}\left(P_{4} \square P_{n}\right) \leq 2 n$.
To prove $\widetilde{\gamma}_{\text {tcon }}\left(P_{3} \square P_{n}\right) \geq 2 n$, let S be a $\widetilde{\gamma}_{t c o n}\left(P_{4} \square P_{n}\right)$-set. Suppose, to the contrary, that $\widetilde{\gamma}_{t c o n}\left(P_{4} \square P_{n}\right)<2 n$. Then for some $1 \leq j \leq n$ we must have $|\{(1, j),(2, j),(3, j),(4, j)\} \cap S| \leq 1$. We distinguish two cases.
Case 1. $(1, j),(4, j) \in V\left(P_{3} \square P_{n}\right) \backslash S$.
Since $V\left(P_{4} \square P_{n}\right) \backslash S$ is convex, we have $(2, j),(3, j) \in V\left(P_{4} \square P_{n}\right) \backslash S$. If $j=1$ (the case $j=n$ is similar), then as in the proof of Proposition 8 we can see that
$V\left(P_{4} \square P_{n}\right) \backslash\{(1,1),(2,1),(3,1),(4,1)\} \subseteq S$ yielding $|S| \geq 4 n-4 \geq 2 n$, a contradiction. Let $1<j<n$. If $\{(i, j-1),(i, j+1) \mid 1 \leq i \leq 4\} \subseteq S$, then we deduce from the convexity of $V\left(P_{4} \square P_{n}\right) \backslash S$ that $V\left(P_{4} \square P_{n}\right) \backslash\{(1,1),(2,1),(3,1),(4,1)\} \subseteq S$ which leads to a contradiction again. Let $\{(i, j-1),(i, j+1) \mid 1 \leq i \leq 4\} \nsubseteq S$. Assume without loss of generality that $(1, j+1) \in V\left(P_{4} \square P_{n}\right) \backslash S$. Since $V\left(P_{4} \square P_{n}\right) \backslash S$ is convex, we must have $(2, j+1) \in V\left(P_{4} \square P_{n}\right) \backslash S$. Using a similar argument, we have $(3, j+1),(4, j+1) \in V\left(P_{4} \square P_{n}\right) \backslash S$. To dominate the vertices $(i, j),(i, j+1)$, we must have $(i, j-1),(i, j+2) \in S$ for each i. We conclude from the convexity of $V\left(P_{4} \square P_{n}\right) \backslash S$ that $|S| \geq 4 n-8 \geq 2 n$ (note that $n \geq 4$) which is a contradiction.
Case 2. $\{(1, j),(4, j)\} \nsubseteq V\left(P_{4} \square P_{n}\right) \backslash S$.
Assume without loss of generality that $(4, j) \in S$. By our earlier assumption we have $(1, j),(2, j),(3, j) \in V\left(P_{4} \square P_{n}\right) \backslash S$. To dominate $(1, j)$, we may assume without loss of generality that $(1, j+1) \in S$. It follows from the convexity of S that $(2, j+$ 1), $(3, j+1),(4, j+1) \in S$ and $(4, j-1) \in S$ if $j \geq 2$. If $j=1$, then by the convexity of $V\left(P_{4} \square P_{n}\right) \backslash S$ we must have $V\left(P_{4} \square P_{n}\right) \backslash\{(1, j),(2, j),(3, j)\} \subseteq S$ implying that $|S| \geq 4 n-3>2 n$ which is a contradiction. Let $j \geq 2$. Using above argument we can see that $|S| \geq 4 n-6>2 n$, a contradiction again.
Thus $|S| \geq 2 n$ and so $\widetilde{\gamma}_{t c o n}\left(P_{4} \square P_{n}\right)=2 n$. This completes the proof.
We close this section with a conjecture.
Conjecture. For positive integer $n \geq m \geq 5, \widetilde{\gamma}_{\text {tcon }}\left(P_{m} \square P_{n}\right)=(m-2) n$.

References

[1] H. Abdollahzadeh Ahangar, F. Fujie-Okamoto, and V. Samodivkin, On the forcing connected geodetic number and the connected geodetic number of a graph, Ars Combin. 126 (2016), 323-335.
[2] H. Abdollahzadeh Ahangar, S. Kosari, S.M. Sheikholeslami, and L. Volkmann, Graphs with large geodetic number, Filomat 29 (2015), no. 6, 1361-1368.
[3] H. Abdollahzadeh Ahangar and M. Najimi, Total restrained geodetic number of graphs, Iran. J. Sci. Technol. Trans. A Sci. 41 (2017), no. 2, 473-480.
[4] H. Abdollahzadeh Ahangar, V. Samodivkin, S.M. Sheikholeslami, and A. Khodkar, The restrained geodetic number of a graph, Bull. Malays. Math. Sci. Soc. 38 (2015), no. 3, 1143-1155.
[5] G. Chartrand and P. Zhang, Convex sets in graphs, Congr. Numer. 136 (1999), 19-32.
[6] J.A. Dayap, R. Alcantara, and R. Anoos, Outer-weakly convex domination number of graphs, Commun. Comb. Optim. 5 (2020), no. 2, 207-215.
[7] J.A. Dayap and E.L. Enriquez, Outer-convex domination in graphs, Discrete Math. Algorithms Appl. 12 (2020), no. 1, Article ID. 2050008.
[8] P. Gupta, Domination in graph with application, Indian J. Res. 2 (2013), no. 3, 115-117.
[9] F. Harary and J. Nieminen, Convexity in graphs, J. Differ Geom. 16 (1981), no. 2, 185-190.
[10] S.T. Hedetniemi and R.C. Laskar, Topics on domination, Elsevier, 1991.
[11] Z. Shao, S. Kosari, R. Anoos, S.M. Sheikholeslami, and J.A. Dayap, Outer-convex dominating set in the corona of graphs as encryption key generator, Complexity 2020 (2020), Article ID. 8316454.

[^0]: * Corresponding Author

