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Abstract: The energy of a graph G, denoted by E(G), is defined as the sum of the

absolute values of all eigenvalues of G. In this paper, lower and upper bounds for energy

in some of the graphs are established, in terms of graph invariants such as the number
of vertices, the number of edges, and the number of closed walks.
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1. Introduction

Let G = (V,E) be a simple undirected graph with vertex set V = V (G) =

{v1, v2, . . . , vn} and edge set E(G), | E(G) |= m. The order and size of G are

n = |V | and m = |E|, respectively. A walk from a vertex u to a vertex v is a finite

alternating sequence v0(= u)e1v1e2 . . . vk1ekvk(= v) of vertices and edges such that

ei = vi−1vi for i = 1, 2, . . . , k. The number k is the length of the walk. In particular,

if the vertex vi, i = 0, 1, . . . , k in the walk are all distinct then the walk is called a

path. A path of order n is denoted by Pn. A closed path or cycle, is obtained from a

path v1, . . . , vk (where k > 3) by adding the edge v1vk. A cycle of order n is denoted

by Cn. A graph is connected if each pair of vertices in a graph is joined by a walk. A

bipartite graph is a graph such that its vertex set can be partitioned into two sets X

and Y (called the partite sets) such that every edge meet both X and Y . A complete
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bipartite graph is a bipartite graph such that any vertex of a partite set is adjacent

to all vertices of the other partite set. A complete bipartite graph with partite set of

cardinalities p and q is denoted by Kp,q. The graph K1,n−1 is also called a star of

order n, denoted by Sn. A simple undirected graph in which every pair of distinct

vertices is connected by a unique edge, is the complete graph and is denoted by Kn.

For other graph theory notation and terminology we refer to [18].

The adjacency matrix A(G) of a graph G is defined by its entries as aij = 1 if

vivj ∈ E(G) and 0 otherwise. Let λ1 > λ2 > · · · > λn−1 > λn denote the eigenvalues

of A(G). Then λ1 is called the spectral radius of G. When more than one graphs are

under consideration, then we write λi(G) instead of λi.

The energy of a graph G is defined as

E(G) =

n∑
i=1

| λi | .

This concept was introduced by I. Gutman and is intensively studied in chemistry,

since it can be used to approximate the total π-electron energy of a molecule (see,

e.g.[7], [10]). In 1971, McClelland [15] discovered the first upper bound for E(G) as

follows:

E(G) ≤
√

2mn. (1)

Since then, numerous other bounds for E(G) were found (see, e.g. [2], [3], [12] - [14]).

Here we just state some upper bounds for E(G) which were obtained recently. Koolen

and Moulton [13] showed that if G is a graph with n vertices, m edges and 2m > n

then

E(G) ≤ 2m

n
+

√
(n− 1)

(
2m− (

2m

n
)2
)
, (2)

with equality if and only if G is either n
2K2, Kn or a non-complete connected strongly

regular graph with two non-trivial eigenvalues both with absolute value
√

(2m−( 2m
n )2)

(n−1) .

The same authors showed then that if 2m > n and G is a bipartite graph with n > 2,

then

E(G) ≤ 2(
2m

n
) +

√
(n− 1)

(
2m− 2(

2m

n
)2
)
, (3)

with equality if and only if G is either n
2K2, a complete bipartite graph, or the

incidence graph of a symmetric 2-(ν, k, λ)-design with k = 2m
n and λ = k(k−1)

ν−1 (n =

2ν). In [7, 13], from inequality (2), the authors get the following bound for E(G):

E(G) ≤ n

2
(1 +

√
n). (4)

It is not dificult to see that inequality (4) is an improvement of the bound

E(G) ≤ n
√
n− 1.
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The recent mathematical properties of this invariant can be found in e.g. [1, 8, 9, 11,

19].

The paper is organized as follows. In Section 2, we give a list of some previously

known results. In Section 3, we present bounds on the energy of graphs.

2. Preliminaries and known results

In this section, we list some known results that will be needed in the next sections.

We first state some results on the number of closed walks of a graph.

Proposition 1. [16] Let G be a graph with n vertices, m edges and NG(i) be the number
of closed walks of length i in G, then

1. N2 = N2(G) =
∑n

i=1 λ
2
i = 2m,

2. N3 = N3(G) =
∑n

i=1 λ
3
i = 6NG(K3),

3. N4 = N3(G) =
∑n

i=1 λ
4
i = 2m+ 4NG(P3) + 8NG(C4),

4. N5 = N5(G) =
∑n

i=1 λ
5
i = 30NG(K3) + 10NG(C5) + 10NG(G1),

5. N7 = N7(G) =
∑n

i=1 λ
7
i = 126NG(K3) + 84NG(G1) + 14NG(G2) + 14NG(G3) +

14NG(G4)+28NG(G5)+42NG(G6)+28NG(G7)+112NG(G8)+70NG(C5)+14NG(C7).

The graphs Gi for i = 1, 2, . . . , 8 are shown in Figure 1.

G1 G2 G3 G4 G5 G6 G7 G8

Figure 1. The graphs Gi for i = 1, 2, . . . , 8 mentioned in Proposition 1

The next lemma provides a lower bound for the energy of a graph.

Proposition 2. [4] If G is a graph with m edges, then E(G) > 2
√
m, with equality if and

only if G is a complete bipartite graph plus arbitrarily many isolated vertices.
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Proposition 3. [5] A graph G has only one eigenvalue if and only if G is an empty
graph. A graph G has two distinct eigenvalues µ1 > µ2 with multiplicities m1 and m2 if and
only if G is the direct sum of m1 complete graphs of order µ1 +1. In this case, µ2 = −1 and
m2 = m1µ1.

We now give some known upper bounds for the spectral radius λ1(G).

Proposition 4. [17] Let G be a connected graph with n vertices and m edges, then

λ1(G) 6 n− 1.

Proposition 5. [17] Let G be a tree with n vertices, then

λ1(G) 6
√
n− 1.

3. Bounds for the Energy of Graphs

In this section, we obtain some new upper and lower bounds for the energy of graphs.

We deal with general graphs, connected graphs, bipartite graphs, connected bipartite

graphs, and trees.

We begin with the following upper bound in terms of order and size of a graph.

Theorem 1. Let G be a non-empty graph with n vertices and m edges. Then

E(G) ≤
√

2m2 +
n2

2
, (5)

equality holds if and only if G ∼= n
2
(K2), (n = 2m).

Proof. Let ai, bi, ci and di are sequences of real numbers and pi, qi are non-negative

for i = 1, 2, . . . , n. Then the following inequality is valid (see [6] p. 7)

n∑
i=1

pia
2
i

n∑
i=1

qib
2
i +

n∑
i=1

pic
2
i

n∑
i=1

qid
2
i > 2

n∑
i=1

piaici

n∑
i=1

qibidi. (6)

For ai = bi = pi = qi := 1 and ci = di := |λi|, i = 1, 2, . . . , n, inequality (6) becomes

n∑
i=1

1

n∑
i=1

1 +

n∑
i=1

|λi|2
n∑
i=1

|λi|2 > 2

n∑
i=1

|λi|
n∑
i=1

|λi|.

Notice that
n∑
i=1

|λi|2 =

n∑
i=1

λ2i = 2m,
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hence

n2 +
( n∑
i=1

|λi|2
)2
≥ 2
( n∑
i=1

|λi|
)2
.

Then, from the above inequality directly follows the assertion of Theorem 1, i.e. the

inequality (5). If G ∼= n
2K2, then it is easy to check that the equality in (5) holds.

Conversely, if the equality in (5) holds, since G is a non-empty graph, by Proposition

3, G has at least two distinct eigenvalues. We consider the following cases.

Case 1. The absolute value of all eigenvalues of G are equal.

Then clearly λ1 =| λi | (2 6 i 6 n), since G has at least two distinct eigenvalues. By

Proposition 3, | λi |= 1(2 6 i 6 n). Hence 2m = n and also, λ1 =| λ2 |= · · · =| λn |=
1. By applying Proposition 3 again, we obtain that m2 = m1λ1, λ1 = 1, and therefore

m1 = m2. Then we obtain that λ1 = 1 has multiplicity n
2 , and λi = −1 (2 6 i 6 n)

has multiplicity n
2 . Therefore G is the direct sum of m1 = n

2 complete graphs of order

λ1 + 1 = 2. Consequently, G is n
2K2.

Case 2. The absolute value of all eigenvalues of G are not equal. Then G has two

distinct eigenvalues with different absolute values. By Proposition 3, | λi |= 1 (2 6
i 6 n). Since,

∑n
i=1 λi = 0 and λ2 = λ3 = · · · = λn = −1, we have, λ1 = n−1. Hence

λ1 has multiplicity 1 and λi = −1 has multiplicity n− 1. By Proposition 3, G is the

direct sum of a complete graph of order λ1 + 1 = n. Consequently, G is Kn.

Theorem 2. Let G be a non-empty graph with n vertices and m edges. Then

E(G) ≤ m+
n

2
, (7)

equality holds if and only if G ∼= n
2
(K2), (n = 2m).

Proof. Let ai, bi, ci and di are sequences of real numbers and pi, qi are non-negative

for i = 1, 2, . . . , n. Then the following inequality is valid (see [6] p. 7)

n∑
i=1

pia
2
i

n∑
i=1

qib
2
i +

n∑
i=1

pic
2
i

n∑
i=1

qid
2
i > 2

n∑
i=1

piaici

n∑
i=1

qibidi. (8)

For ai = bi = di = pi = qi := 1 and ci := |λi|, i = 1, 2, . . . , n, inequality (8) becomes

n∑
i=1

1

n∑
i=1

1 +

n∑
i=1

|λi|2
n∑
i=1

1 > 2

n∑
i=1

|λi|
n∑
i=1

1.

So

n2 +
( n∑
i=1

|λi|2
)
n ≥ 2

( n∑
i=1

|λi|
)
n.
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Then, from the above inequality directly follows the assertion of Theorem 2, i.e. the

inequality (7).

If G ∼= n
2K2, then it is easy to check that the equality in (7) holds. Conversely, if the

equality in (7) holds, since G is a non-empty graph, by Proposition 3, G has at least

two distinct eigenvalues. We consider the following cases.

Case 1. The absolute value of all eigenvalues of G are equal.

Then clearly λ1 =| λi | (2 6 i 6 n), since G has at least two distinct eigenvalues. By

Proposition 3, | λi |= 1(2 6 i 6 n). Hence 2m = n and also, λ1 =| λ2 |= · · · =| λn |=
1. By applying Proposition 3 again, we obtain that m2 = m1λ1, λ1 = 1, and therefore

m1 = m2. Then we obtain that λ1 = 1 has multiplicity n
2 , and λi = −1 (2 6 i 6 n)

has multiplicity n
2 . Therefore G is the direct sum of m1 = n

2 complete graphs of order

λ1 + 1 = 2. Consequently, G is n
2K2.

Case 2. The absolute value of all eigenvalues of G are not equal. Then G has two

distinct eigenvalues with different absolute values. By Proposition 3, | λi |= 1(2 6
i 6 n). Since,

∑n
i=1 λi = 0 and λ2 = λ3 = · · · = λn = −1, we have, λ1 = n−1. Hence

λ1 has multiplicity 1 and λi = −1 has multiplicity n− 1. By Proposition 3, G is the

direct sum of a complete graph of order λ1 + 1 = n. Consequently, G is Kn.

The next upper bound involves the number of closed walks of lengths 4 and 6 of a

graph.

Theorem 3. Let G be a non-empty graph with n vertices and m edges. Then

E(G) ≤ nN5 + 4m2

2N4
, (9)

equality holds if and only if G ∼= n
2
(K2), (n = 2m).

Proof. Let ai, bi are sequences of real numbers and ci, di are non-negative for i =

1, 2, . . . , n. Then the following inequality is valid (see [6] p.8)

n∑
i=1

di

n∑
i=1

cia
2
i +

n∑
i=1

ci

n∑
i=1

dib
2
i > 2

n∑
i=1

ciai

n∑
i=1

dibi. (10)

For ai = ci := |λi|2, bi := |λi| and di := 1, i = 1, 2, . . . , n, inequality (10) becomes

n∑
i=1

1

n∑
i=1

|λi|5 +

n∑
i=1

|λi|2
n∑
i=1

|λi|2 > 2

n∑
i=1

|λi|4
n∑
i=1

|λi|.

Hence,

n

n∑
i=1

|λi|5 +
( n∑
i=1

|λi|2
)2

> 2

n∑
i=1

|λi|4
n∑
i=1

|λi|.
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Then, considering the Proposition 1, we demonstrate the assertion of Theorem 3, i.e.

the inequality (9).

If G ∼= n
2K2, then it is easy to check that the equality in (9) holds. Conversely, if the

equality in (9) holds, since G is a non-empty graph, by Proposition 3, G has at least

two distinct eigenvalues. We consider the following cases.

Case 1. The absolute value of all eigenvalues of G are equal.

Then clearly λ1 =| λi | (2 6 i 6 n), since G has at least two distinct eigenvalues. By

Proposition 3, | λi |= 1(2 6 i 6 n). Hence 2m = n and also, λ1 =| λ2 |= · · · =| λn |=
1. By applying Proposition 3 again, we obtain that m2 = m1λ1, λ1 = 1, and therefore

m1 = m2. Then we obtain that λ1 = 1 has multiplicity n
2 , and λi = −1 (2 6 i 6 n)

has multiplicity n
2 . Therefore G is the direct sum of m1 = n

2 complete graphs of order

λ1 + 1 = 2. Consequently, G is n
2K2.

Case 2. The absolute value of all eigenvalues of G are not equal. Then G has two

distinct eigenvalues with different absolute values. By Proposition 3, | λi |= 1 (2 6
i 6 n). Since,

∑n
i=1 λi = 0 and λ2 = λ3 = · · · = λn = −1, we have, λ1 = n−1. Hence

λ1 has multiplicity 1 and λi = −1 has multiplicity n− 1. By Proposition 3, G is the

direct sum of a complete graph of order λ1 + 1 = n. Consequently, G is Kn.

Theorem 4. Let G be a non-empty graph with n vertices and m edges. Then

E(G) ≤ 2mN4 + n2

4m
, (11)

equality holds if and only if G ∼= n
2
(K2), (n = 2m).

Proof. Let ai, bi, ci and di are sequences of real numbers and pi, qi are non-negative

for i = 1, 2, . . . , n. Then the following inequality is valid (see [6] p.7)

n∑
i=1

pia
2
i

n∑
i=1

qib
2
i +

n∑
i=1

pic
2
i

n∑
i=1

qid
2
i > 2

n∑
i=1

piaici

n∑
i=1

qibidi. (12)

For ai := |λi|2, bi := |λi| and ci = di = pi = qi := 1, i = 1, 2, . . . , n, inequality (12)

becomes
n∑
i=1

|λi|4
n∑
i=1

|λi|2 +

n∑
i=1

1

n∑
i=1

1 > 2

n∑
i=1

|λi|2
n∑
i=1

|λi|.

So,

n∑
i=1

|λi|4
n∑
i=1

|λi|2 + n2 > 2

n∑
i=1

|λi|2
n∑
i=1

|λi|.

Considering the Proposition 1, we demonstrate the assertion of Theorem 4, i.e. the

inequality (11).

If G ∼= n
2K2, then it is easy to check that the equality in (11) holds. Conversely, if
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the equality in (11) holds, since G is a non-empty graph, by Proposition 3, G has at

least two distinct eigenvalues. We consider the following cases.

Case 1. The absolute value of all eigenvalues of G are equal.

Then clearly λ1 =| λi | (2 6 i 6 n), since G has at least two distinct eigenvalues. By

Proposition 3, | λi |= 1(2 6 i 6 n). Hence 2m = n and also, λ1 =| λ2 |= · · · =| λn |=
1. By applying Proposition 3 again, we obtain that m2 = m1λ1, λ1 = 1, and therefore

m1 = m2. Then we obtain that λ1 = 1 has multiplicity n
2 , and λi = −1 (2 6 i 6 n)

has multiplicity n
2 . Therefore G is the direct sum of m1 = n

2 complete graphs of order

λ1 + 1 = 2. Consequently, G is n
2K2.

Case 2. The absolute value of all eigenvalues of G are not equal. Then G has two

distinct eigenvalues with different absolute values. By Proposition 3, | λi |= 1(2 6
i 6 n). Since,

∑n
i=1 λi = 0 and λ2 = λ3 = · · · = λn = −1, we have, λ1 = n−1. Hence

λ1 has multiplicity 1 and λi = −1 has multiplicity n− 1. By Proposition 3, G is the

direct sum of a complete graph of order λ1 + 1 = n. Consequently, G is Kn.

The next bounds involve lower bounds for the energy of a bipartite graph.

Theorem 5. Let G be a non-empty bipartite graph of order at least 2, with m edges and
having the spectral radius λ1. Then

E(G) ≥ 2m

λ1
(13)

equality holds if and only if one of the following statements holds:
(1) G ∼= n

2
K2, (n = 2m);

(2) K1,r−1

⋃
(n− 1− rn−1)K1.

Proof. Let ai, bi are decreasing non-negative sequences with ai, bi 6= 0 and wi a non

negative sequence, for i = 1, 2, . . . , n. Then the following inequality is valid (see [6]

p.85)
n∑
i=1

wia
2
i

n∑
i=1

wib
2
i 6 max

{
b1

n∑
i=1

wiai, a1

n∑
i=1

wibi

}
n∑
i=1

wiaibi. (14)

For ai = bi := |λi|, and wi := 1, i = 1, 2, . . . , n, inequality (14) becomes

n∑
i=1

|λi|2
n∑
i=1

|λi|2 6 max

{
λ1

n∑
i=1

|λi|, λ1
n∑
i=1

|λi|

}
n∑
i=1

|λi|2.

Then

n∑
i=1

|λi|2 ≤ λ1
n∑
i=1

|λi|

from the above inequality directly follows the assertion of Theorem 5, i.e. the inequal-

ity (13).



H. Shoshtari, J. Rodŕıguez 89

If G ∼= n
2K2, then it is easy to check that the equality in (13) holds. Conversely, if

the equality in (13) holds, since G is a non-empty graph, by Proposition 3, G has at

least two distinct eigenvalues. We consider the following cases.

Case 1. The absolute value of all eigenvalues of G are equal.

Then clearly λ1 =| λi | (2 6 i 6 n), since G has at least two distinct eigenvalues. By

Proposition 3, | λi |= 1(2 6 i 6 n). Hence 2m = n and also, λ1 =| λ2 |= · · · =| λn |=
1. By applying Proposition 3 again, we obtain that m2 = m1λ1, λ1 = 1, and therefore

m1 = m2. Then we obtain that λ1 = 1 has multiplicity n
2 , and λi = −1 (2 6 i 6 n)

has multiplicity n
2 . Therefore G is the direct sum of m1 = n

2 complete graphs of order

λ1 + 1 = 2. Consequently, G is n
2K2.

Case 2. The absolute value of all eigenvalues of G are not equal. If two eigenvalues

of G have different absolute values, then by Proposition 3, | λi |= −1(2 6 i 6 n).

Noting that G is a bipartite graph, we have λ1 = −λn, that is a contradiction, since

the two eigenvalues of G have different absolute values. Thus assume that G has

three distinct eigenvalues. Since G is a bipartite graph, we have that λ1 = −λn 6= 0

and
∑n
i=1 λi = 0, and therefore, λi = 0(2 6 i 6 n − 1). Thus E(G) = 2λ1, and

by Proposition 2, we have that 2λ1 > 2
√
m, and so 2λ21 > 2m. Notice that 2m =∑n

i=1 λ
2
i = 2λ21. Therefore λ1 =

√
m and E(G) = 2

√
m. Hence by Proposition 2, G is

a complete bipartite graph plus arbitrarily many isolated vertices. Thus, there exist

integers r1 > 1 and r2 > 2 such that G is Kr1,r2 ∪ (n− r1 − r2)K1.

Finally, considering the Theorem 5, we present two new lower bounds for connected

bipartite graphs and tree graph.

Corollary 1. Let G be a connected bipartite graph with n vertices and m edges, then

E(G) ≥ 2m

n− 1
.

Corollary 2. Let G be a tree with n vertices and m edges, then

E(G) ≥ 2m√
n− 1

.

Acknowledgments J. Rodŕıguez was supported by MINEDUC-UA project, code

ANT-1899, Funded by the Initiation Program in Research - Universidad de Antofa-

gasta, INI-19-06 and PROGRAMA REGIONAL MATHAMSUD, MATH2020003.

References

[1] S. Akbari, A.H. Ghodrati, and M.A. Hosseinzadeh, Some lower bounds for the

energy of graphs, Linear Algebra Appl. 591 (2020), 205–214.



90 New bounds on the energy of a graph

[2] N. Alawiah, N. Jafari Rad, A. Jahanbani, and H. Kamarulhaili, New upper bounds

on the energy of a graph, Match. Commun. Math. Comput. Chem. 79 (2018),

287–301.

[3] D. Babic and I. Gutman, More lower bounds for the total π-electron energy of

alternant hydrocarbons, MATCH Commun. Math. Comput. Chem. (1995), no. 32,

7–17.
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[5] D. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs Theory and Applications,

Academic Press, New York, 1980.

[6] S.S. Dragomir, A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequal-

ities, J. Inequal. Pure Appl. Math. 4 (2003), no. 3, 1–142.

[7] I. Gutman and K.C. Das, Estimating the total π-electron energy, J. Serb. Chem.

Soc. 78 (2013), 1925–1933.

[8] I. Gutman, S. Filipovski, and R. Jajcay, Variations on Mcclellands bound for

graph energy, Discrete Math. Lett. 3 (2020), 57–60.

[9] I. Gutman and M.R. Oboudi, Bounds on graph energy, Discrete Math. Lett. 4

(2020), 1–4.

[10] I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry,

Springer, Berlin, 1986.

[11] I. Gutman and H. Ramane, Research on graph energies in 2019, MATCH Com-

mun. Math. Comput. Chem. 84 (2020), no. 2, 277–292.
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