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Abstract: For a simple, undirected, connected graph G(V,E), a function f : V (G)→
{0, 1, 2} which satisfies the following conditions is called a quasi-total Roman dominat-
ing function (QTRDF) of G with weight f(V (G)) =

∑
v∈V (G) f(v).

C1). Every vertex u ∈ V (G) for which f(u) = 0 must be adjacent to at least one vertex

v with f(v) = 2, and

C2). Every vertex u ∈ V (G) for which f(u) = 2 must be adjacent to at least one vertex
v with f(v) ≥ 1.

For a graph G, the smallest possible weight of a QTRDF of G denoted γqtR(G) is
known as the quasi-total Roman domination number of G. The problem of determin-

ing γqtR(G) of a graph G is called minimum quasi-total Roman domination problem
(MQTRDP). In this paper, we show that the problem of determining whether G has
a QTRDF of weight at most l is NP-complete for split graphs, star convex bipartite

graphs, comb convex bipartite graphs and planar graphs. On the positive side, we show
that MQTRDP for threshold graphs, chain graphs and bounded treewidth graphs is
linear time solvable. Finally, an integer linear programming formulation for MQTRDP

is presented.
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1. Introduction

Let G(V, E) be a simple, undirected and connected graph. For a vertex u of G, the

(open) neighborhood which is denoted by NG(u), is the set {v : (u, v) ∈ E(G)} and its

degree is |NG(u)|. The closed neighborhood of u is NG[u] = {u} ∪NG(u). Maximum

degree of G, denoted by ∆, is maxu∈V (G)|NG(u)|. A vertex v is called an isolated

vertex if |NG(v)| = 0. A vertex of degree n − 1 is called a universal vertex, where

n = |V (G)|. A graph formed with the vertex set S ⊆ V (G) of graph G and the edge

set {(u, v) : u, v ∈ S} is called an induced subgraph of G and is denoted by G[S]. A

subset S of V (G) in a graph G is said to be independent if no two vertices in S are

adjacent. A graph G(V1, V2, E) is called a split graph if V1 is an independent set, V2
is a clique, V (G) = V1 ∪V2 and V1 ∩V2 = ∅. A graph is chordal if each of its cycles of

length four or more has a chord i.e., an edge that connects two nonadjacent vertices of

the cycle. For an integer n ≥ 1, a star graph is a complete bipartite graph K1,n. The

maximum degree vertex of a star graph is called the center vertex of it. A bipartite

graph G = (X,Y,E) is called tree convex if there exists a tree T = (X,F ) such that,

for each y in Y , the neighbors of y induce a subtree in T . When T is a star (comb),

G is called star (comb) convex bipartite graph [14]. For undefined terminology and

notations we refer to [19].

A dominating set (DS) of a graph G is a set D ⊆ V (G) such that ∪v∈DNG[v] =

V (G). The domination number of G, which is denoted by γ(G), is min{|D| : D is

a dominating set of G}. Given a graph G and a positive integer l, the domination

decision problem is to check whether G has a dominating set of cardinality at most

l. Literature on the concept of domination has been surveyed in [7, 8].

In 2004, the concept of Roman domination was introduced by Cockayne et al. in [2].

A function f : V (G)→ {0, 1, 2} such that every vertex with label zero is adjacent to

at least one vertex with label two is called a Roman dominating function (RDF) on

G. A vertex is said to be Roman-dominated if it‘s label is one or two; or zero and

adjacent to a vertex with label two. We will identify a function f with the subsets

V0, V1, V2 of V (G) associated with it, and so we will also use the notation f(V0, V1, V2)

for the function and these associated subsets. We use these notations interchangeably

in this article. We refer to [2, 4, 5, 9–13, 16, 17] for the literature on the concept of

Roman domination in graphs.

Quasi-total Roman domination was introduced in 2019 by S. Cabrera Garćıa et al.

[6]. A function f : V (G) → {0, 1, 2} is said to be a quasi-total Roman dominating

function (QTRDF) of G if the following properties hold.

C1). Every vertex u ∈ V (G) for which f(u) = 0 must be adjacent to at least one

vertex v with f(v) = 2, and

C2). Every vertex u ∈ V (G) for which f(u) = 2 must be adjacent to at least one

vertex v with f(v) ≥ 1.

The weight of a QTRDF f is the value f(V (G)) =
∑

u∈V (G) f(u). The quasi-total

Roman domination number is the minimum weight of a QTRDF on G and is denoted

by γqtR(G). The minimum quasi-total Roman domination problem (MQTRDP) is
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to find a QTRDF of minimum weight in the input graph. The decision version of

quasi-total Roman domination problem is defined as follows.

Quasi-Total-Roman-Domination-Problem (QTRDP)

Instance : A simple, undirected graph G and a positive integer k.

Question : Is γqtR(G) ≤ k?

In particular, when the input graph of QTRDP is split, star convex bipartite, comb

convex bipartite or planar the corresponding decision versions are denoted QTRDPS,

QTRDPSC, QTRDPCC and QTRDPP respectively.

2. Complexity results

In this section, we show that QTRDPS, QTRDPSC and QTRDPCC are NP-complete

by proposing a polynomial time reduction from a well-known NP-complete problem,

Exact Three Set Cover (X3SC)[8], which is defined as follows.

Exact Three Set Cover (X3SC)

Instance : A set X = {x1, x2, . . . , x3q}, where q ≥ 1 and another set C =

{C1, C2, . . . , Ct}, where Ci is a subset of X with |Ci| = 3.

Question : Does C have a subset C ′ such that ∪Ci∈C′Ci = X and Ci ∩ Cj = ∅ for

all Ci, Cj ∈ C ′ and i 6= j.

Theorem 1. QTRDPS is NP-complete.

Proof. Given a split graph G and a function f , whether f is a QTRDF of weight

at most k can be checked in polynomial time. Hence QTRDPS is a member of

NP. Now we show that QTRDPS is NP-hard by transforming an instance (X,C) of

X3SC, where X = {x1, x2, . . . , x3q} and C = {C1, C2, . . . , Ct}, to an instance (G, k) of

QTRDPS as follows. Create vertices xi for each xi ∈ X and ci for each Ci ∈ C. Add

edges (cj , xi) if xi ∈ Cj and (ci, cj) if 1 ≤ i, j (6= i) ≤ t. Let k = 2q. Since X is an

independent set and C is a clique, it follows that G is a split graph as shown in Figure

1 and can be constructed from the given instance (X,C) of X3SC in polynomial time

and (G, k) is an instance of QTRDPS.

Next we show that, X3SC has a solution if and only if G has a QTRDF with weight at

most 2q. Suppose C ′ is a solution for the given instance (X,C) of X3SC with |C ′| = q.

If q = 1 then G = K1,3 and from [6] it follows that G has a QTRDF with weight

3. Otherwise, let D = {ci : Ci ∈ C ′}. We define a function f : V (G) → {0, 1, 2} as

follows.

f(v) =

{
2, if v ∈ D
0, otherwise

(1)

Clearly, f is a QTRDF and f(V (G)) = 2q.

Conversely, suppose that G has a QTRDF g with weight 2q.

Claim 1 : For each xi ∈ V (G), g(xi) = 0.

Proof of Claim 1 : By contradiction, assume that there exist some xi’s such that
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x3q
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ct
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Figure 1. Construction of a split graph from an instance of X3SC

g(xi) 6= 0. Let p = |{xi : g(xi) 6= 0}|. The number of xi’s with g(xi) = 0 is

3q − p. Since g is a QTRDF of G, each xi with g(xi) = 0 should have a neighbor cj
with g(cj) = 2. Clearly d 3q−p3 e number of cj ’s with g(cj) = 2 are required. Hence

g(V (G)) ≥ p+ 2d 3q−p3 e, which is greater than 2q, a contradiction. Therefore for each

xi ∈ V (G), g(xi) = 0.

Since each ci is adjacent to three vertices in {x1, x2, . . . , x3q}, clearly, |{c1, c2, . . . , ct}∩
V2| = q. Now {Ci : g(ci) = 2} is an exact cover for X3SC.

Since any split graph is a chordal graph, we have the following.

Corollary 1. QTRDP is NP-complete for chordal graphs.

Theorem 2. QTRDPSC is NP-complete.

Proof. Given a star convex bipartite graph G and a function f , whether f is a

QTRDF of weight at most k can be checked in polynomial time. Hence QTRDPSC

is a member of NP. Now we show that QTRDPSC is NP-hard by transforming an

instance (X,C) of X3SC, where X = {x1, x2, . . . , x3q} and C = {C1, C2, . . . , Ct}, to

an instance (G, k) of QTRDPSC as follows. Create vertices xi for each xi ∈ X and ci
for each Ci ∈ C and also create vertices d, d1, d2, d3. Add edges (di, d) for each di and

(ci, d) for each ci. Also add edges (cj , xi) if xi ∈ Cj . The graph constructed is shown

in Figure 3. Let A = {d} ∪ {xi : 1 ≤ i ≤ 3q} and B = V (G) \A. The set A induces a

star with vertex d as central vertex, as shown in Figure 2, and the neighbors of each

element in B induce a subtree of star. Therefore G is a star convex bipartite graph

and can be constructed from the given instance (X,C) of X3SC in polynomial time.

Next we show that X3SC has a solution if and only if G has a QTRDF with weight

at most 2q + 2.

Suppose C ′ is a solution for X3SC with |C ′| = q. Let D = {ci : Ci ∈ C ′}. We define
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Figure 2. Star graph associated with the star convex bipartite graph
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Figure 3. Star convex bipartite graph construction from X3SC instance

a function f : V (G)→ {0, 1, 2} as follows.

f(u) =

{
2, if u ∈ D or u = d

0, otherwise
(2)

Clearly, f is a QTRDF and f(V (G)) = 2q + 2.

Conversely, suppose that G has a QTRDF g with weight k = 2q + 2. We state the

following claim without proof.

Claim 2 : g({x1, x2, . . . , x3q}) = 0 and g(d) + g(d1) + g(d2) + g(d3) ≥ 2.

Clearly, |{c1, c2, . . . , ct} ∩ V2| = q. Now {Ci : g(ci) = 2} is an exact cover for X3SC.

Theorem 3. QTRDPCC is NP-complete.
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Figure 4. Comb graph associated with the comb convex bipartite graph

Proof. Clearly, QTRDPCC is a member of NP. Now we show that QTRDPCC is

NP-hard by transforming an instance (X,C) of X3SC, where X = {x1, x2, . . . , x3q}
and C = {C1, C2, . . . , Ct}, to an instance (G, k) of QTRDPCC as follows. Create

vertices xi, x
′
i for each xi ∈ X and ci for each Ci ∈ C and also create vertices d,

d′, d1, d2, d3. Add edges (cj , xi) if xi ∈ Cj , (di, d) for each di and (ci, d), (ci, d
′) for

each ci. Also add edges by joining each cj to every x′i. The graph constructed is

shown in Figure 5. Let A = {d, d′} ∪ {xi, x′i : 1 ≤ i ≤ 3q} and B = V (G) \ A. The

set A induces a comb with elements {x′i : 1 ≤ i ≤ 3q } ∪ {d′} as backbone and {xi :

1 ≤ i ≤ 3q } ∪ {d} as teeth, as shown in Figure 4, and the neighbors of each element

in B induce a subtree of the comb. Therefore G is a comb convex bipartite graph

and can be constructed from the given instance (X,C) of X3SC in polynomial time.

Next we show that X3SC has a solution if and only if G has a QTRDF with weight

at most 2q + 2.

Suppose C ′ is a solution for X3SC with |C ′| = q. We construct a QTRDF f on G

same as in Theorem 2. Clearly f(V (G)) = 2q + 2.

The proof of converse is similar to the proof given in Theorem 2.

Since star convex bipartite graphs and comb convex bipartite graphs are subclasses

of tree convex bipartite graphs, the following result is immediate.

Corollary 2. QTRDP is NP-complete for tree convex bipartite graphs.

Next, we show that QTRDP is NP-complete for planar graphs by providing a

polynomial-time transformation from a known NP-complete problem, called domi-

nation decision problem for planar graphs, which is defined as follows.

Domination-Decision-Problem-Planar-Graphs (DDPG)

INSTANCE : An undirected, planar graph G and an integer k.

QUESTION : Is γ(G) ≤ k?
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Figure 5. Comb convex bipartite graph construction from X3SC instance

Theorem 4. QTRDPP is NP-complete.

Proof. Clearly, QTRDPP is in NP. We transform an instance (G, r) of DDPG with

vertex set {v1, v2, . . . , vn} to an instance (H, s) of QTRDPP as follows.

V (H) = V (G) ∪ {ai, bi, ci : i ∈ {1, 2, . . . , n}} and

E(H) = E(G) ∪ {(vi, ai), (ai, bi), (bi, ci), (vi, ci) : i ∈ {1, 2, . . . , n}}.
An illustration to the construction of graph H from G is shown in Figure 6. It is easy

to verify that H is a planar graph and can be constructed from the given instance

(G, r) of DDPG in polynomial time. Next we show that G has a dominating set of

size at most r if and only if H has a QTRDF with weight at most s = r + 3n.

Suppose D be a dominating set of size at most r in G. We define a function

f : V (H)→ {0, 1, 2} as follows.

f(v) =


2, if v ∈ {vi, ai : vi ∈ D} or v ∈ {bi : vi /∈ D}
1, if v ∈ {ai : vi /∈ D}
0, otherwise

(3)

Clearly, f is a QTRDF of H and γqtR(H) ≤ s.
Conversely, suppose that g be a QTRDF of H with weight at most s. Clearly g(vi) +
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Figure 6. An illustration to the construction of graph H from the graph G

g(ai) + g(bi) + g(ci) ≥ 3 for all i, 1 ≤ i ≤ n. From g we construct a QTRDF g′

of H such that g′(vi) = 0 or 2, for all i, 1 ≤ i ≤ n as follows. If g(vi) + g(ai) +

g(bi) + g(ci) ≥ 4 for some i, then assign weights as g′(vi) = 2, g′(ai) = 2, g′(bi) = 0

and g′(ci) = 0. Otherwise, assign weights as g′(vi) = 0, g′(ai) = 1, g′(bi) = 2 and

g′(ci) = 0. It is easy to verify that g′ is a QTRDF of H with weight at most s. Let

D = {vi : g′(vi) = 2}. By contradiction, it can be shown that D is a dominating set

of G with |D| ≤ r.

3. Threshold graphs

Here, we determine the quasi-total Roman domination number of threshold graphs.

A graph G is threshold if and only if the following conditions hold [15]:

i). V (G) is partitioned into two disjoint sets, a clique Q and an independent set R

ii). There exists a permutation (q1, q2, . . . , qp) of vertices of Q such that NG[q1] ⊆
NG[q2] ⊆ ... ⊆ NG[qp], and

iii). There exists a permutation (r1, r2, . . . , ri) of vertices of R such that NG(r1) ⊇
NG(r2) ⊇ ... ⊇ NG(ri).

Theorem 5. If G is a connected threshold graph then

γqtR(G) =


1, if G ∼= K1

2, if G ∼= K2

3, otherwise

(4)

Proof. Clearly γqtR(Ki) = i for i = 1 or 2. Let G be a connected threshold graph

with at least three vertices. Also assume that G has p (≥ 1) clique vertices and i (≥ 1)
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independent vertices as described above. We define a function f : V (G) → {0, 1, 2}
as follows.

f(v) =


2, if v = qp

1, if v = ri

0, otherwise

(5)

Clearly, f is a QTRDF and γqtR(G) ≤ 3. Since G has at least three vertices by the

definition of QTRDF it follows that γqtR(G) ≥ 3. Hence the theorem.

If G is a disconnected threshold graph with k(≥ 2) connected components

G1,G2,. . .,Gk then γqtR(G) =
∑k

i=1 γqtR(Gi).

Now, the result below follows from Theorem 5 and the fact that the ordering of

dominating vertices of threshold graph can be found in linear time [15].

Theorem 6. MQTRDP is linear time solvable for threshold graphs.

4. Chain graphs

In this section, we determine the quasi-total Roman domination number of chain

graphs. A bipartite graph G = (X,Y,E) is called a chain graph if the neighborhoods

of the vertices of X form a chain, that is, the vertices of X can be linearly ordered,

say (x1, x2, ..., xs), such that NG(x1) ⊆ NG(x2) ⊆ . . . ⊆ NG(xs). If G = (X,Y,E)

is a chain graph, then the neighborhoods of the vertices of Y also form a chain.

An ordering α = (x1, x2, . . . , xs, y1, y2, . . . , yt) of X ∪ Y is called a chain ordering if

NG(x1) ⊆ NG(x2) ⊆ . . . ⊆ NG(xs) and NG(y1) ⊇ NG(y2) ⊇ . . . ⊇ NG(yt). Every

chain graph admits a chain ordering [20].

Theorem 7. Let G = (X,Y,E) be a connected chain graph. Then

γqtR(G) =


2, if G ∼= K2

3, if |X| = 1 and |Y | = t (≥ 2)

4, if |X| = s (≥ 2) and |Y | = t (≥ 2)

(6)

Proof. Let G be a chain graph with |X| = s and |Y | = t, where s, t ≥ 1. Clearly

γqtR(G) = 2 when G ∼= K2 and γqtR(G) = 3 when G ∼= K1,r, where r ≥ 2. Next,

we assume that s ≥ 2 and t ≥ 2. Now we define a function f : V (G) → {0, 1, 2} as

follows.

f(v) =

{
2, if v = xs or yt

0, otherwise
(7)

Clearly f is a QTRDF and γqtR(G) ≤ 4. By contradiction it can be easily shown

that γqtR(G) ≥ 4. Therefore in this case, γqtR(G) = 4. Now from Theorem 7 and the

fact that the chain ordering of a chain graph can be computed in linear time [18] the

below theorem follows.
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Theorem 8. MQTRDP can be solved in linear time for chain graphs.

5. Bounded treewidth graphs

A tree decomposition of a graph H is a tree T1 with the vertex set V (T1) =

{Z1, Z2, . . . , }, a subset of the power set of V (H) with the following requirements.

i). V (H) =
⋃

Zv∈V (T1)
Zv

ii). ∀(u, v) ∈ E(H), there exists a vertex Zt ∈ V (T1) such that u, v ∈ Zt, and

iii). ∀v ∈ V (H), the induced subgraph {Zt : v ∈ Zt and Zt ∈ V (T1)} is a subtree of

T .

Then the tree decomposition T1 of H is said to have width equals to max{|Zt| − 1 :

Zt ∈ V (T1)}. The treewidth is the smallest width of a tree decomposition of a graph.

A graph problem for bounded treewidth graphs is linear time solvable if there exists

a counting monadic second-order logic (CMSOL) formula for it [1]. We show that

QTRDP can be expressed in CMSOL.

Theorem 9. Given a graph G and a positive integer k, QTRDP can be expressed in
CMSOL.

Proof. Let f : V (G) → {0, 1, 2} be a function. Also, for j = 0, 1 or 2, let

Vj = {v | g(v) = j}. A CMSOL formula for the QTRDP is expressed as follows.

Quasi Total Rom Dom(V (G)) = (f(V (G)) ≤ k) ∧ ∃V0, V1, V2 ∀p(p ∈ V1 ∨ (p ∈
V2 ∧ ∃q ∈ V1 ∪ V2 ∧ edge(p, q)) ∨ (p ∈ V0 ∧ ∃q ∈ V2 ∧ edge(p, q))),

where edge(p, q) holds true iff (p, q) ∈ E(G).

Now, the theorem below follows from Courcelle’s result [3] and Theorem 9.

Theorem 10. MQTRDP for graphs with treewidth at most a constant is solvable in
linear time.

6. Integer linear programming formulation

Let G = (V,E) be an undirected graph, with |V (G)| = n, |E(G)| = m and

f : V (G) → {0, 1, 2} be a QTRDF of G. Here we present an integer linear program

(ILP) model for MQTRDP. This model uses two sets of binary variables. Specifically,

for each vertex v ∈ V (G), we define

av =

{
1, f(v) = 1

0, otherwise
bv =

{
1, f(v) = 2

0, otherwise
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The ILP model of the MQTRDP can now be formulated as

Determine :

min
{ ∑
v∈V (G)

(av + 2bv)
}

(8)

subject to constraints:

av + bv +
∑

u∈N(v)

bu ≥ 1, v ∈ V (G) (9)

bv ≤
∑

u∈N(v)

(au + bu), v ∈ V (G) (10)

av + bv ≤ 1, v ∈ V (G) (11)

av, bv ∈ {0, 1} (12)

The objective function given in Equation 8 minimizes the weight of QTRDF. Con-

straint 9 ensures Roman domination condition i.e., either a vertex is assigned label

1 or 2, or if the label assigned is zero then it is adjacent to a vertex with label 2.

Constraint 10, guarantees that every vertex with label two has at least one neighbor

with a non-zero label. Condition 11, guarantees that exactly one label is assigned to

every vertex and the condition 12 ensures that the variables are binary in nature.

In the proposed ILP model, the number of variables is 2n and the constraints is 3n.

7. Conclusion

In this paper, we have shown that the problem of determining if a graph has a quasi-

total Roman domination number of at most k is NP-complete for split graphs, star

convex bipartite graphs, comb convex bipartite graphs and planar graphs. Investi-

gating the algorithmic complexity of these problems for other subclasses of bipartite

graphs and chordal graphs remains open. Next, it is shown that MQTRDP is lin-

ear time solvable for threshold graphs, chain graphs and bounded tree-width graphs.

Finally, an integer linear programming formulation for the quasi-total Roman dom-

ination problem is proposed. Designing better ILP formulations for the quasi-total

Roman domination problem is interesting.
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