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Abstract: A subset S of vertices in a graph G = (V,E) is 2-independent if every

vertex of S has at most one neighbor in S. The 2-independence number is the maximum

cardinality of a 2-independent set of G. In this paper, we initiate the study of the 2-
independence subdivision number sdβ2

(G) defined as the minimum number of edges

that must be subdivided (each edge in G can be subdivided at most once) in order

to increase the 2-independence number. We first show that for every connected graph
G of order at least three, 1 ≤ sdβ2

(G) ≤ 2, and we give a necessary and sufficient

condition for graphs G attaining each bound. Moreover, restricted to the class of trees,

we provide a constructive characterization of all trees T with sdβ2
(T ) = 2, and we show

that such a characterization suggests an algorithm that determines whether a tree T

has sdβ2
(T ) = 2 or sdβ2

(T ) = 1 in polynomial time.
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1. Introduction

Let G = (V,E) be a simple graph with vertex set V and edge set E. The open

neighborhood of a vertex v ∈ V is the set N(v) = {u ∈ V : uv ∈ E} and the closed

neighborhood of v is the set N(v) ∪ {v}. For a subset S ⊆ V, we denote by 〈S〉 the

subgraph induced by the vertices of S. The degree of a vertex v is degG(v) = |N(v)|.
An isolated vertex is a vertex with degree zero. A vertex of degree one is called a

leaf and its neighbor is called a stem. A stem is said to be strong if it is adjacent to

at least two leaves. A healthy spider SSp for p ≥ 2 is obtained from a star K1,p by
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subdividing each edge by exactly one vertex. The center vertex of a healthy spider

will be called a head. An induced matching in a graph G is a set of edges, no two

of which meet a common vertex or are joined by an edge of G. In other words, an

induced matching is a matching which forms an induced subgraph. The diameter of a

connected G, denoted by diam(G), is the maximum value among minimum distances

between all pairs of vertices of G.

In [5], Fink and Jacobson generalized the concept of independent sets as follows. Let

k be a positive integer. A subset S of V is k-independent if the maximum degree of

the subgraph induced by the vertices of S is less or equal to k−1. The k-independence

number βk(G) is the maximum cardinality of a k-independent set of G. Clearly, for

k = 1, the 1-independent sets are the classical independent sets. In this paper, we are

interested in the case k = 2. A 2-independent set of a graph G with cardinality β2(G)

is called a β2(G)-set. For more details on the k-independence, we refer the reader to

the survey by Chellali et al. [3].

The aim of this paper is to initiate the study of the 2-independence subdivision

number sdβ2(G) of a graph G that we define as the minimum number of edges that

must be subdivided (where each edge in G can be subdivided at most once) in order

to increase the 2-independence number of G. It is worth noting that since the 2-

independence number of the complete graph K2 remains unchanged when its unique

edge is subdivided, we will assume in our study that at least one component of the

graph G has order at least 3. Moreover, if G1, G2, . . . , Gt are the components of G,

then β2(G) =
∑t
i=1 β2(Gi) and if G1, G2, . . . , Gm are the components of G of order at

least 3, then sdβ2(G) = min{sdβ2(Gi) | 1 ≤ i ≤ m}. Therefore we will only consider

connected graphs of order at least three. It should be noted that if k ≥ 3, then

sdβk
(G) = 1 for every nontrivial connected graph G. Indeed, consider any βk(G)-set

S, and subdivide an arbitrary edge belonging to 〈S〉 or 〈V − S〉 ; if not any edge of

G.

We close this section by mentioning that studies about the influence of edge subdi-

visions over a domination parameter was first defined in 2000 by Arumugam for the

domination number. Afterwards, Haynes et al. [6] studied the 1-independence sub-

division number sdβ1
(G), and so the concept was extended to total domination (see

[7]), 2-domination (see [1]) and Roman domination (see [2]).

2. Tight bounds for sdβ2

We begin by showing that the subdivision of an edge of G cannot decrease the 2-

independence number but can increase it by at most one.

Proposition 1. If G′ is the graph obtained from a graph G by subdividing one edge of
G, then β2(G) ≤ β2(G′) ≤ β2(G) + 1.

Proof. Let G′ = (V ′, E′) be the graph obtained from the graph G = (V,E) by

subdividing an edge uv ∈ E with a new vertex x. Note that V ′ = V ∪ {x} and
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E′ = {ux, xv} ∪ E − {uv}. Let S be a β2(G)-set. If |S ∩ {u, v}| ≤ 1, then clearly

S remains a 2-independent set of G′. Hence assume that |S ∩ {u, v}| = 2. Then

{x} ∪ S − {u} is a 2-independent set of G′, and either case we have β2(G′) ≥ β2(G).

To prove the upper bound, let S′ be a β2(G′)-set. If x ∈ S′, then S = S′ − {x}
is a 2-independent set of G. Hence let x /∈ S′. Then |S′ ∩ {u, v}| ≥ 1, for otherwise

S′ ∪ {x} is a 2-independent set of G′ larger than S′, a contradiction. Thus, without

loss of generality, let u ∈ S′. It follows that S′ − {u} is a 2-independent set of G. In

either case, β2(G) ≥ β2(G′)− 1.

Trivially, sdβ2(G) ≥ 1 for every connected graph of order at least three. The next

result provides a necessary and sufficient condition for connected graphs G with

sdβ2(G) = 1.

Theorem 1. Let G be a connected graph of order n ≥ 3. Then sdβ2(G) = 1 if and only
if there exists a β2(G)-set S such that one of the conditions below is fulfilled.

(a) 〈V − S〉 contains an edge.

(b) 〈S〉 contains an isolated vertex.

Proof. Let G be a connected graph of order n ≥ 3 with sdβ2
(G) = 1. Suppose that

no β2(G)-set fulfills neither condition (a) nor (b). Hence for every β2(G)-set S, V −S is

independent and 〈S〉 contains no isolated vertex. Since sdβ2(G) = 1, let uv be an edge

of G whose subdivision into ux and xv increases β2(G). Let G′ be the graph resulting

from the subdivision of uv, and let S′ be a β2(G′)-set. Clearly, |{u, x, v} ∩ S′| ≥ 1

for otherwise S′ ∪ {x} is a 2-independent set of G′ larger than S′, a contradiction.

Assume first that u, v /∈ S′. Then x ∈ S′, and S = S′ − {x} is a 2-independent set of

G. It follows that β2(G) ≥ β2(G′)− 1 ≥ β2(G) + 1− 1 = β2(G), and therefore S is a

β2(G)-set. But since u, v ∈ V − S, V − S is not independent, a contradiction. Hence

{u, v}∩S′ 6= ∅. Without loss of generality, let u ∈ S′. If x, v /∈ S′, then {x}∪S′−{u}
is a β2(G′)-set that does not contain u, v and such a situation has been considered

above. Hence either u, x ∈ S′ or u, v ∈ S′. Suppose that u, x ∈ S′. Thus v /∈ S′, and

as above S′ − {x} is β2(G)-set in which u has no neighbor, a contradiction. Finally,

suppose that u, v ∈ S′. Then x /∈ S′. If neither u nor v has any neighbor in S′, then

S′ is a 2-independent set of G, and thus β2(G) ≥ |S′| = β2(G) + 1, which leads to a

contradiction. Hence u or v has a neighbor in S′. Without loss of generality, let u′ be

a neighbor of u in S′. In this case, S′−{u} is a β2(G)-set in which u′ has no neighbor,

a contradiction.

Conversely, let S be a β2(G)-set satisfying (a) or (b). Assume first that 〈V − S〉
contains an edge uv ∈ E, and let G′ be the graph obtained from G by subdividing the

edge uv with a new vertex x. In this case, it is clear that S ∪ {x} is a 2-independent

set of G. Hence β2(G′) ≥ |S| + 1 = β2(G) + 1, and thus sdβ2
(G) = 1. Assume now

that 〈S〉 contains an isolated vertex u. Since G is a connected graph of order at least

three, let v ∈ V − S be a neighbor of u. Let G′ be defined as before. Then S ∪ {x}
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is a 2-independent set of G′, and thus β2(G′) ≥ |S| + 1 = β2(G) + 1. Therefore,

sdβ2(G) = 1.

Corollary 1. If G is a connected graph having a complete subgraph of order at least four,
then sdβ2(G) = 1.

Proof. Let H be a complete subgraph of G of order at least four. Clearly, for every

β2(G)-set S, the subgraph induced by V (G)−S contains at least two adjacent vertices

belonging to H, fulfilling item (a) of Theorem 1. Therefore sdβ2
(G) = 1.

Our next result gives a framework for sdβ2(G) for every connected graph of order

n ≥ 3.

Theorem 2. For every connected graph G of order n ≥ 3, sdβ2(G) ∈ {1, 2}.

Proof. Assume first that G is a complete graph Kp. Clearly, if p = 3, then clearly

sdβ2
(G) = 2. Hence let p ≥ 4. Then for every β2(G)-set S, the subgraph induced by

V − S contains an edge, and hence by Theorem 1, sdβ2(G) = 1. In the sequel, we

can assume that G is not a complete graph. Since n ≥ 3, G contains an induced

path P3 = uxv. Let S be a β2(G)-set. Clearly 1 ≤ |{u, x, v} ∩ S| ≤ 2. Consider the

following cases.

Case 1. |{u, x, v} ∩ S| = 1.

If u ∈ S (the case v ∈ S is similar), then v, x ∈ V − S, and by Theorem 1-(a),

sdβ2
(G) = 1. Hence let x ∈ S. If x has no neighbor in S, then by Theorem 1-(b),

sdβ2(G) = 1. Thus assume that x has a neighbor in S, and consider the graph G′

obtained from G by subdividing the edges ux and vx with new vertices u′ and v′,

respectively. Then {u′, v′}∪S−{x} is a 2-independent set of G′ of cardinality |S|+1.

Therefore β2(G′) > β2(G) and so sdβ2
(G) ≤ 2.

Case 2. |{u, x, v} ∩ S| = 2.

If u, x ∈ S (the case v, x ∈ S is similar), then consider the graph G′ obtained from G

by subdividing the edges ux and vx with new vertices u′ and v′, respectively. Then

S ∪ {u′, v′} − {x} is a 2-independent set of G′ of size |S| + 1. Therefore β2(G′) ≥
β2(G) + 1, and so sdβ2

(G) ≤ 2. Assume now that u, v ∈ S. Thus x ∈ V − S. If u

is isolated in 〈S〉, then by Theorem 1-(a), sdβ2
(G) = 1. Hence we can assume that

u has a neighbor w ∈ S. Let G′ be the graph obtained from G by subdividing the

edges uw and xu with new vertices w′ and u′, respectively. Then {w′, u′} ∪ S − {u}
is a 2-independent set of G′ of size |S| + 1. Therefore β2(G′) ≥ β2(G) + 1, and thus

sdβ2
(G) ≤ 2.

According to Theorem 1, we obtain a necessary and sufficient condition for connected

graphs G with sdβ2
(G) = 2.

Theorem 3. Let G be a connected graph of order n ≥ 3. Then sdβ2(G) = 2 if and only
if for every β2(G)-set S, V − S is an independent set and 〈S〉 is an induced matching.
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The following corollary follows from Theorem 3.

Corollary 2. Let G be connected graph of order n ≥ 3. If β2(G) is odd, then sdβ2(G) = 1.

3. Trees T with sdβ2(T ) = 1 or 2

In this section, we provide a constructive characterization of the family O of all trees

T with sdβ2
(T ) = 2. Clearly since sdβ2

(T ) ∈ {1, 2}, every T of order at least three

not in O satisfies sdβ2(T ) = 1, yielding a complete characterization of all trees T with

sdβ2
(G) = 1 or 2. Each tree T ∈ O has a distinguished subset A(T ) of vertices. First,

O contains any tree T1 which is a healthy spider SSt (t ≥ 2) with head y, and for

such a tree we set A(T1) = V (T1)− {y}. Next, if T ′ is any tree in O, then we put in

O any tree T that can be obtained from T ′ by the following operation:

• Operation O1: Let H be either a path P3 with a leaf x or a healthy spider

SSt (t ≥ 2) with head x. Then T is obtained from T ′ by adding an edge xw,

where w ∈ A(T ′). Let A(T ) = A(T ′) ∪ (V (H)− {x}).

Before proceeding further, we give the following useful Observation and Lemma.

Observation 4. For every graph G, there exists a β2(G)-set which contains all leaves of
G.

Lemma 1. If G is a graph containing a strong stem or two adjacent stems, then sdβ2(G) =
1.

Proof. By Observation 4, let S be a β2(G)-set containing all leaves of G. As-

sume first that G contains a strong stem, say x. Clearly, x /∈ S, since S contains

all leaves adjacent to x. Hence 〈S〉 contains isolated vertices, and thus by Theorem

1-(a), sdβ2(G) = 1. Assume now that G contains two adjacent stems x and y. We

may assume that neither x nor y is a strong stem. Let x′ and y′ be the leaf neighbors

of x and y, respectively. Clearly, x′, y′ ∈ S, |S ∩ {x, y}| ≤ 1 and thus either x′ or y′

has no neighbor in S. Therefore 〈S〉 contains an isolated vertex and thus by Theorem

1-(a), sdβ2
(G) = 1.

The following Proposition follows from Observation 4, Lemma 1 and Theorem 1.

Proposition 2. Let T be a tree such that sdβ2(T ) = 2. Then all stems of T are weak
and every β2(T )-set contains all stems of T and their leaves.

We state the following lemma.

Lemma 2. If T ∈ O, then
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a) 〈A(T )〉 is an induced matching.

b) V (T )−A(T ) is an independent set.

c) A(T ) is a unique β2(T )-set.

Proof. Parts (a) and (b) follow directly from the way a tree T ∈ O is constructed.

To prove part (c), let T ∈ O. Then T is obtained from a sequence T1, T2, . . . , Tk
(k ≥ 1) of trees, where T1 is a healthy spider SSt (t ≥ 2) with head x, T = Tk, and, if

k ≥ 2, then Ti+1 is obtained recursively from Ti by Operation O1 defined above. We

proceed by induction on the total number of operation O1 performed to construct T .

If k = 1, then SSt (t ≥ 2), and clearly A(T1) = V (T1)− {x} is the unique β2(T )-set.

This establishes the basis case.

Assume now that k ≥ 2 and that the result holds for all trees T ∈ O that can be

constructed from a sequence of length at most k − 1, and let T ′ = Tk−1. Applying

our inductive hypothesis to T ′ ∈ O shows that A(T ′) is the unique β2(T ′)-set. Let

T be a tree obtained from T ′ by using operation O1. We examine the following two

situations.

Assume first that a path P3 = xyz has been added and attached to T ′ by the edge

xw at a vertex w ∈ A(T ′). It is easy to see that β2(T ) = β2(T ′) + 2 and A(T ) =

A(T ′)∪ {y, z} is a β2(T )-set. Moreover, using the facts that every β2(T )-set contains

at most two vertices of {x, y, z} and A(T ′) is the unique β2(T ′)-set, we conclude that

A(T ) is the unique β2(T )-set.

Assume now that a healthy spider SSt (t ≥ 2) with head x has been added and

attached to T ′ by the edge xw at a vertex w ∈ A(T ′). As above, it is easy to see that

β2(T ) = β2(T ′) + 2t and A(T ) = A(T ′)∪ (V (SS1,t)−{x}) is a β2(T )-set. Also, since

every β2(T )-set contains at most 2t vertices of SS1,t, and the unicity of β2(T ′)-set we

deduce that A(T ) is the unique β2(T )-set.

According to Lemma 2 and Theorem 3, the following corollary is immediate.

Corollary 3. If T ∈ O, then sdβ2(T ) = 2.

Now, we are ready to state the main result of this section.

Theorem 5. Let T be a tree of order at least three. Then sdβ2(T ) = 2 if and only if
T ∈ O.

Proof. If T ∈ O, then by Corollary 3, sdβ2
(T ) = 2. To prove the necessity, we use

an induction on the order n of T . Clearly, diam(T ) ≥ 4, since T cannot have neither

strong stems nor adjacent stems (by Lemma 1). Moreover, the smallest tree T of

diameter 4 with sdβ2
(T ) = 2 is the path P5 = SS2 that belongs to O, establishing

the basis case. Let n ≥ 6 and assume that every tree T ′ of order 5 ≤ n′ < n with

sdβ2
(T ′) = 2 belongs to O. Let T be a tree of order n with sdβ2

(T ) = 2.
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If diam(T ) = 4, then by Lemma 1, T is a healthy spider SSt (t ≥ 3) and T ∈ O.
Hence we may assume that diam(T ) ≥ 5.

We root T at a leaf r of a maximum eccentricity. Among all vertices at distance

diam(T )− 2 from r on a longest path starting at r, let v be one of maximum degree.

Since diam(T ) ≥ 5, let u be the parent of v in the rooted tree. Also, by Lemma 1,

Tv is either a path P3 (degT (v) = 2) or a healthy spider SSt (t ≥ 2) with head v

(degT (v) ≥ 3). According to Proposition 2, let S be a β2(T )-set containing all stems

and their leaves. Hence v /∈ S, and by Theorem 3, u ∈ S. Let T ′ = T − Tv and

t = degT (v)− 1. Note that T ′ has order n′ ≥ 3 (since we assumed that diam(T ) ≥ 5).

It is easy to see that β2(T ′) = β2(T )− 2t. Moreover, assume that sdβ2
(T ′) = 1. Let e

be an edge of T ′ whose subdivision increases β2(T ′). Let T ′e (resp. Te) be the resulting

tree obtained from T ′ (resp. T ) by subdividing the edge e. If D is a β2(T ′e)-set, then

clearly D ∪ (V (Tv)− {v}) is a 2-independent set of Te. Therefore

β2(Te) ≥ |D ∪ (V (Tv)− {v})| = β2(T ′e) + 2t

> β2(T ′) + 2t = β2(T ),

implying that sdβ2
(T ) = 1, a contradiction. Hence sdβ2

(T ′) = 2, and by the induction

hypothesis we have T ′ ∈ O. Note that S ∩ V (T ′) is a β2(T ′)-set containing vertex

u. By Lemma 2, A(T ′) is the unique β2(T ′)-set and thus u ∈ A(T ′). It follows that

T ∈ O because it is obtained from T ′ by using operation O1.

The next result is an immediate consequence of Theorems 5 and 2.

Corollary 4. If T /∈ O is a tree of order at least three, then sdβ2(T ) = 1.

The proof of Theorem 5 suggests a polynomial-time algorithm which, given a tree T

with n vertices, decides whether T is in O and thus has sdβ2
(T ) = 2 or sdβ2

(T ) = 1.

Here is an outline of the algorithm. If diam(T ) ≤ 3, then answer T /∈ O and stop.

Now let diam(T ) = 4. If T has neither a strong stem no adjacent stems, then answer

T ∈ O and stop. Else answer T /∈ O and stop. In the sequel, suppose diam(T ) ≥ 5.

Pick a vertex r, root the tree T at r, and pick a vertex b1 at maximum distance from

r. Let b2 be the parent of b1 in the rooted tree and b3 be the parent of b2. If either

b2 has at least two children, or b3 has a child with degree one, then return the answer

T /∈ O and stop. Else, let b4 be the parent of b3. Call the algorithm recursively on

the tree T ′ = T − Tb3 ; if the answer to the recursive call is T ′ ∈ O and b4 ∈ A(T ′),

then answer T ∈ O, return A(T ) = A(T ′) ∪ (V (Tb3)− {b3}), and stop, else answer

T /∈ O and stop.

Recall that a subset S of V (G) is a double dominating set of G if for every vertex

v ∈ V (G), |N [v] ∩ S| > 2, that is, v is in S and has at least one neighbor in S

or v is in V (G) − S and has at least two neighbors in S. The double domination

number γ×2(G) is the minimum cardinality among all double dominating sets of G.

It is worth mentioning that from the way a tree T ∈ O is constructed, one can
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easily observe that set A(T ) is a double dominating set of T. Hence if T ∈ O, then

γ×2(T ) ≤ |A(T )| = β2(T ). The equality is obtained from a result given in [4] where

the authors showed that for every nontrivial tree T, γ×2(T ) ≥ β2(T ). However, the

converse is not true, as can be seen by the tree T ∗ obtained from two paths P5 by

adding an edge between their centers. Clearly, γ×2(T ∗) = β2(T ∗) = 8 but T ∗ /∈ O.
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