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Abstract: The chromatic number, χ(G) of a graph G is the minimum number of
colours used in a proper colouring of G. In an improper colouring, an edge uv is bad if

the colours assigned to the end vertices of the edge is the same. Now, if the available

colours are less than that of the chromatic number of graph G, then colouring the graph
with the available colours lead to bad edges in G. The number of bad edges resulting

from a δ(k)-colouring of G is denoted by bk(G). In this paper, we use the concept of
δ(k)-colouring and determine the number of bad edges in Cartesian product of some

graphs.
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1. Introduction

For all terms and definitions, not defined specifically in this paper, we refer to [1, 4, 11]

and for graph products, we refer to [3, 5]. Further, for the terminology of graph

colouring, see [2, 6, 9]. Unless mentioned otherwise, all graphs considered here are

undirected, simple, finite and connected. In a proper vertex colouring, the vertices

are coloured in such a way that no two adjacent vertices receive the same colour. A

colour class of a graph G is a set of independent vertices assigned a same colour. In

an improper colouring, an edge uv is a bad edge if c(u) = c(v).

A colouring that restricts the number of colour classes that can have adjacency be-

tween their own elements to minimise the number of bad edges in a graph is called as
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near proper colouring [8]. From the definition of near proper colouring, the authors in

[8], brought in a new concept of δ(k)-colouring which is a near proper colouring with

k given colours where 1 ≤ k ≤ χ(G)− 1, that minimises the number of bad edges by

restricting a colour class to have adjacency among its own elements. The number of

bad edges resulting from a δ(k)-colouring of graph G is denoted by bk(G).

Unless mentioned otherwise, the colour class C1 will be restricted to have adjacency

between the vertices in it throughout the discussion.

The articles [7, 8, 10] give clear explanation of few engrossing studies related to this

concept. Motivated by the studies mentioned above, we discuss the δ(k)-colouring of

Cartesian products of some fundamental graph classes.

2. δ(k)-Colouring of Cartesian Products of Graphs

First recall the definition of the Cartesian product of two graphs as given in [5].

Definition 1. [3, 5] The Cartesian product of two graphs G and H is a graph, denoted
as G2H, whose vertex set is V (G)× V (H) = {vij = (ui, wj) : ui ∈ V (G), wj ∈ V (H). Two
vertices vij and vkl are adjacent in G2H if either

(i) ui = uk and wj is adjacent to wl in H; or

(ii) wj = wl and vi is adjacent to vk in G.

In this discussion, we investigate the δ(k)-colouring of the Cartesian products of dif-

ferent combinations of paths, cycles and complete graphs. The Cartesian product

Pm2Pn, known as the grid graph, is a bipartite graph, as the Cartesian product of

two bipartite graphs is bipartite (see [5]). Hence, its chromatic number is 2 and the

possible number of colours for a δ(k)-colouring is k = 1. However, colouring the graph

with a single colour will lead all the edges to be bad. Hence, we examine the other

possible combinations.

A prism graph, denoted by Ym,n, is the graph Cartesian product Cn2Pm. The graph

Ym,n has mn vertices and m(2n − 1) edges. Now, we discuss the δ(k)-colouring of

prism graph.

In the Cartesian product of Cn and Pm, the number of bad edges in Cn2Pm is m times

the number of bad edges in Cn (since there are m copies of Cn say Cn,1, Cn,2, . . . Cn,m

each of order n, in Cn2Pm) in addition to the number of bad edges between the m

Cn’s (if there is any). Since χ(Cn) = 2 and χ(Cn) = 3 when n is even and odd

respectively, we exclude the case of Cn when n is even (as colouring a graph with

k = 1 colour will result in all its edges to be bad) and determine the δ(k)-colouring of

Cn2Pm when n is odd in the following theorem.

Theorem 1. For n ≡ 1 (mod 2) and m ≥ 2, the minimum number of bad edges in
Ym,n = Cn2Pm resulting from δ(k)-colouring is given by, b2(Ym,n) = 2m− 1.
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Proof. Let c1 and c2 be the two available colours and C1 and C2 be their respective

colour classes. For 1 ≤ i ≤ n, vi,j corresponds to jth vertex of ith copy of Cn. We

colour Cn,1 in following manner. Let the vertex v1,1 receive the colour c1, v1,2 the

colour c2, v1,3 the colour c1. Continuing like this, the vertex v1,n is assigned the

colour c1 to maintain the perquisites of δ(k)-colouring and this lead to one bad edge

v1,1v1,n in Cn,1. Note that, the number of bad edges in Cn, where n is odd, is always

1 (see [8]). Now, in a δ(k)-colouring, we try to minimise the number of bad edges with

the available k colours. Hence, we colour Cn,2 in a way to minimise the bad edges

between Cn,1 and Cn,2 and this is possible only if the end vertices of the bad edge

in Cn,1 is not adjacent to an edge in Cn,2, whose end vertices also receive the same

colour as that of the bad edge in Cn,1. Thus, since the end vertices of the bad edge

v1,1v1,n of Cn,1 is adjacent to the end vertices of v2,1v2,n of Cn,2, colour the vertex

v2,1 of Cn,2 with c2, the vertex v2,2 with c1 and continuing this, the vertices v2,n−1
and v2,n are assigned the colour c1 which leads to one bad edge in Cn,2, to maintain

the requirements of δ(k)-colouring. Now, only the vertex v1,1 coloured with c1 is

adjacent to v2,n−1 coloured with c1 leading to one bad edge between Cn,1 and Cn,2.

Now, since no vertex of Cn,1 is adjacent to the vertices of Cn,3, follow the colouring

pattern of Cn,1 to Cn,3, which again leads to one bad edge in Cn,3 and one in between

Cn,2 and Cn,3. Again, the colouring pattern of Cn,2 can be followed to Cn,4, leading

to one bad edge in Cn,4 and one in between Cn,3 and Cn,4. Thus, continuing this

pattern for all the m copies of Cn, we see that there is only one bad edge in each

copy of Cn and one in between two copies of Cn. Since there are m copies of Cn

in Cn2Pm, the total minimum number of bad edges resulting from δ(k)-colouring in

Ym,n is m+m− 1 = 2m− 1.

The Cartesian product of two cycles are called torus grids. The following theorem

discusses the δ(k)-colouring and the minimum number of bad edges in torus grids

resulting from the same.

Theorem 2. For Cn2Cm, where n ≥ m, the minimum number of bad edges resulting
from δ(k)-colouring is given by,

bk(Cn2Cm) =

2n, if n is even and m is odd,

2m, Otherwise.

Proof. Consider a δ(k)-colouring for Cn2Cm with two colours c1 and c2 and their

respective colour classes C1 and C2. For Cn2Cm, we take m copies of Cn and colour

each copy of Cn in such a way to reduce the number of bad edges in and between

each copy of Cn. Let Cn,1, Cn,2, . . . , Cn,m be m copies of Cn and for 1 ≤ i ≤ n,

vi,j corresponds to jth vertex of ith copy of Cn. In Cn2Cm, only the vertices of

the consecutive copies, and the vertices of Cn,1 and Cn,m are adjacent to each other

respectively. Now, following are the three cases addressed depending on the parities

of n and m in Cn2Cm.
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Case 1. Let n be even and m be odd.

Since n is even, the m copies of the Cn can be properly coloured using the two colours

c1 and c2. Now, for colouring an even cycle there are n
2 possibilities of colour c1 and

c2 respectively. The first copy, Cn,1, is coloured in the following manner. Let the

vertex v1,1 be given the colour c1, v1,2 the colour c2 and so on the v1,n−1 the colour

c1 and the last vertex v1,n the colour c2. The second copy Cn,2 is coloured as follows.

The first vertex v2,1 is assigned the colour c2, the vertex v2,2 the colour c1 and the

last vertex v2,n the colour c1. Again, Cn,3 and Cn,4 receive the colouring pattern

of Cn,1 and Cn,2 respectively and so on. Now, since m is odd, Cn,m will receive

the same colouring pattern as that of Cn,1 which thereby leads to the violation of the

requirements of δ(k)- colouring. So, to maintain the definition, we colour the last copy

in such a way that the vertices that are assigned the colour c2 in Cn,1 and Cn,m−1,

adjacent to the last copy Cn,m, will be assigned the colour c1 . It can be observed

that among the n vertices of Cn,1 and Cn,m−1, n
2 vertices of each copy is assigned the

colour c2. This thereby leads in colouring all the n vertices of Cn,m with c1 and this

leads to all the n edges to be bad. Now, the number of bad edges between Cn,m and

Cn,1 and Cn,m and Cn,m−1 will be θ(c1) = n
2 respectively. Thus the total number of

bad edges resulting from δ(k)-colouring in Cn2Cm when n is even and m is odd is 2n.

Case 2. Let n be odd and m be even.

The colouring pattern for this case follows the same as that of the Theorem 1. Now,

since the consecutive copies have edges between them, the number of bad edges be-

tween the m copies is m−1 and each odd Cn will have one bad edge in it. Now, either

of the end vertices of the bad edge in Cn,1 is adjacent to a vertex assigned the colour

c1 in Cn,m. This lead to a bad edge between Cn,1 and Cn,m. Thus, the minimum

number of bad edges resulting from δ(k)-colouring in Cn2Cm when n is odd and m

is even is m+m− 1 + 1 = 2m.

Note that, the Cartesian product of any two graphs is commutative and hence the

number of bad edges for both the cases is the same. In the above two cases the parity

of the two integers have been separately dealt with to know the δ(k)-colouring pattern

in both the cases.

Case 3. Let both n and m be odd.

The minimum number of bad edges in an odd cycle is 1 (see [8]) and hence between

any two consecutive copies, the minimum number of bad edges is one, also between

the first and the last copy the minimum bad edge obtained from a δ(k)-colouring is

again one. Hence, below given is a δ(k)-colouring that attains the minimality of the

number of bad edges in Cn2Cm, when both n and m are odd. Assign the vertex v1,1
the colour c1, v1,2 the colour c2, v1,3 the colour c1 as so on the vertex v1,n the colour

c1 to maintain the perquisites of δ(k)-colouring. This lead to one bad edge v1,1v1,n
in Cn,1. Since, v1,1v1,n is the bad edge in the Cn,1, we colour the second copy, Cn,2

in such a way that a vertex which is adjacent to either of the end vertices of the

bad edge in Cn,1 is assigned colour c2. We start with the vertex v2,1 and assign the

colour c2 to it. The vertex v2,2 is assigned the colour c1 and so on the vertex v2,n−1
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the colour c1 and v2,n the colour c1, to maintain the requirements of δ(k)-colouring

and this lead to a bad edge (v2,n−1v2,n) in Cn,2. Now, for the third copy, Cn,3, start

colouring with the vertex v3,n which is adjacent to the end vertex of the bad edge

of the previous copy, Cn,2. Colour the vertex v3,n with c2, the vertex v3,1 with c1
and so on the vertex v3,n−2 and v3,n−1 will receive the colour c1, leading to one bad

edge. Thus, every copy is coloured according to its adjacency between the end vertices

that lead to bad edge in the previous copy. Thus, we follow this pattern and colour

the Cn,m-th copy, starting from the vertex that is adjacent to the end vertex of the

previously coloured copy in clockwise direction. Now, say if vm−1,nvm−1,1 is the bad

edge in Cn,m−1-th copy, we start colouring the Cn,m-th copy from the vertex vm,1 by

assigning it the colour c2 and if vm−1,jvm−1,j+1 for any j = 2, 3, . . . , n− 1 is the bad

edge in m−1-th copy, then we start colouring from the vertex vm,j+1 of the copy Cn,m

by assigning it the colour c2, then the vertex vm,j+2 is assigned the colour c1 and so

on. Thus, this colouring gives one bad edge in each copy of the cycle. Also, between

each copy the minimum number of bad edge (one) is also maintained. Since there

are m copies of Cn, the total number of bad edges between the consecutive copies

and in each copy is m− 1 and m respectively. Also, this δ(k)-colouring maintains the

number of bad edge between the first and the last copy which is again one. Hence,

the minimum total number of bad edges resulting from the mentioned δ(k)-colouring

is m+m− 1 + 1 = 2m.

Note that this δ(k)-colouring is possible only in this particular case as both the n and

m are odd.

The δ(k)-colouring and the resultant number of bad edges of the Cartesian product

Kn2Pm, Kn2Cm and Kn2Km are determined as explained in the following theorems:

Theorem 3. For the integers n and m where n ≥ m, the number of bad edges resulting
from δ(k)-colouring is given by,

bk(Kn2Pm) =
mt(t− 1)

2
+ η,

where η is the total number of bad edges between the m copies of Kn given by

η =

(m− 1)(t− k + 1), if k ≤ n+1
2

,

0, if k > n+1
2

,

and t = n− k + 1.

Proof. The chromatic number of the Cartesian product G2H of any two graphs G

and H is max{χ(G), χ(H)}. Since, in this case G = Kn, there can be 2 ≤ k ≤ n− 1

colours available for δ(k)-colouring. Let c1, c2, . . . , ck be the k available colours and

C1, C2, . . . , Ck be their respective colour classes. There are a total of m copies of Kn in
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Kn2Km. Now, the minimum number of bad edges in a complete graph Kn is already

been determined in [8] and is given by bk(Kn) = x(x+1)
2 , where x = 1, 2, 3, . . . , n − 2

and k = n − x. In short, substituting the value of x as n − k = t − 1 in the current

theorem, we have bk(Kn) = t(t−1)
2 . This is because, among the k colours, excluding

the colour c1 (since colour class C1 is the relaxed colour class), the k − 1 colours

can be used to colour the k − 1 vertices properly. The remaining n − k + 1 = t, are

given the colour c1 to maintain the perquisites of δ(k)-colouring and this t vertices

induces a complete graph of order t. Let Kn,1,Kn,2, . . . ,Kn,m be the m copies of Kn

and for 1 ≤ i ≤ n, vi,j corresponds to jth vertex of ith copy of Kn. As explained

above each copy of Kn will have t(t−1)
2 bad edges. Now to reduce the number of bad

edges between the copies, we colour each copy of Kn in the following manner. The

first t vertices namely v1,1, v1,2, . . . , v1,t of the Kn,1 are assigned the colour c1 and the

remaining n− t vertices viz. v1,t+1, v1,t+2, . . . , v1,n vertices are properly assigned the

colour c2, c3, . . . , ck respectively. While colouring the second copy, first start colouring

from the (t + 1)th vertex of Kn,2 corresponding to the tth vertex coloured with c1
in the Kn,1 (so as to reduce the adjacency between the end vertices of bad edges in

Kn,1 with the vertices assigned the colour c1 in Kn,2), by following the same colouring

pattern as that of the first copy Kn,1. Continue this colouring pattern to the rest of

the copies. Since the structure of a complete graph is symmetric, there would always

be |E(Kt)| number of bad edges in each copy of Kn. Therefore, there are mt(t−1)
2 bad

edges in the m copies of Kn. Now, to find the number of bad edges between the m

copies of Kn’s, two different cases are addressed below:

Case 1. If k ≤ n+1
2 , then among the n− k+ 1 = t vertices of each copies of Kn that

are assigned the colour c1, the k − 1 vertices can be assigned any colour other than

c1, maintaining the requirements of δ(k)-colouring. Thus, between any two copies of

Kn there are t− (k − 1) = t− k + 1 number of bad edges. Thus between m copies of

Kn there are (m− 1)(t− k + 1) bad edges resulting from δ(k)-colouring.

Case 2. If k > n+1
2 , then all the t vertices in each copy of Kn that are assigned the

colour c1 can be coloured properly with k − 1 colours other than c1, leading to no

bad edges between any two copies of Kn. Thus, there are no number of bad edges,

resulting from δ(k)-colouring, between the Kn’s when k > n+1
2 .

Theorem 4. For any two integers n and m, the number of bad edges is given by,

bk(Kn2Cm) =


mt(t−1)

2
+m(t− k + 1), if k ≤

⌈
n
2

⌉
,

mt(t−1)
2

, if k >
⌈
n
2

⌉
.

Proof. In this case, all the m copies of Kn are coloured as per the colouring pattern

followed in the Theorem 3. Thus, each copy of Kn induces a clique of order t. Hence,

there are mt(t−1)
2 bad edges in the m copies of Kn. Similarly, as discussed in the cases

of Theorem 3, either there are (m−1)(t−k+1) number of bad edges in each m copies

when k ≤
⌈
n
2

⌉
or no bad edges between the m copies when k >

⌈
n
2

⌉
. Now, in this case
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of Kn2Cn, the first copy is also adjacent to the last copy and there are a minimum

of t − k + 1 number of bad edges between these copies. Thus, the total number of

bad edges between the m copies of Kn is, m(n− 2k + 2) or m(t− k + 1). Hence, for

any two integers n and m the total number of bad edges in Kn2Cm resulting from

δ(k)-colouring is mt(t−1)
2 +m(t−k+ 1) when k ≤

⌈
n
2

⌉
and mt(t−1)

2 when k >
⌈
n
2

⌉
.

Theorem 5. For Kn2Km, where n ≥ m, the number of bad edges is given by,

bk(Kn2Km) =
mt(t− 1)

2
+ η(G),

where η(G) is the total number of bad edges between the m copies of Kn and η(G) = 1
2
(tm

(mod n))b tm
n
cb tm−n

n
c+ 1

2
(n− tm (mod n))b tm−n

n
cb tm−2n

n
c and t = n− k + 1.

Proof. The m copies of Kn are coloured as per the colouring pattern followed in

the Theorem 3. Thus there are mt(t−1)
2 bad edges in the m copies of Kn. Now,

after colouring the m copies of Kn, it can be observed that there are tm (mod n)

number of Kb tmn c and n − tm (mod n) number of Kb tm−n
n c. Thus the number of

bad edges between the m copies of Kn is 1
2 (tm (mod n))b tmn cb

tm−n
n c + 1

2 (n − tm

(mod n))b tm−nn cb tm−2nn c. Hence, the total number of bad edges in Kn2Km resulting

from δ(k)-colouring is, mt(t−1)
2 + η(G), where η(G) = 1

2 (tm (mod n))b tmn cb
tm−n

n c +
1
2 (n− tm (mod n))b tm−nn cb tm−2nn c.

3. Conclusion

In this paper, we have determined the number of bad edges of the Cartesian product

of some graphs by discussing all the possible cases for each of the product. Moreover,

the δ(k)-colouring of Cartesian product of few other graphs and other graph products

viz. direct products, Lexicographical product, rooted product etc., of any two graphs

can also be studied. Finding the minimum number of bad edges by adding few more

conditions to the concept of δ(k)-colouring can be a ground for further research work.
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