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Abstract: For a simple, undirected, connected graph G, a function h : V → {0, 1, 2}
is called a total Roman {2}-dominating function (TR2DF) if for every vertex v in V

with weight 0, either there exists a vertex u in NG(v) with weight 2, or at least two ver-
tices x, y in NG(v) each with weight 1, and the subgraph induced by the vertices with

weight more than zero has no isolated vertices. The weight of TR2DF h is
∑

p∈V h(p).

The problem of determining TR2DF of minimum weight is called minimum total Ro-
man {2}-domination problem (MTR2DP). We show that MTR2DP is polynomial time

solvable for bounded treewidth graphs, threshold graphs and chain graphs. We design
a 2(ln(∆ − 0.5) + 1.5)-approximation algorithm for the MTR2DP and show that the

same cannot have (1 − δ) ln |V | ratio approximation algorithm for any δ > 0 unless

P = NP . Next, we show that MTR2DP is APX-hard for graphs with ∆ = 4. Finally,
we show that the domination and TR2DF problems are not equivalent in computational

complexity aspects.

Keywords: Roman {2}-dominating function, Total Roman {2}-domination, APX-

complete

AMS Subject classification: 05C69, 68Q25

1. Introduction

Let G(V, E) be a undirected, simple and connected graph. For a vertex u of G, the

(open) neighborhood denoted NG(u) is the set {v : (v, u) ∈ E(G)} and its degree is

|NG(u)|. NG[u] = {u}∪NG(u) is the closed neighborhood of u. The maximum degree
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of G denoted ∆ (or clearly ∆(G)) is maxu∈V (G)|NG(u)|. We refer to [19], for graph

theoretic terminology.

A dominating set (DS) of a graph G is a set D such that D ⊆ V and ∪w∈DNG[w] = V

and further D is called a total dominating set (TDS) of G if every v in V is adjacent

to at least one vertex in D. The problem of finding a (T)DS of smallest cardinality

is called the minimum (total) dominating set (M(T)DS) problem. The domination

decision problem (DDP) is the problem of finding DS of cardinality at most k, where

k is any positive integer. We refer to, [9] for the literature on domination and [11] for

the literature on total domination.

In 2016, Chellali et al. in [5] introduced the concept of Roman {2}-domination

(R2DOM). A function f : V → {0, 1, 2} is a Roman {2}-dominating function (R2DF)

on G if every vertex with label zero is adjacent to at least one vertex with weight

two or at least two vertices each with weight one. The concept of R2DOM has been

studied for example in [4, 6, 14, 20].

Recently, Ahangar et al. in [1, 2] initiated the study of total Roman {2}-domination

(TR2DOM). A function h : V (G) → {0, 1, 2} which satisfies the conditions below is

called a total Roman {2}-dominating function (TR2DF).

C1). h is a R2DF and

C2). The subgraph induced by the vertices with weight more than zero has no isolated

vertices.

The weight of a TR2DF is the sum of the weights of all the vertices. The minimum

weight of a TR2DF of G is called the total Roman {2}-domination number γtR2(G).

Since a TR2DF is defined just for graphs without isolated vertices, we only consider

in this paper nontrivial connected graphs. The TR2DOM problem (TR2DP) is the

problem of finding a TR2DF of weight at most k, where k is any positive integer.

The minimum TR2DOM problem (MTR2DP) is the problem of finding a TR2DF of

minimum weight in the input graph.

It is known that TR2DP is NP-complete for bipartite and chordal graphs [2]. Here,

we investigate the complexity of TR2DP in subclasses of bipartite graphs and chordal

graphs. Through out this paper P refers polynomial time solvable and NPC refers

NP-complete.

2. Bounded Tree-width, Threshold and Chain Graphs

We begin by giving the exact value of the total Roman {2}-domination number for

bounded tree-width graphs, connected threshold graphs and connected chain graphs.

2.1. Bounded Tree-width Graphs

A tree decomposition (TD) of a graph H is a tree T1 with the vertex set V (T1) =

{Z1, Z2, . . .}, a subset of the power set of V (H) with the following requirements.

i). V (H) =
⋃
Zt∈V (T1) Zt

ii). ∀(u, v) ∈ E(H), there exists a vertex Zt ∈ V (T1) such that u, v ∈ Zt and
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iii). ∀v ∈ V (H), the induced subgraph {Zt : v ∈ Zt and Zt ∈ V (T1)} is a subtree of

T .

Then the TD T1 of H is said to have width equals to max{|Zt| − 1 : Zt ∈ V (T1)}.
The treewidth is the smallest width of a TD of a graph.

Theorem 1. TR2DP can be expressed in CMSOL.

Proof. Let G(V,E) be a graph and g : V → {0, 1, 2} be a function defined on G,

where Vi = {v|g(v) = i} for i ∈ {0, 1, 2}. Then CMSOL for the TR2DP is specified

as below.

Tot Rom 2 Dom(V ) = (g(V ) ≤ k)∧∃V0, V1, V2,∀p((p ∈ V0∧ ((∃q, r ∈ V1∧adj(p, q)∧
adj(p, r)) ∨ (∃t ∈ V2 ∧ adj(p, t)))) ∨ (p ∈ (V1 ∪ V2)) ∧ ((p ∈ V1 ∧ ∃q ∈ (V1 ∪ V2) ∧
adj(p, q)) ∨ (p ∈ V2) ∧ ∃q ∈ (V1 ∪ V2) ∧ adj(p, q))),
where adj(p, q) is the binary adjacency relation which holds iff (p, q) ∈ E.

Tot Rom 2 Dom(V ) ensures that 1). ∀p ∈ V , either (i) p ∈ V1 or (ii) p ∈ V2, or (iii)

if p ∈ V0 then either q, r ∈ V1 such that (p, q) ∈ E and (p, r) ∈ E or ∃q ∈ V2 such

that (p, q) ∈ E, and 2). every vertex p ∈ V1 ∪ V2 is adjacent to some vertex q in

V1 ∪ V2.

Now, from Theorem 1 and Courcelle’s result in [8], the theorem below follows.

Theorem 2. MTR2DP for graphs with treewidth at most a constant is solvable in linear
time.

2.2. Threshold Graphs

A graph G is threshold iff the following conditions hold:

1. Vertex set of G is partitioned into two disjoint sets, a clique Q and an indepen-

dent set R

2. There exists a permutation (q1, q2, . . . , qp) of vertices of Q such that NG[q1] ⊆
NG[q2] ⊆ · · · ⊆ NG[qp] and

3. There exists a permutation (r1, r2, . . . , ri) of vertices of R such that NG(r1) ⊇
NG(r2) ⊇ · · · ⊇ NG(ri).

Theorem 3. Let G be a connected threshold graph. Then,

γtR2(G) =

{
2, if G ∼= K2

3, otherwise
(1)

Proof. LetG be a connected threshold graph with p clique vertices and i independent

vertices as described above. Since, qp is a universal vertex of G, clearly, this implies

that γtR2(G) = 3, except when G ∼= K2 where γtR2(G) = 2.
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On the basis of Theorem 3 and the fact that the ordering of clique vertices of threshold

graph can be found in linear time [13], the MTR2DP is solved in linear time for this

class of graphs.

2.3. Chain Graphs

An ordering α = (y1, y2, . . . , yp, z1, z2, . . . , zq) of vertex set of a bipartite graph

G(Y,Z,E) is a chain ordering if NG(y1) ⊆ NG(y2) ⊆ ... ⊆ NG(yp) and NG(z1) ⊇
NG(z2) ⊇ ... ⊇ NG(zq). A bipartite graph is a chain graph iff it has a chain

ordering [21].

Theorem 4. Let G(Y,Z,E) be a connected chain graph. Then,

γtR2(G) =


2, if G is K2

3, if G is K1,s, where s ≥ 2

4, otherwise

(2)

Proof. Let G(Y, Z,E) be a connected chain graph with |Y | = p and |Z| = q where

p, q ≥ 1. If G ∼= K2 or G ∼= K1,s, where s ≥ 2, then γtR2(G) can be determined

directly from Theorem 3. Otherwise, define function f : V → {0, 1, 2} as follows.

f(v) =

{
2, if v ∈ {yp, z1}
0, otherwise

(3)

Clearly, f is a TR2DF and γtR2(G) ≤ 4. By contradiction, it can be easily verified

that γtR2(G) ≥ 4. Therefore γtR2(G) = 4.

On the basis of Theorem 4 and the fact that chain ordering can be computed in linear

time [18], the MTR2DP is solved in linear time for this class of graphs.

3. Approximation Algorithm and Complexity

Here, results related to obtaining approximate solutions to MTR2DP is presented.

3.1. Approximation Bounds

An existing result obtained on lower bound of approximation ratio of MDS is given

below.

Theorem 5. ([7]) For a graph G = (V,E), unless P = NP , the MDS problem cannot
have a solution with approximation ratio (1− δ) ln |V | for any δ > 0.

Theorem below provides a lower bound on approximation ratio of MTR2DP.
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Figure 1. Construction of H′ from H

Theorem 6. For a graph H, unless P = NP , the MTR2DP cannot have a solution with
approximation ratio (1− δ) ln |V | for any δ > 0.

Proof. We propose a reduction which preserves the approximation. Let H(V,E) be

an MDS problem instance, where V (H) = {v1, v2, . . . , vn}. From H, an instance H ′

of MTR2DP is constructed as below.

Create n copies of star graphs with bi as the central vertex and ai, ci, di and ei as

terminal vertices. Add the edges {(v1, a1), (v2, a2), . . . , (vn, an)}. Figure 1, shows an

example construction of H ′ from H. Next, we prove a claim.

Claim 1. γtR2(H ′) = 3n+ γ(H).

Proof of Claim 1. Let T ∗ be an MDS of H of size γ(H) and let h be a function on

H ′, defined as

h(v) =


1, if v ∈ {ai : 1 ≤ i ≤ n} ∪ T ∗

2, if v ∈ {bi : 1 ≤ i ≤ n}
0, otherwise

(4)

Clearly, h is a TR2DF and γtR2(H ′) ≤ 3n+ |T ∗|.
Next, we show that γtR2(H ′) ≥ 3n+ |T ∗|. Let g be a TR2DF on graph H ′. Clearly,

irrespective of vi’s, g(ai)+g(bi)+g(ci)+g(di)+g(ei) ≥ 3. These make the size at least

3n and {vi : g(vi) ≥ 1} is a MDS since each vi, where g(vi) = 0 should have neighbors

such that whose total weight is at least two. Therefore γtR2(H ′) ≥ 3n+ |T ∗|. Hence

γtR2(H ′) = 3n+ γ(H). �
Suppose that the MTR2DP has an approximation algorithm L which runs in P with

approximation ratio β, where β = (1− δ) ln |V | for some fixed δ > 0. Let l be a fixed

positive integer. Next, we design an approximation algorithm, say DSA which runs

in P to find a DS of a given graph H.

It can be noted that if T is a DS with |T | ≤ l, then it is optimal. Otherwise,

let T ∗ be a DS of H with minimum cardinality and g be a TR2DF of H ′ with

g(V ′) = γtR2(H ′). Clearly g(V ) ≥ l. If T is a DS of H obtained by the algorithm
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Algorithm 1: DSA(H)

Require: A simple and undirected graph H.

Ensure: A DS T of H.

1: if there exists a DS T ′ of size at most l then
2: T ← T ′

3: else

4: Build the graph H′

5: Calculate a TR2DF f on H′ by using algorithm L

6: Find a DS T of H from TR2DF f (as illustrated in the proof of claim in Section 3.1)

7: end if
8: return T.

DSA, then |T | ≤ f(V ) ≤ β(g(V )) ≤ β(3n+ |T ∗|) = β(1 + 3n
|T∗| )|T

∗|. Therefore, DSA

approximates a MDS within a ratio β(1+ 3n
|T∗| ). If 1

|T∗| < δ/2, then the approximation

ratio becomes β(1+ 3n
|T∗| ) < (1−δ)(1+ 3nδ

2 ) lnn = (1−δ′) lnn, where δ′ = 3nδ2

2 −
3nδ
2 +δ.

By Theorem 5, if there exists an approximation algorithm for MDS problem with

approximation ratio (1− δ) ln |V | then P = NP . Similarly, if there exists an approxi-

mation algorithm for MTR2DP with approximation ratio (1−δ) ln |V | then P = NP .

For large values of n, lnn ≈ ln(5n). Hence, in a graph H ′(V ′, E′), where |V ′| = 5|V |,
unless P = NP , the MTR2DP cannot have an approximation algorithm with a ratio

of (1− δ) ln |V ′|.

3.2. Approximation Algorithm

Here, an approximation algorithm for MTR2DP is designed based on the approxima-

tion result known for MTDS problem below.

Theorem 7 ([22]). The MTDS problem can be approximated with an approximation
ratio of ln(∆− 0.5) + 1.5.

Let APP-TD-SET be an approximation algorithm that produces a TDS D of a graph

G such that |D| ≤ (ln(∆− 0.5) + 1.5)γt(G).

Next, we design APP-TR2DF algorithm to determine an approximate solution of

MTR2DP. In our algorithm, first we determine a TDS D of G using the approxima-

tion algorithm APP-TD-SET. Next, we build a total Roman {2}-dominating triple

(TR2DT) Tr such that weight 2 is assigned for all vertices in D and weight 0 is

assigned for the remaining vertices.

Algorithm 2: APP-TR2DF(G)

Input: A simple, undirected graph G.
Output: A TR2DT Tr of G.
1: D ← APP-TD-SET(G)

2: Tr ← (V \D, ∅, D)
3: return Tr.
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Now, let Tr = (D′, ∅, D) be the TR2DT obtained from the APP-TR2DF algorithm.

Clearly, every vertex in G is assigned with weight either 2 or 0, Tr gives a TR2DF of

G and APP-TR2DF computes a TR2DT Tr of G in P. Hence, the result follows.

Theorem 8. The MTR2DP in a graph can be approximated with an approximation ratio
of 2(ln(∆− 0.5) + 1.5).

Proof. LetD be the TDS from APP-TD-SET algorithm, Tr be the TR2DT produced

by the APP-TR2DF algorithm and Wr be the weight of Tr. Clearly, Wr = 2|D|. It is

known that |D| ≤ (ln(∆−0.5)+1.5)γt(G). Therefore, Wr ≤ 2(ln(∆−0.5)+1.5)γt(G).

Since γt(G) ≤ γtR2(G) [2], it follows that Wr ≤ 2(ln(∆− 0.5) + 1.5)γtR2(G).

The corollary below follows from Theorem 8.

Corollary 1. MTR2DP ∈ APX for graphs with ∆ = O(1).

3.3. Approximation Completeness

Here, we prove that the MTR2DP is APX-complete for graphs with ∆ = 4 using

the L-reduction [17]. An optimization problem X is said to be APX-complete if

X belongs to APX and APX-hard classes. By providing an L-reduction from MDS

problem with ∆ = 3 i.e., DOM-3 which is known to be APX-complete [3], we show

that the MTR2DP belongs to APX-hard for graphs with ∆ = 4.

Theorem 9. MTR2DP ∈ APX − complete for graphs with ∆ = 4.

Proof. From Corollary 1, clearly, MTR2DP∈APX. From the given instance G =

(V,E) of DOM-3, where V = {v1, v2, . . . , vn}, we construct a MTR2DP instance

G′ = (V ′, E′) same as in Section 3.1. Clearly, ∆(G′) = 4.

Claim 2. γtR2(G′) = 3n+ γ(G), where n = |V |.

Proof of Claim 2. The proof is same as in claim in Section 3.1. �
Assume g be a TR2DF on G′, where g(V ′) = γtR2(G′) and D∗ be a MDS of G. For

any graph H, it is known that γ(H) ≥ |V (H)|
∆(H)+1 . Clearly, |D∗| ≥ n

4 . From the claim 2,

g(V ′) = |D∗|+ 3n ≤ |D∗|+ 12|D∗| = 13|D∗|.
Let h : V ′ → {0, 1, 2} be a TR2DF of G′. Then, clearly, D = {vi : h(vi) ≥ 1} is a DS of

G. Hence, |D| ≤ h(V ′)−3n. Therefore, |D|−|D∗| ≤ h(V ′)−3n−|D∗| ≤ h(V ′)−g(V ′).

This infers that there exists an L-reduction with β = 1 and α = 13.
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Figure 2. An illustration to the construction of GT graph from G

4. Computational Complexity Contrast between Total Roman
{2}-domination and Domination Problems

MTR2DP and domination problem vary in complexity aspects i.e., there are some

graph classes for which the MTR2DP is in P and DDP is NPC and vice versa. We

refer to [10, 15, 16] for the similar kind of study.

We build a new graph class in which the DDP is NPC, whereas the MTR2DP can be

solved trivially.

Definition 2. (GT graph). Let G = (V,E), where |V | = n and V = {v1, v2, . . . , vn}
be a connected graph. A GT graph can be constructed from graph G in the following

way :

1. Create two copies of P2 graphs such as ai − bi and fi − gi, for each i.

2. Consider six additional vertices {ci, di, ei, hi, ii, ji}, for each i.

3. Add edges {(vi, ai), (vi, fi), (bi, ci), (bi, di), (bi, ei), (gi, hi), (gi, ii), (gi, ji) : 1 ≤
i ≤ n}.

General GT graph construction is shown in Figure 2.

Theorem 10. γtR2(G′) = 6n.

Proof. Let G′ = (V ′, E′) be a GT graph constructed from G. Let g be a function

defined on G′ as follows.

g(x) =


1, if x ∈ {ai, fi : 1 ≤ i ≤ n}
2, if x ∈ {bi, gi : 1 ≤ i ≤ n}
0, otherwise

(5)
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Clearly, g is a TR2DF, γtR2(G′) ≤ 6n.

Next, we show that γtR2(G′) ≥ 6n. Let h be a TR2DF defined on G′. It can be

easily verified that, the sum of the weights of the vertices in each set {ai, bi, ci, di, ei},
{fi, gi, hi, ii, ji}, where 1 ≤ i ≤ n is greater than 3.

Hence h(V ) ≥ 6n. Therefore h(V ) = 6n.

Lemma 1. G has a DS D such that |D| ≤ k iff G′ has a DS D′ such that |D′| ≤ k+ 2n.

Proof. Suppose D be DS of G with |D| ≤ k, then, clearly, D′ = D∪{bi, gi : 1 ≤ i ≤
n} is a DS of G′, where |D′| ≤ k + 2n.

Let D′ is a DS of G′ with |D′| ≤ k + 2n. Clearly, D′ should contain at least one

vertex from each set {bi, ci, di, ei} and {gi, hi, ii, ji}. Let D′′ be the set formed by

replacing all ai’s (fi’s) in D′ by the corresponding vi’s. Clearly, D′′ is a DS of G,

where |D| ≤ k. Hence the lemma.

The following theorem follows from the fact DDP is NPC for general graphs [12] and

above lemma.

Theorem 11. The DDP for GT graphs is NPC.
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