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Abstract: The eccentric graph Ge of a graph G is a derived graph with the vertex

set same as that of G and two vertices in Ge are adjacent if one of them is the eccentric
vertex of the other. In this paper, the concepts of iterated eccentric graphs and eccentric

completion of a graph are introduced and discussed.
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1. Introduction

The problems on distance and eccentricity related concepts in graph theory are sig-

nificant in many practical situations. In this paper, we discuss one of such problems.

All graphs considered in this paper are simple, finite and undirected graphs. For

terminologies in graph theory, we refer to [2, 9].

The distance between two vertices u and v in the vertex set V (G) of G, denoted by

d(u, v), is the length of the shortest path joining them. An eccentric vertex of a vertex

u is a vertex v such that the distance d(u, v) is maximum. The eccentricity of a vertex

v, denoted by ecc(v), is the length of the shortest path between v and its eccentric

vertex u. The radius of a connected graph G, denoted by rad(G), is the minimum

of the eccentricities of all the vertices and the diameter of G, denoted by diam(G),

is the maximum of the eccentricities of all the vertices in G. The eccentricities of all
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194 Eccentric completion of a graph

the vertices of a disconnected graph are taken to be +∞ which will also be the radius

as well as the diameter of the graph. The articles [6] and [4] elucidate few engrossing

studies related to the distance and eccentricity concepts.

The notion of the eccentric graph of a graph G, denoted by Ge, is introduced in [1]

as a graph on the same set of vertices as that of G and joining two vertices in Ge if

and only if one of the vertices has maximum possible distance from the other. That

is, two vertices in Ge are adjacent if at least one of them is the eccentric vertex of the

other in G. In [1], the eccentric graph is defined as a derived graph, but in [3], it is

defined as a graph class. Throughout this discussion, we follow the definition given

in [1].

2. Iterated Eccentric Graphs

Motivated by the studies on iterated line graphs, iterated digraphs (see [8]) and iter-

ated eccentric digraphs (see [5]), we introduce the notion of iterated eccentric graphs.

Definition 1. Let G be a graph and Ge be the eccentric graph of G. Then the iterated
eccentric graph of G, denoted by Gek , is defined as the derived graph obtained by taking the
eccentric graph successively k times, that is, Gek = ((Ge)e . . .)e︸ ︷︷ ︸

k times

.

An illustration of iterated eccentric graphs of a path graph on 6 vertices up to three

iterations is given in Figure 1.

(a) G = P6 (b) Ge

(c) Ge2 (d) Ge3

Figure 1. Iterated eccentric graphs of P6 up to three iterations

2.1. Completion of Iterated Eccentric Graphs

Motivated by the studies on the completion number of line graphs (see [7]), in this

section, we examine the structural properties of a graph G whose iterated eccentric
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graph Gek is complete for some k.

A graph G is said to be complete when every vertex of G is adjacent to all the other

vertices of G. That is, G is complete when the eccentricity of each of the vertices is

one. Then, we have:

Lemma 1. For a graph G, rad(G) = 1 if and only if rad(Ge) = 1.

Proof. If rad(G) = 1, then there exists at least one vertex which is adjacent to all

the other vertices. Thus, in Ge, all such vertices will be adjacent to all the other

vertices. Therefore, rad(Ge) = 1.

Conversely assume that rad(Ge) = 1. Then we have to show that rad(G) = 1. If

possible, assume the contrary. That is, let rad(G) 6= 1. Then, there exists no vertices

in G which are adjacent to all the other vertices. Therefore, corresponding to each

vertex, in Ge, there exists at least one vertex to which it is not adjacent. Therefore,

rad(Ge) 6= 1. Hence the result.

In view of Lemma 1, the following result is immediate.

Corollary 1. For a graph G, rad(G) = 1 if and only if rad(Gek ) = 1 for any k.

Since Gek is obtained by computing the eccentric graph successively, we can apply

Lemma 1 repeatedly to show that rad(G) = 1 if and only if rad(Gek) = 1.

Next, we introduce the notion of a k-completing graph as follows:

Definition 2. A graph G is said to be k-completing if it becomes a complete graph at
the k-th iteration (and not at m-th iteration where m less than k).

In other words, G is a k-completing graph if Gek = Kn and Gem 6= Kn for any m < k.

The necessary condition for a graph G to be k-completing is discussed below.

Proposition 1. If G is a k-completing graph, then rad(G) = 1.

The proof follows from the fact that, for a k-completing graph G, rad(Gek) =

rad(Kn) = 1 and therefore rad(G) = 1, by Corollary 1.

The next theorem gives a necessary and sufficient condition for a vertex of eccentricity

2 in a graph G to attain eccentricity 1 in Ge, where rad(G) = 1 and diam(G) = 2.

Theorem 1. For a graph G with rad(G) = 1 and diam(G) = 2, let V (G) = X ∪ Y such
that X = {x : ecc(x) = 1} and Y = {y : ecc(y) = 2}. A vertex u ∈ Y having eccentricity 2
in G attains eccentricity 1 in Ge if and only if u is adjacent only to x such that x ∈ X.
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Proof. Consider the graph G with rad(G) = 1 and diam(G) = 2. Let us assume

that a vertex u of G is adjacent only to each x ∈ X, that is, u is adjacent only to

vertices having eccentricity 1. Then, the eccentric vertices of u in G will consist of all

the vertices y, where y ∈ Y , and therefore, in Ge, u will be adjacent to all y ∈ Y . In

Ge, u will be adjacent to all x ∈ X as well, since ecc(x) = 1 for all x ∈ X. Therefore,

in Ge, u is adjacent to all the vertices and therefore ecc(u) = 1. This implies that,

the vertex u having eccentricity 2 in G attains eccentricity 1 in Ge.

Conversely, suppose that a vertex u having eccentricity 2 in G attains eccentricity 1

in Ge. We need to prove that u is adjacent only to each x ∈ X in G. Assume the

contrary. Then u is also adjacent to some vertex v ∈ Y in G. Therefore, in Ge, u

will not be adjacent to v which means ecc(u) 6= 1 in Ge. This is a contradiction to

our assumption that u attains eccentricity 1 in Ge. Therefore, if the eccentricity of

a vertex changes from 2 in G to 1 in Ge, then it is adjacent only to vertices having

eccentricity 1 in G.

Next, we give a necessary and sufficient condition for a graph G to be k-completing.

Theorem 2. A graph G is a k-completing graph if and only if at least one additional
vertex attains eccentricity 1 at each step of finding the iterated eccentric graphs.

Proof. Let G be a k-completing graph. Then, by Proposition 1, rad(G) = 1. We

have to prove that, at each step of finding the iterated eccentric graphs, the eccen-

tricity becomes 1 for at least one additional vertex. On the contrary, we assume that

Gem−1 and Gem are two iterated eccentric graphs such that the number of vertices

with eccentricity 1 is the same in both the graphs. It can be seen as a consequence

of Theorem 1 that, if there are no vertices of eccentricity 2 which attain eccentricity

1 on finding the eccentric graph, then there will be no vertex in the original graph

which is adjacent only to vertices of eccentricity 1. Therefore, Gem−1 has no vertex of

eccentricity 2 which is adjacent only to vertices of eccentricity 1. In Gem , each vertex

of eccentricity 2 will be adjacent to all vertices of eccentricity 1, and to those vertices

of eccentricity 2 which were non-adjacent in Gem−1 . Thus, Gem also doesn’t have

any vertex which is adjacent only to vertices of eccentricity 1. Thus, on computing

Gem+1 , we obtain the same graph as Gem−1 , which then implies that Gel can never

be a complete graph for any l > m. This is a contradiction to our assumption that

G is k-completing. Therefore, if G is k-completing, at each iteration, at least one

additional vertex attains eccentricity 1.

Conversely, suppose that at each iteration up to k, at least one more vertex attains

eccentricity 1. We have to prove that the graph G is k-completing. The graph under

consideration is a finite graph and therefore it has some finite number of vertices, say

n. By assumption, at least one more vertex attains eccentricity 1 at each iteration,

that is, all the vertices will have attained eccentricity 1 at some level, say k. Therefore,

G is k-completing. Hence the result.

Now, we arrive at the characterisation for a graph G to be k-completing.
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Theorem 3. A graph G is k-completing if and only if the vertex set V (G) of the graph
G can be partitioned into k + 1 subsets Vi such that

i. V0 = {v ∈ V (G) : N(v) = V (G)\{v}}

ii. V2r−1 =

{
v ∈ V (G) : N(v) =

r⋃
i=1

V2i−2

}
for 1 ≤ r ≤ d k

2
e

iii. V2r =

{
v ∈ V (G) : N(v) = V (G)−

(
{v} ∪

(
r⋃

i=1

V2i−1

))}
for 1 ≤ r ≤ b k

2
c.

Proof. Initially, we need to prove that the given partition consists of k + 1 sets. V0

contributes to one partition. When k is even, there are dk2 e = k
2 odd suffixed sets

and bk2 c = k
2 even suffixed sets. Therefore, the total number of sets in the partition

= 1 + k
2 + k

2 = k + 1. When k is odd, there are dk2 e = k+1
2 odd suffixed sets and

bk2 c = k−1
2 even suffixed sets. Therefore, the total number of sets in the partition =

1 + k+1
2 + k−1

2 = k + 1.

Now, let us assume that the vertex set V of the graph G can be partitioned into

k + 1 sets as defined above. We have to prove that G is k-completing. From the

statement of the theorem, it is clear that V0 is the set of vertices of eccentricity 1.

As per Theorem 2, it suffices to show that, at each level of iteration, one more vertex

attains eccentricity 1 in addition to the vertices in V0.

Now, consider the eccentric graph Ge of G. In Ge, the vertices in V0 will be adjacent

to all other vertices, as every vertex in V0 is adjacent to all other vertices in G. The

vertices in V1 are adjacent only to the vertices in V0 in G and hence by Theorem 1, the

vertices in V1 will be adjacent to all the other vertices in Ge. The vertices in V2r, 1 ≤

r ≤ bk2 c are adjacent only to those vertices in V0 ∪
(

r⋃
i=1

V2i−1

)
in Ge. Similarly, the

vertices in V2r−1, 2 ≤ r ≤ dk2 e are adjacent to the vertices in V (G)−
r⋃

i=2

V2i−2. Thus,

in the first iteration, the vertices in the set V1 attain eccentricity 1.

Now, consider the iterated eccentric graph Ge2 . The vertices in V0 and V1 have

eccentricity 1 in Ge and therefore, in Ge2 , those vertices will be adjacent to all the

other vertices in V . The vertices in V2 are adjacent only to those vertices in V0 and V1

in Ge. Therefore, by Theorem 1, the vertices in V2 attain eccentricity 1 in Ge2 . The

vertices in V2r−1, 2 ≤ r ≤ dk2 e will be adjacent only to the vertices in V1∪
(

r⋃
i=1

V2i−2

)
.

The vertices in V2r, 2 ≤ r ≤ bk2 c will be adjacent to the vertices in V (G)−
r⋃

i=2

V2i−1.

Thus, at the second iteration, the vertices in V2 attains eccentricity 1 in addition to

the vertices in V0 ∪ V1.

Thus, in general, at the i-th iteration 1 ≤ i < k, the vertices in Vi attain eccentricity

1 in addition to the vertices in
i−1⋃
j=0

Vj . Finally, at the (k − 1)-th iteration, all the

vertices in
k−1⋃
i=0

Vi will attain eccentricity 1. The vertices in Vk will not be adjacent

among themselves but will be adjacent to all the remaining vertices which are of
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eccentricity 1. Therefore, in Gek , the vertices in Vk attain eccentricity 1, which means

that Gek = Kn and therefore the graph G is k-completing.

Conversely, suppose that G is a k-completing graph. We have to prove that all k-

completing graphs can be characterised as graphs whose vertex set can be partitioned

into k + 1 subsets as given in the statement. Since G is k-completing, by Proposition

1, rad(G) = 1, that is, there exists at least one vertex of eccentricity 1. Let the

collection of all vertices of eccentricity 1 be called V0. Now by Theorem 2, G is k-

completing if and only if at each iteration, one more vertex attains eccentricity 1.

Also, by Theorem 1, such vertices are adjacent only to the vertices of eccentricity 1

in G. Therefore, G has vertices adjacent only to the vertices in V0. Denote the set of

these vertices by V1. Therefore, in Ge, the vertices in V1 attain eccentricity 1. Now,

applying Theorem 2 and Theorem 1 again, we see that Ge contains vertices that are

adjacent only to those vertices in V0 and V1 (eccentricity 1 vertices). Denote the set

of these vertices by V2. Since the vertices in V2 are adjacent only to those vertices in

V0 and V1 in Ge, the vertices in V2 will be adjacent to all except those vertices in V1 in

G. Therefore, V2 is the set of vertices whose eccentricities become 1 in Ge2 . Now, the

process is repeated to obtain a set, say V3, in Ge2 , whose vertices will be adjacent only

to the eccentricity 1 vertices in Ge2 , namely V0, V1 and V2. The vertices in V3 will be

adjacent to all except those vertices in V2 in Ge and therefore, will be adjacent only to

the vertices in V0 and V2 in G. Proceeding in a similar fashion, by applying Theorem

2 and Theorem 1 repeatedly k − 3 more times, we obtain the subsets V4, V5, . . . , Vk

of V (G) as mentioned above. The vertices in the set Vk attains eccentricity 1 at the

k−th iteration. Thus, any k-completing graph can be partitioned into k + 1 subsets

of V (G) as mentioned above. This completes the proof.

Now, we illustrate Theorem 3 with an example.

Example 1. A graph G and its iterated eccentric graphs are illustrated in Figure 2. Here,
G is a 5-completing graph on 7 vertices as seen below.
The given graph G is a graph on 7 vertices with the vertex u0 ∈ V0, adjacent to all the
other vertices. The vertex u1 ∈ V1 is adjacent only to u0. The vertex u2 ∈ V2 is adjacent
to all the other vertices except u1. The vertex u3 ∈ V3 is adjacent only to u0 and u2. The
vertex u4 ∈ V4 is adjacent to all other vertices except u1 and u3. The vertices u5, u6 ∈ V5

are adjacent only to u0, u2 and u4 and they are not adjacent among themselves. Thus, the
vertex set V (G) of the graph G is partitioned into 6 subsets, namely V0, V1, . . . , V5 and we
see that the graph G is 5-completing. Also, note that the graph G is a 5-completing graph
with minimum possible number of vertices which is 7.

Now, the following results give a lower bound for the number of vertices in a k-

completing graph.

Corollary 2. A k-completing graph has at least k + 2 vertices.

Proof. By Theorem 3, the vertex set of a k-completing graph can be partitioned into

k + 1 subsets. Each of the k + 1 sets should have at least one vertex. Now, the last
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(a) G

u0

u1u2

u3

u4 u5

u6

(b) Ge

u0

u1u2

u3

u4 u5

u6

(c) Ge2

u0

u1u2

u3

u4 u5

u6

(d) Ge3

u0

u1u2

u3

u4 u5

u6

(e) Ge4

u0

u1u2

u3

u4 u5

u6

(f) Ge5 = K7

u0

u1u2

u3

u4 u5

u6

Figure 2. A 5-completing graph G and its iterated eccentric graphs

set Vk which attains eccentricity 1 at the k-th level should have at least two elements.

This is because, in Gek−1 , the vertices in Vk will not be adjacent to at least one other

vertex. Therefore, a k-completing graph should have at least k + 2 vertices.

Remark 1. Since each of the sets can have any non-zero number of vertices, there is no
upper limit to the number of vertices that can be there in a k-completing graph.

In Theorem 3, the number of vertices in each of the sets Vi where 1 ≤ i ≤ k + 1, is

of no significance. Now, assume that, there are pi elements in each of the sets Vi.

Then we can characterise the graphs which are k-completing based on the degree of

vertices as follows.

Theorem 4. A graph G of order n is k-completing if and only if the vertex set V (G) can
be partitioned into k + 1 subsets Vi with |Vi| = pi, where pi 6= 0 and pk ≥ 2 such that

i. V0 = {v ∈ V (G) : deg(v) = n− 1}

ii. V2r−1 =

{
v ∈ V (G) : deg(v) =

r∑
i=1

p2i−2

}
for 1 ≤ r ≤ d k

2
e

iii. V2r =

{
v ∈ V (G) : deg(v) = n− 1−

(
r∑

i=1

p2i−1

)}
for 1 ≤ r ≤ b k

2
c

Proof. Let G be a given graph of order n and V0,V2r−1, where 1 ≤ r ≤
⌈
k
2

⌉
and V2r,

1 ≤ r ≤
⌊
k
2

⌋
be the k + 1 partitions of the vertex set as described in the statement of

the theorem.
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In order to prove the theorem, it is sufficient to prove that the vertex partitioning

mentioned in the statement of the theorem is the same as that of Theorem 3. For

this, we consider the partition of the vertex set V (G) of G as in Theorem 3:

i. U0 = {v ∈ V (G) : N(v) = V (G)\{v}}

ii. U2r−1 =

{
v ∈ V (G) : N(v) =

r⋃
i=1

U2i−2

}
for 1 ≤ r ≤

⌈
k
2

⌉
iii. U2r =

{
v ∈ V (G) : N(v) = V (G)−

(
{v} ∪

r⋃
i=1

U2i−1

)}
for 1 ≤ r ≤

⌊
k
2

⌋
Clearly, V0 = U0. Now, for all v ∈ V2r−1 where 1 ≤ r ≤

⌈
k
2

⌉
, deg(v) =

r∑
i=1

p2i−2 and

so

|N(v)| =

r∑
i=1

|V2i−2|.

By the choice of the set V2i−2, 1 ≤ i ≤ r, the above equation yields N(v) =
r⋃

i=1

V2i−2.

Therefore, we have V2r−1 = U2r−1.

Consider the sets V2r, where 1 ≤ r ≤
⌊
k
2

⌋
. Here, we have deg(v) = n− 1−

r∑
i=1

p2i−1

and so

|N(v)| = |V (G)| − 1− |
r⋃

i=1

V2i−1|.

By the choice of the set V2i−1, 1 ≤ i ≤ r, the above equation yields

N(v) = (V (G)− {v})−
r⋃

i=1

V2i−1,

that is

N(v) = V (G)−

(
{v} ∪

(
r⋃

i=1

V2i−1

))

which implies N(v)∩
(
{v} ∪

(
r⋃

i=1

V2i−1

))
= ∅. That is, N(v)∩ {v} = ∅ and N(v)∩(

r⋃
i=1

V2i−1

)
= ∅. Therefore, V2r = U2r. This completes the proof.
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3. Conclusion

In this paper, a study on iterated eccentric graphs has been initiated and the comple-

tion of such graphs has been investigated. Characterisations of k-completing graphs

based on the adjacency and degrees of vertices have also been discussed. The future

studies can be taken up on the structural properties of iterated eccentric graphs that

may or may not attain completion.
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