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Abstract: For a graph G, an Italian dominating function is a function f : V (G) →
{0, 1, 2} such that for each vertex v ∈ V (G) either f(v) 6= 0, or

∑
u∈N(v) f(u) ≥

2. If a family F = {f1, f2, . . . , ft} of distinct Italian dominating functions satisfy∑t
i=1 fi(v) ≤ 2 for each vertex v, then this is called an Italian dominating family. In

[L. Volkmann, The Roman {2}-domatic number of graphs, Discrete Appl. Math. 258
(2019), 235–241], Volkmann defined the Italian domatic number of G, dI(G), as the

maximum cardinality of any Italian dominating family.

In this same paper, questions were raised about the Italian domatic number of regular

graphs. In this paper, we show that two of the conjectures are false, and examine some

exceptions to a Nordhaus-Gaddum type inequality.
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1. Introduction

Roman domination first originated with Hedetniemi et al. in a series of papers ([3],[4]),

written in response to an article by Stewart [10] regarding a strategy to defend the

Roman Empire. Since then, many variations of Roman domination have been con-

sidered, including Italian domination. Italian domination first appeared in a paper

by Chellali et al. [2], though it was called Roman {2}-domination at the time. In [5],

the same concept was termed Italian domination.

An Italian dominating function is a function f : V (G) → {0, 1, 2} (an assignment of

weights to vertices), such that for every vertex v ∈ V (G) such that f(v) = 0, then∑
w∈N(v) f(w) ≥ 2. The weight of an Italian dominating function f is the sum of the

values of f on the vertices of G, i.e.
∑
v∈V (G) f(v). The Italian domination number of

a graph G, denoted γI(G), is the minimum weight of any Italian dominating function.

In [12], Volkmann defined the Italian domatic number for graphs (and also for digraphs

in [11]) as follows: Let F = {f1, f2, . . . , ft} be a set of distinct Italian dominating
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Figure 1. The functions f1, f2, and f3 shown in the table form an Italian dominating family.

functions. If
∑t
i=1 fi(v) ≤ 2 for each vertex v, then this is called an Italian dominating

family (see Figure 1 for an example). Then the Italian domatic number of G, dI(G),

is the maximum cardinality of any such family.

In [12], Volkmann proved the following Nordhaus-Gaddum type inequality regarding

the Italian domatic number.

Theorem 1. If G is a graph of order n, then

dI(G) + dI(G) ≤ n+ 2.

with the exception of the cases in which G is 4-regular of order 9, 7-regular of order 18, or
16-regular of order 45.

The exceptions to Theorem 1 in [12] are due to limitations on the proof, not necessarily

because the result does not hold in these cases. In [12], Volkmann conjectured that

these limitations could be removed (i.e., that Theorem 1 holds for all graphs), and

specifically conjectured the following two statements, which would imply that result.

Conjecture 1. If G is a regular graph of order n,

dI(G) + dI(G) ≤ n+ 1.

Conjecture 2. If G is a δ-regular graph of order n,

dI(G) ≤ δ + 1.

Similar conjectures were reiterated in [11]. In this note, we will show that these

conjectures are false, and partially address the three exceptions to Theorem 1. In

particular, there is an infinite family of δ-regular graph such that dI(G) = δ + 2,

and this is shown in Theorem 6. In addition, to partially address the exceptions in

Theorem 1, we will look at the case of a 4-regular of order 9 and a 7-regular of order

18, and determine the following result.
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Theorem 2. Let G be a δ-regular graph of order n.

• There is exactly one graph with δ = 4 and n = 9 such that

dI(G) + dI(G) = n+ 3.

• There is no graph with δ = 7 and n = 18 such that

dI(G) + dI(G) = n+ 3.

2. Italian dominating functions for graphs with large domatic
number

To begin, we can consider some of the properties of Italian dominating functions if

the domatic number is as large as possible. In [2], Chellali et al. proved a simple

bound that gives a lower bound on γI(G).

Theorem 3. For a graph G on n vertices with maximum degree ∆(G),

γI(G) ≥
⌈

2n

∆(G) + 2

⌉
.

Regarding the domatic number, the following simple bound was shown in [12] (we

include a proof here to highlight the conditions for equality).

Theorem 4. For any graph G with minimum degree δ(G),

dI(G) ≤ δ(G) + 2.

Furthermore, if F = {f1, f2, . . . , fdI (G)} is an Italian dominating family, such that dI(G) =
δ(G)+2, then for any minimum degree vertex v, the following three statements must be true:

1. There are exactly δ(G) Italian dominating functions such that fi(v) = 0, and exactly
two Italian dominating functions such that fi(v) = 1.

2. For every u ∈ N(v), if fi(v) = 1, then fi(u) = 0.

3. For every Italian dominating function fi in which fi(v) = 0,
∑
u∈N(v) fi(u) = 2.

Proof. Let d = dI(G) and F = {f1, f2, . . . , fd} be the corresponding family of

Italian dominating functions, and choose v be a vertex of minimum degree. First,

we can determine the number of functions fi such that fi(v) = 0. WLOG assume

f1, f2, . . . , fd′ are the Italian dominating functions such that fi(v) = 0 (for some d′).
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For each i such that fi(v) = 0, the sum of the values of fi on the neighbors of v

must be at least 2, i.e.
∑
u∈N(v) fi(u) ≥ 2. Also, by definition of the Italian domatic

number,
∑d′

i=1 fi(u) ≤ 2. Thus,

2d′ ≤
d′∑
i=1

 ∑
u∈N(v)

fi(u)

 =
∑

u∈N(v)

 d′∑
i=1

fi(u)

 ≤ 2δ(G). (1)

Thus, there are at most δ(G) Italian dominating functions such that fi(v) = 0. Note

that equality is obtained only when δ(G) = d′, and as a result, when
∑d′

i=1 fi(u) = 2

and
∑
u∈N(v) fi(u) = 2 (Statement 3). Next, consider the two cases for functions that

are nonzero at v.

1. There is a function fi such that fi(v) = 2.

In this case, there is only one such function, since
∑d
i=1 fi(u) ≤ 2, so we have

dI(G) ≤ δ(G) + 1.

2. There are two functions fd′+1, fd′+2 such that fd′+1(v) = 1 and fd′+2(v) = 1.

This can occur for at most two indices, since
∑d
i=1 fi(v) ≤ 2, so we have dI(G) ≤

δ(G) + 2.

Therefore, dI(G) ≤ δ(G) + 2, and equality is obtained only in case 2, when there are

exactly δ(G) Italian dominating functions in F such that fi(v) = 0, and two Italian

dominating functions in F in which fi(v) = 1 (Statement 1).

Lastly, consider a neighbor u of the vertex v. To achieve equality in Equation 1,∑d′

i=1 fi(u) = 2. Since
∑d′+2
i=1 fi(u) ≤ 2, then this must imply that fd′+1(u) =

fd′+2(u) = 0 (Statement 2); otherwise
∑d′

i=1 fi(u) < 2.

In a regular graph, we can apply the statements about vertices of minimum degree

at equality to every vertex, so that if dI(G) = δ(G) + 2, and F = {f1, f2, . . . , fd} is

a corresponding family of Italian dominating functions, then this would imply each

Italian dominating function is a function fi : V (G) → {0, 1}. This allows us to view

the Italian dominating functions as indicator functions, and in what follows, it will

be convenient to restate the property that dI(G) = δ(G) + 2 for a regular graph G in

terms of a family of sets.

Lemma 1. Let G be a regular graph.
Then G satisfies dI(G) = δ(G) + 2 if and only if there is a family of distinct sets S =
{S1, . . . , Sδ(G)+2}, Si ⊂ V (G), that satisfy the following four conditions:

1. Every vertex v appears in exactly two sets Si.

2. The sets Si are independent.

3. For any vertex v 6∈ Si, |N(v) ∩ Si| = 2.

4. Each set Si satisfies |Si| = 2n
δ(G)+2

= γI(G).
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Proof. First, suppose that G is a regular graph such that dI(G) = δ(G) + 2, and

let F = {f1, f2, . . . , fδ(G)+2} be a corresponding Italian dominating family. For each

dominating function fi, we define the set Si = S(fi) = {v ∈ V (G) : fi(v) 6= 0}.
Since G is a regular graph, the statements about minimum degree vertices at equal-

ity in Theorem 4 can be applied to every vertex in the graph. As discussed, one

consequence of Statement 1 in Theorem 4, applied to all vertices in G, is that

fi : V (G) → {0, 1} for each i. Conditions 1 through 3 above are, roughly, trans-

lations of these statements to the sets Si, as we will show below.

• First, Statement 1 of Theorem 4 indicates that for each vertex v, there are

exactly two Italian dominating functions such that fi(v) = 1. Applying the

definition of the sets Si, this implies that each vertex v appears in exactly two

sets, which is Condition 1.

• Second, Statement 2 of Theorem 4 indicates that for each vertex v, and any

vertex u ∈ N(v), if fi(v) = 1, then fi(u) = 0. By definition of the sets Si, this

can be rewritten as follows: if v ∈ Si, then for any u ∈ N(v), u 6∈ Si, implying

each set Si is independent, Condition 2.

• Third, Statement 3 of Theorem 4 indicates that for each vertex v, and every

dominating function fi such that fi(v) = 0, it must be that
∑
u∈N(v) fi(u) = 2.

This implies that there are exactly two neighbors of v, say u and w, such that

fi(u) = fi(w) = 1. Then, by definition of the sets Si, this implies that for any

vertex v 6∈ Si, |N(v) ∩ Si| = 2,

Lastly, since equality in Theorem 4 implied fi : V (G) → {0, 1} for each i, then

|Si| ≥ γI(G). Applying Theorem 3 (and noting ∆(G) = δ(G) in a regular graph), we

get ⌈
2n

δ(G) + 2

⌉
(δ(G) + 2) ≤

δ(G)+2∑
i=1

|Si| ≤ 2n ≤
⌈

2n

δ(G) + 2

⌉
(δ(G) + 2).

Equality is only possible if 2n is divisible by δ(G) + 2, and for each set Si, |Si| =

2n/(δ(G) + 2).

In the other direction, suppose that there exists sets S1, . . . , Sδ(G)+2 ⊂ V (G) satisfying

Conditions 1 - 4. Let fi be the indicator function for each set Si. By Condition

3, such a function is an Italian dominating function, and by Conditions 1 and 4,

these functions form an Italian dominating family with δ(G) + 2 Italian dominating

functions. Since dI(G) ≤ δ(G) + 2, this implies that dI(G) = δ(G) + 2.

Lastly, we note that the weight of any function fi is |Si|, implying γI(G) ≤ |Si|. From

Theorem 3, γI(G) ≥ 2n/(δ(G) + 2); thus |Si| = γI(G).

3. An Intersection Graph

In order to find counterexamples to Conjectures 1 and 2, it is helpful to look at

intersection graphs. Suppose that a regular graph G satisfies dI(G) = δ(G) + 2
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and gives rise to sets Si satisfying the conditions of Lemma 1. We can construct an

“intersection” graph from these sets, i.e. let the vertices si of a graph H correspond to

the sets Si, so that two vertices in H are adjacent if the corresponding sets intersect.

The goal of this section is to investigate the properties of such a graph. The benefit

of doing so is that the intersection graphs contain fewer vertices than the original

graphs G. This means that searching for potential intersection graphs may be easier

than searching for regular graphs G which satisfy dI(G) = δ(G) + 2 because the pool

of potential candidates is much smaller.

More precisely, let G be a regular graph with a family of sets S satisfying the condi-

tions of Lemma 1. Then we define the multigraph H = H(G,S) as follows:

1. Each vertex si ∈ V (H(G,S)) corresponds to a set Si.

2. Consider sets Si and Sj corresponding to si, sj ∈ V (H(G,S)). If the intersection

Si∩Sj is non-empty, there is an edge between the vertices si and sj correspond-

ing to each vertex of the intersection (so each edge in H(G,S) corresponds to a

vertex in G).

In what follows, we will frequently write H(G,S) as H (it will be implied that it is

an intersection graph), and refer to the graph G as the “host” graph. At this point,

we can already note a few properties of the graph H(G,S), implied by Lemma 1.

Observation 1. The graph H = H(G,S) is regular with degree γI(G) and contains
|V (G)| edges.

The graph H is regular simply because each set Si is the same size (|Si| = γI(G)), and

every vertex of G is contained in exactly two different sets (i.e. in one intersection)

so it shows up exactly once as an edge in H.

Another important property to note arises from thinking about how to reconstruct the

host graph from the intersection graph. The vertices of the host graph correspond to

the edges of the intersection graph, but what about the adjacencies of the host graph?

Let v ∈ V (G) be a vertex corresponding to an edge e = (si, sj) ∈ E(H) (i.e. v ∈ Si, Sj
in the host graph). In the following list, we give the properties of the neighborhood

of v in the host graph G, followed by the corresponding properties in H.

1. The vertex v has exactly δ(G) neighbors overall in the host graph.

In H, this translates to a collection of δ(G) edges.

2. The vertex v is not adjacent to any other vertices in Si, Sj.

The collection of edges from the previous point cannot involve any edges incident

with si and sj in H.

3. The vertex v has exactly two neighbors in each set Sk, (for k 6= i, j) in the host

graph.

In H, this translates to exactly two edges that are incident with a vertex sk (for

all k 6= i, j).
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Suppose that we remove the vertices si and sj from the graph H. This would leave

exactly δ(G) vertices. Then in H, the neighborhood of the vertex v ∈ V (G) corre-

sponds to a set of edges in H − {si, sj} so that every vertex sk meets two edges. In

other words, a perfect 2-factor 1 consisting of δ(G) edges in the graph H − {si, sj}.
Since the host graph G, was undirected, we can strengthen this slightly. If a graph

H is an intersection graph, then there must be a perfect 2-factor in every subgraph

H −{si, sj}, where (si, sj) ∈ E(H), and this family of 2-factors must satisfy what we

will call the symmetric property for edge-removed 2-factors, or the “SPER-2 property”.

Definition 1. We say that a graph H satisfies the “SPER-2 property” if there is a
family of two-factors M = {Me : e ∈ E(H)} such that for every edge (si, sj) ∈ E(H),
the corresponding M(si,sj) is a perfect 2-factor in the graph H − {si, sj}, and for all edges
e, e′ ∈ V (H), e′ ∈Me if and only if e ∈Me′ .

We can now show that if a graph H satisfies the SPER-2 property, then it is an

intersection graph for some graph G and some family S.

Theorem 5. Consider a regular graph H with degree k on n vertices. The graph H
satisfies the SPER-2 property, if and only if it is an intersection graph H(G,S) for a regular
graph G of degree n− 2 on kn/2 vertices such that dI(G) = n = δ(G) + 2.

Proof. Let H be a regular graph of degree k with vertices s1, s2, . . . , sn, and let

M = {Me : e ∈ E(H)} be a family of 2-factors that demonstrates that H satisfies

the SPER-2 property. Since H is regular with degree k on n vertices, then by the

handshaking lemma, there are k|V (H)|/2 edges in the graph H.

We can reconstruct the graph G as follows. Let {ve1 , ve2 , . . . , ve|E(H)|} be the vertices

of G so that each vertex corresponds to an edge ei ∈ E(H) (so there are a total of

kn/2 vertices in V (G)). To define the edges, we say that (vei , vej ) ∈ E(G) if and

only if vej ∈Mei (and by the SPER-2 property, vei ∈Mej ). Since each 2-factor Mei

contains |V (H)| − 2 edges, each vertex in V (G) has degree n− 2.

To show that dI(G) = δ(G) + 2, we can explicitly define a family of sets to satisfy

Lemma 1. First, associate a set S with each vertex in H. In particular, for a vertex

sk ∈ V (H) we define Sk such that

Sk = {ve ∈ V (G) : e is incident with sk}.

Then we can show that the four conditions from Lemma 1 are satisfied for this family

of sets.

1. Each vertex ve ∈ V (G) such that e = (si, sj) is contained in exactly two sets,

namely Si and Sj .

1 A perfect 2-factor is a union of vertex-disjoint cycles.
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Figure 2. The complete graph K5 satisfies the conditions of Theorem 5. The 2-factor Ma is shown in
bold on K5; in the host graph G, edges from a to the corresponding vertices are also shown
in bold. The 5 Italian dominating functions are the indicator functions for the sets {a, j, g, b},
{b, f, g, e}, {c, g, i, d}, {d, h, j, e}, {e, i, f, a}.

2. Each set Si is independent; If e = (si, sj) so that ve ∈ Si, all neighbors of ve are

vertices corresponding to edges from the 2-factor from H −{si, sj}, so it has no

neighbors ve′ where e′ contains si.

3. Since M(si,sj) is a perfect 2-factor of H − {si, sj}, the vertex v(si,sj) will have

two neighbors in each set Sk for k 6= i, j.

4. |Su| = δ(H) = k =
2
(
kn
2

)
n

=
2|V (G)|
δ(G) + 2

Therefore, H is an intersection graph for a regular graph G of degree n− 2 on kn/2

vertices with dI(G) = δ(G) + 2.

In the other direction, suppose that H is an intersection graph for a regular graph G of

degree n−2 on kn/2 vertices such that dI(G) = δ(G)+2. Let S = {S1, . . . , Sδ(G)+2},
Si ⊂ V (G), be the family of sets guaranteed by Lemma 1. Consider a vertex v ∈ V (G)

such that v ∈ Si, Sj (then for any k 6= i, j, v 6∈ Sk by Condition 1). In the graph H,

the vertex v corresponds to an edge ev = (si, sj) ∈ E(H). Then, for each v ∈ V (G),

define the set Mev = {eu : u ∈ NG(v)}. Since v is adjacent to exactly two vertices

in every set Sk (k 6= i, j), then there are exactly two edges in Mev with sk as an

endpoint. Thus, Mev is a perfect 2-factor of H − {si, sj}. Furthermore, since G is

undirected, u ∈ N(v) if and only if v ∈ N(u). This implies that eu ∈Mev if and only

if ev ∈Meu .

As an example, consider the complete graph H = K5. For each edge (u, v), letM(u,v)

be the triangle on the vertices of H−{u, v}. It is easily verified that for this family of

two factors, e′ ∈ Me if and only if e ∈ Me′ . The resulting host graph (the Petersen

graph) is shown in Figure 2.

Recall that given any graph G, its square graph G2 is the graph with the same vertex

set of G such that two vertices are adjacent in G2 whenever they are distance 1 or

2 in G. The graph K5 can also be thought of as the square of C5, and we can show
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that this is one example of a family of graphs that satisfy the conditions of Theorem

5.

Lemma 2. The square of a cycle Cn, n ≥ 5, satisfies the SPER-2 property.

Proof. Let G = Cn with vertices v0, . . . , vn−1 (To simplify notation and avoid adding

“mod n” to the index of each vertex, assume that all arithmetic in the index of a

vertex is done modulo n.) The vertices of G2 are also v0, . . . , vn−1 and the edges of

G2 can be partitioned into two sets, E1 and E2, such that E1 = E(G) (i.e., edges of

the form (vi, vi+1)) and E2 = E(G2)− E(G) (i.e. edges of the form (vi, vi+2)).

For each edge e in G2, we explicitly describe the two-factor Me.

1. Suppose e = (vi, vi+1) ∈ E1.

In this case, choose Me as follows: First, choose edges (vi−2, vi−1) and

(vi+2, vi+3) from E1, and all edges from E2 except the four that involve vi
and vi+1.

Then, any vertex outside of vi−2, vi−1, vi+2, and vi+3 is contained in two edges

from E2, and each of these four is contained in one edge from E1 and one from

E2, forming a 2-factor (in fact, the 2-factor these edges form is simply a single

cycle involving all vertices except vi and vi+1).

2. Suppose e = (vi, vi+2) ∈ E2.

In this case, choose Me as follows: First, choose edges (vi−1, vi+1) and

(vi+1, vi+3) from E2, and all edges from E1 except the four that involve vi
and vi+2.

Then, any vertex outside of vi−1, vi+1, and vi+3 is contained in two edges

from E1, the vertex vi+1 is in both edges from E2, and the remaining two are

contained in one edge from E1 and one from E2, forming a 2-factor (as in the

previous case, the 2-factor these edges form is a single cycle involving all vertices

except vi and vi+2).

Now consider the edge e = (vj , vj+1) ∈ E1. This edge occurs in the two-factor Me′

for e′ = (vi, vi+1) where i = j + 2 and also when i = j − 2. In addition, e occurs in

the two factorMe′ for e′ = (vi, vi+2) in any case when i, i+ 2 6= j and i, i+ 2 6= j+ 1.

Thus, e ∈Me′ for any edge e′ ∈Me.

Next consider the edge e = (vj , vj+2) ∈ E2. This edge occurs in the two-factor Me′

for e′ = (vi, vi+2) where i = j + 1 and also when i = j − 1. In addition, e occurs in

the two factorMe′ for e′ = (vi, vi+1) in any case when i, i+ 1 6= j and i, i+ 1 6= j+ 2.

Thus, e ∈Me′ for any edge e′ ∈Me.

Theorem 6. For any k ≥ 3, there is a k-regular graph G on n = 2(k + 2) vertices such
that

dI(G) = k + 2 = δ(G) + 2.
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Proof. For k ≥ 3, choose H to be the square of the cycle Cr, which is 4-regular

on r vertices, where we choose r = k + 2. By Lemma 2, we know that square of a

cycle satisfies the SPER-2 property, so by Theorem 5 there is a regular graph G with

degree (k+ 2)− 2 = k on 4(k+ 2)/2 = 2(k+ 2) vertices, such that dI(G) = k+ 2.

4. Cubic Intersection Graphs

In the event that γI(G) = 3, the structure for the intersection graph is particularly

nice, and very relevant to discussion of the exceptions to Theorem 1.

Theorem 7. Let G be a regular graph on n vertices with dI(G) = δ(G) + 2 such that
2n/(δ(G) + 2) = 3. Then H = H(G,S) satisfies the following properties:

1. H is a simple cubic graph

2. H is a triangle-free graph.

Proof. If 2n/(δ(G) + 2) = 3, then |Si| = 3, and by Observation 1, the graph H

is cubic. Now consider two sets Si and Sj in the host graph, such that Si ∩ Sj is

non-empty (i.e. (si, sj) ∈ E(H)). Any vertex v ∈ Sj−Si must be adjacent to at least

two vertices of Si, but cannot be adjacent to any vertex in Si∩Sj . Since |Si| = 3, this

implies |Si ∩Sj | = 1, and this would be true about any pair of sets with a non-empty

intersection; therefore there is at most one edge between any pair of adjacent vertices

sk and s` in H.

Next, suppose (for contradiction) that there is a triangle with vertices {si, sj , sk} in

H. This implies the pairwise intersections between corresponding sets Si, Sj , and

Sk in the host graph are non-empty. From the previous argument, each pair must

intersect in exactly one vertex, and no vertex can intersect all three (by Condition 1);

therefore we can write u = Si ∩ Sj , v = Sj ∩ Sk, and w = Si ∩ Sk for some vertices

u 6= v 6= w ∈ V (G). However, the vertex u must be adjacent to two of the three

vertices in Sk, but cannot be adjacent to either v or w, a contradiction.

At this point, we can turn our attention to the exceptions in the statement of Theorem

1. For a regular graph G to satisfy dI(G) + dI(G) ≥ n + 3, the graph and its

complement must satisfy dI(G) = δ(G) + 2 and dI(G) = δ(G) + 2, and consequently

γI(G) = 2n/(δ(G) + 2). For the three exceptions to Theorem 1, we have

1. n = 9 and δ(G) = 4
2n

δ(G) + 2
=

18

4 + 2
= 3

2. n = 18 and δ(G) = 7 (so δ(G) = 10)

2n

δ(G) + 2
=

36

10 + 2
= 3
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Figure 3. The intersection graph shown on left, and the corresponding host graph G on the right, the
3× 3 rooks graph. The 6 Italian dominating functions are the indicator functions for the sets
{a, e, i}, {a, f, h}, {b, f, g}, {b, d, i}, {c, d, h}, and {c, e, g}.

3. n = 45 and δ = 16 (so δ(G) = 28)

2n

δ(G) + 2
=

90

28 + 2
= 3

We can see that in all three cases, we can narrow the search to a cubic intersection

graph.

4.1. A 4-regular graph on 9 vertices such that dI(G) + dI(G) = n+ 3.

For the first exception to Theorem 1, we consider 4-regular graphs on 9 vertices. There

are 16 such graphs. However, if we consider the intersection graph H, we would be

looking for a cubic, triangle-free graph on 6 vertices, and there is only one such graph

[1]. This graph satisfies the SPER-2 property; in fact, in this case the 2-factors in

H − {u, v} were unique for each edge (u, v). The process in the proof of Theorem 5

can be used to reconstruct G and Figure 3 shows both the intersection graph H, and

the host graph G.

Furthermore, the 3× 3 rook’s graph is self-complementary, so that dI(G) + dI(G) =

6 + 6 = 9 + 3 = n+ 3. On the basis of this, we can make the following claim.

Claim 1. The 3× 3 rook’s graph is the unique 4-regular graph on 9 vertices with dI(G) =
δ(G) + 2 = 6, and for which dI(G) + dI(G) = n+ 3.

4.2. 10-regular graphs on 18 vertices such that dI(G) + dI(G) = n+ 3.

For the second exception to Theorem 1, we consider 7-regular graphs on 18 vertices.

At this point it would be prohibitive to calculate dI(G) + dI(G) for all such graphs.

Instead, we can look at the complement; 10-regular graphs on 18 vertices, and the

corresponding intersection graphs. In this case, again 2n/(δ(G) + 2) = 3, so we are
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looking for an intersection graph H(G,F) that is cubic and triangle-free on δ(G)+2 =

12 vertices.

There are 22 connected, cubic, triangle-free graphs on 12 vertices [1], and one discon-

nected graph (take two disjoint copies of the intersection graph shown in Figure 3).

At this point, is is worth noting that 2-factors in cubic graphs are very well-studied,

arising from a seminal result of Petersen in 1891 [8], that every 2-connected cubic

graph has a perfect matching (the remaining edges forming a perfect 2-factor). How-

ever, for most of these graphs, there is some edge (u, v) such that H−{u, v} does not

contain a 2-factor. The next two lemmas provide simple criteria to exclude graphs

from the set of 23 cubic, triangle-free graphs. First, we see that cubic graphs with a

particular coloring can be excluded.

Lemma 3. Suppose that H is a cubic triangle-free graph on n vertices with χ(H) = 3,
with a (proper) 3-coloring with color classes of order (n−2)/2, (n−2)/2, and 2. Then there
is an edge (u, v) ∈ E(H) such that H − {u, v} does not contain a perfect 2-factor.

Proof. Let H be a graph as described above with color classes U1, U2, and {u,w}.
If χ(H) = 3, then WLOG we may assume u has neighbors in both U1 and U2. Let

U1 be the color class that contains the most neighbors of w. If v is a neighbor of u in

U1, consider the graph H − {u, v}. This graph contains the independent sets U2 and

U ′1 = U1 − {v}, where |U2| = (n− 2)/2. Thus, all edges in any perfect 2-factor would

need to be from vertices in U2 to vertices in U ′1 + {w}. However, w contains at most

one edge into U2, so no perfect 2-factor is possible.

Next, we see that cubic graphs containing some forbidden subgraphs can be excluded.

Lemma 4. Suppose that H is a cubic graph that contains any of the graphs L1 − L6

shown in Figure 4. Then there is an edge (u, v) such that H − {u, v} does not contain a
2-factor.

Proof. Suppose that H is a cubic graph that contains one of the graphs L1 − L5,

and label vertices of the copy of Li as in Figure 4. Then consider a perfect 2-factor

of the graph H −{(u, v)}. When removing the vertices u and v from H, an edge was

removed from any vertex labeled a, b, c, or d in any of the forbidden subgraphs. As

a result, both of the remaining edges of these vertices must be in the 2-factor. In

particular, this means that in each of the graph L1 − L5, both of the edges from the

vertex s and the vertex t to the set {a, b, c, d} must be part of the 2-factor. However,

the vertex labeled w is adjacent to both s and t, and it is not possible for two edges

involving w to be in the 2-factor.

Similarly, if H contains a copy of L6, all edges from {a, b, c, d} to s must be present

in a perfect 2-factor, but that would imply that s has degree 3 in the 2-factor.

After applying these two simple lemmas to screen the 23 triangle-free cubic graphs

with 12 vertices, there are seven remaining graphs, each of which contain a perfect



J. Lyle 269

Figure 4. Forbidden subgraphs for any cubic graph G such that G− e always contains a 2-factor.

2-factor in G − e for each edge e (However, this does not imply that the 2-factors

satisfy the SPER-2 property). In the table below, the graph6 codes for these seven

graphs are given. In addition, the 2-factors associated with each edge were examined

to determine when the SPER-2 property was satisfied, and any possible correspond-

ing host graph(s), using the mathematical software system Sage [9] (code for this is

available at [6]). The results are provided in Table 1.

Intersection Graph Corresponding Host Graphs

H1: KCHY@eAGKOGB QEYbtZSZrtTlt[tkult]i]ujYlO

H2: KCHY@eAWCO?F QEYblZWZrtTlu[tkuxdZm]ujUl_

H3: KC‘Y@aAWHO?X Does not satisfy SPER-2 property

H4: KKhY?aAGOE?F Does not satisfy SPER-2 property

H5: KhhK?GQ?oa?F Does not satisfy SPER-2 property

H6: KMo@_K‘@KG@B QEYdZXtmb^UmucuTuuusuZyjTlO

H7: K??FFB_F?wB_ QBjB\jWjrtYktZjtNVBtZt\inZ?

Table 1. The triangle-free cubic graphs with 12 vertices which contain a perfect 2-factor in G−e for each
edge e (the intersection graphs), and the corresponding host graphs, if they exist. All graphs
are displayed in graph6 format [7].

The four host graphs listed in Table 1 are the 10-regular graphs on 18 vertices with

dI (G) = 12. However, in each case, dI
(
G
)
< 9. On the basis of this, we can make

the following claim.

Claim 2. For any 10-regular graphs on 18 vertices (or 7-regular graph on 18 vertices)
dI (G) + dI

(
G
)
≤ n+ 2.
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Together, Claims 1 and 2 provide the basis for Theorem 2.

5. Open Questions

We conclude by addressing some of the remaining questions. Foremost is the last

exception to Theorem 1.

Question . Is there a 28-regular graph G on 45 vertices such that

dI(G) + dI(G) = n+ 3?

In searching for such graphs, one could look first for the complement: 16-regular

graphs on 45 vertices such that dI(G) = 18. This would yield a cubic, triangle-free

intersection graph on 30 vertices. However, looking for such graphs that satisfy the

SPER-2 property would be daunting. The number of cubic, triangle-free graphs on

30 vertices is 181,492,137,812 [1], which is prohibitively large. Additional progress

would be necessary to attack this problem.

In addition to Question 1, there are two other natural questions that arise. In Sub-

section 4.2, we provided some results to indicate when there is an edge e = (u, v)

so that H − {u, v} does not have a perfect 2-factor. It would be interesting to find

more generally applicable conditions to show that H −{u, v} does (or does not) have

a perfect 2-factor.

Finally, we focused on intersection graphs which were cubic. A consequence of |Si| = 3

was that the resulting graph was simple and triangle-free. This is not necessarily

true for intersection graphs which are not cubic. However, it is likely that there are

other structural properties that may be helpful; determining what these structural

properties might be is also of interest.
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