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Abstract: For a connected graphG of order at least two, a set S of vertices in a graph

G is said to be an outer connected monophonic set if S is a monophonic set of G and
either S = V or the subgraph induced by V −S is connected. The minimum cardinality

of an outer connected monophonic set of G is the outer connected monophonic number
of G and is denoted by moc(G). The number of extreme vertices in G is its extreme

order ex(G). A graph G is said to be an extreme outer connected monophonic graph if

moc(G) = ex(G). Extreme outer connected monophonic graphs of order p with outer
connected monophonic number p and extreme outer connected monophonic graphs of

order p with outer connected monophonic number p− 1 are characterized. It is shown

that for every pair a, b of integers with 0 ≤ a ≤ b and b ≥ 2, there exists a connected
graph G with ex(G) = a and moc(G) = b. Also, it is shown that for positive integers

r, d and k ≥ 2 with r < d, there exists an extreme outer connected monophonic graph

G with monophonic radius r, monophonic diameter d and outer connected monophonic
number k.

Keywords: outer connected monophonic set, outer connected monophonic number,
extreme order, extreme outer connected monophonic graph

AMS Subject classification: 05C12

1. Introduction

By a graph G = (V,E) we mean a finite simple undirected connected graph. The

order and size of G are denoted by p and q, respectively. For basic graph theoretic

terminology we refer to Harary [5, 15]. The distance d(x, y) between two vertices

x and y in G is the length of a shortest x − y path in G. A x − y path of length

d(x, y) is called x − y geodesic. The removal of a vertex v from a graph G results
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212 Extreme outer connected monophonic graphs

in that subgraph G − v of G consisting of all vertices of G except v and all edges

not incident with v. A vertex v of G is called an end-vertex of G if its degree is

1. The neighborhood of a vertex v is the set N(v) consisting of all vertices u which

are adjacent with v. A vertex v is an extreme vertex if the subgraph induced by

its neighbors is complete. The number of extreme vertices in G is its extreme order

ex(G).

The closed interval I[x, y] consists of all vertices lying on some x − y geodesic of

G, while for S ⊆ V, I[S] =
⋃

x,y∈S
I[x, y]. A set S of vertices of G is a geodetic set

if I[S] = V , and the minimum cardinality of a geodetic set of G is the geodetic

number g(G) of G. The geodetic number of a graph and its variants have been

studied by several authors in [1–4, 6–8, 16, 17, 19]. A set S of vertices in a graph

G is said to be an outer connected geodetic set if S is a geodetic set of G and either

S = V or the subgraph induced by V − S is connected. The minimum cardinality

of an outer connected geodetic set of G is the outer connected geodetic number of

G and is denoted by goc(G). The outer connected geodetic number of a graph was

introduced and studied in [13]. A graph G is an extreme outer connected geodesic

graph if goc(G) = ex(G). Extreme outer connected geodesic graphs was introduced

and studied in [12]. A chord of a path P is an edge joining two non-adjacent vertices

of P . A path P is called a monophonic path if it is a chordless path. A set S

of vertices of G is a monophonic set of G if each vertex v of G lies on a x − y

monophonic path for some x and y in S. The minimum cardinality of a monophonic

set of G is the monophonic number of G and is denoted by m(G). The monophonic

number of a graph, and algorithmic aspects of monophonic concepts were studied by

several authors in [9–11, 18, 22]. A set S of vertices in a graph G is said to be an

outer connected monophonic set if S is a monophonic set of G and either S = V

or the subgraph induced by V − S is connected. The minimum cardinality of an

outer connected monophonic set of G is the outer connected monophonic number of

G and is denoted by moc(G). The outer connected monophonic number of a graph

was introduced and studied in [14].

For any two vertices u and v in a connected graph G, the monophonic distance

dm(u, v) from u to v is defined as the length of a longest u−v monophonic path in G.

The monophonic eccentricity em(v) of a vertex v in G is em(v) = max {dm(v, u) : u ∈
V (G)}. The monophonic radius, radm(G) of G is radm(G) = min {em(v) : v ∈ V (G)}
and the monophonic diameter, diamm(G) of G is diamm(G) = max {em(v) : v ∈
V (G)}. The monophonic distance was introduced in [20] and further studied in [21].

The following theorems will be used in the sequel.

Theorem A. [22] Each extreme vertex of a connected graph G belongs to every mono-
phonic set of G.

Theorem B. [15] Let G be a connected graph with at least three vertices. The following
statements are equivalent:

• G is a block
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• Every two vertices of G lie on a common cycle.

Theorem C. [14] Each extreme vertex of a connected graph G belongs to every outer
connected monophonic set of G.

Theorem D. [14] For the complete graph Kp(p ≥ 2), moc(Kp) = p.

Theorem E. [14] No cutvertex of a connected graph G belongs to any minimum outer
connected monophonic set of G.

Theorem F. [14] If T is a tree with k end-vertices, then moc(T ) = k.

Theorem G. [13] Each extreme vertex of a connected graph G belongs to every outer
connected geodetic set of G.

Theorem H. [13] For the complete graph Kp(p ≥ 2), goc(Kp) = p.

Theorem I. [13] For any tree T with k end-vertices goc(G) = k.

Throughout this paper G denotes a connected graph with at least two vertices.

2. Main Results

Definition 1. A graph G is said to be an extreme outer connected monophonic graph if
moc(G) = ex(G).

u2

u1

u4

u3

v2 v6

v1 v5

v4

v3 v7

w2 w6

w1 w5

w4

w3 w7

G2G1 G3

Figure 1. Extreme outer connected and non-extreme outer connected monophonic graphs



214 Extreme outer connected monophonic graphs

Example 1. For the graph G1 given in Figure 1 of order 4, u1 and u3 are the only two
extreme vertices and so ex(G1) = 2. The set S = {u1, u3} is the unique minimum outer
connected monophonic set of G1 so that moc(G1) = 2 = ex(G1). Hence the graph G1 is an
extreme outer connected monophonic graph. The graph G2 given in Figure 1 has only one
extreme vertex v2 and so ex(G2) = 1. It is clear that S1 = {v2, v6} is the unique minimum
outer connected monophonic set of G2, moc(G2) = 2 6= ex(G2). Therefore G2 is not an
extreme outer connected monophonic graph. The graph G3 given in Figure 1 contains no
extreme vertices and so it is not an extreme outer connected monophonic graph.

For any non-trivial tree T with k end-vertices, ex(T ) = k and by Theorem F,

moc(T ) = k = ex(T ). Thus any non-trivial tree is an extreme outer connected

monophonic graph. For the complete graph Kp(p ≥ 2), ex(Kp) = p and by Theo-

rem D, moc(Kp) = p = ex(Kp), it follows that Kp is an extreme outer connected

monophonic graph. It is easy to observe that the cycle Cn(n ≥ 4) and the complete

bipartite graph Kr,s(2 ≤ r ≤ s) are not extreme outer connected monophonic graphs.

A graph G having no extreme vertices is obviously not an extreme outer connected

monophonic graph.

Theorem 1. For any connected graph G of order p (p ≥ 2), 0 ≤ ex(G) ≤ m(G) ≤
moc(G) ≤ p.

Proof. Any graph G may or may not contain extreme vertices and so ex(G) ≥ 0.

By Theorem A, every monophonic set of G contains all the extreme vertices of G

and so m(G) ≥ ex(G). Note that every outer connected monophonic set of G is also

a monophonic set of G, m(G) ≤ moc(G). Also, V (G) induces an outer connected

monophonic set of G, it follows that moc(G) ≤ p. Hence, we have 0 ≤ ex(G) ≤
m(G) ≤ moc(G) ≤ p.

Remark 1. The bounds in Theorem 1 are sharp. For the cycle Cn(n ≥ 4), ex(Cn) = 0
and for the complete graph Kp(p ≥ 2),moc(Kp) = p. Also, all the inequalities in Theorem
1 can be strict. For the graph G given in Figure 2 of order 7, u6 is the only one extreme
vertex of G and so ex(G) = 1. It is clear that no 2-element subset of V (G) is a monophonic
set of G. The set S = {u1, u2, u6} is a monophonic set of G and so m(G) = 3. Since the
subgraph induced by V − S is not connected, S is not an outer connected monophonic set
of G. Note that, no 3-element subset of V (G) is an outer connected monophonic set of G.
It is easily verified that S1 = {u3, u4, u6, u7} is a minimum outer connected monophonic set
of G and so moc(G) = 4. Thus, we have 0 < ex(G) < m(G) < moc(G) < p.

The following theorem characterizes extreme outer connected monophonic graphs G

of order p for which moc(G) = p.

Theorem 2. Any connected graph G of order p (p ≥ 2) is an extreme outer connected
monophonic graph with moc(G) = p if and only if G is complete.
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Figure 2. Graph G satisfying the inequality 0 < ex(G) < m(G) < moc(G) < p

Proof. Let G be the complete graph of order p. Then every vertex of G is an

extreme vertex and so ex(G) = p. By Theorem D, moc(G) = p = ex(G). Thus G is

an extreme outer connected monophonic graph with moc(G) = p. Conversely, let G

is an extreme outer connected monophonic graph with moc(G) = p. Then ex(G) = p.

Since ex(G) = p, every vertex of G is an extreme vertex and so G is complete.

The next theorem characterizes extreme outer connected monophonic

graphs G of order p for which moc(G) = p− 1.

Theorem 3. Let G be a connected graph of order p ≥ 3. Then G is an extreme outer
connected monophonic graph with moc(G) = p − 1 if and only if G = K1 + ∪miKj, where
j ≥ 1,

∑
mi ≥ 2.

Proof. Let G = K1 + ∪miKj , where j ≥ 1,
∑

mi ≥ 2. Since G has exactly one

cutvertex and all other vertices are extreme, ex(G) = p−1. It follows from Theorems

C and E that moc(G) = p − 1 = ex(G). Thus G is an extreme outer connected

monophonic graph with moc(G) = p − 1. Conversely, let G be an extreme outer

connected monophonic graph with moc(G) = p − 1. Then there exists exactly one

non-extreme vertex, say x, in G. If p = 3, then G is a path of order 3 and hence

G = K1 + ∪2K1. Let p ≥ 4. We claim that x is the cutvertex of G. Otherwise,

x lies on a smallest cycle, say C : x, v1, v2, v3, . . . , vn, x, of length at least n(n ≥
4). Then there exist a non-extreme vertex vi in C, it follows that ex(G) ≤ p − 2,

which is a contradiction. Hence G − x has at least n(n ≥ 2) components. Let

B1, B2, . . . , Bn(n ≥ 2) be the components of G − x. It is enough to prove that each

component Bi(1 ≤ i ≤ n) is complete and x is adjacent to every vertex of each

component Bi. Suppose there exists a component Bi, which is not complete. Let

u and v be two vertices in Bi such that d(u, v) ≥ 2. Then by Theorem B, both u

and v lie on a common cycle and hence u and v lie on a smallest cycle of length at

least 4, let it be C. Then there exist a non-extreme vertex w in C, it follows that

ex(G) ≤ p− 2, which is a contradiction. Thus each component of G− x is complete.

Now, if x is not adjacent to some vertex of a component Bi, let it be t, then x lies

on a s− t monophonic path P of length at least three, where s ∈ V (Bj)(i 6= j). Let
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P : s = v0, v1, . . . , x, . . . , vn−1, vn = t. It is clear that S = V − {s, t} is an outer

connected monophonic set of G and so moc(G) ≤ p − 2, which is a contradiction.

Hence G = K1 + ∪miKj , where j ≥ 1 and
∑

mi ≥ 2.

It was shown in [22] that if G is a non-trivial connected graph of order p and mono-

phonic diameter dm, then m(G) ≤ p−dm+1. By Theorem 1, ex(G) ≤ m(G) ≤ moc(G)

for every non-trivial connected graph G, we have the following observation.

Observation 1. If G is a non-trivial connected graph of order p and monophonic diameter
dm, then ex(G) ≤ p− dm + 1.

If G is a non-trivial tree of order p with k end-vertices, then ex(G) = moc(G) = k.

For the complete graph Kp(p ≥ 2), ex(Kp) = moc(Kp) = p. Thus every pair k, p of

integers with 2 ≤ k ≤ p is realizable as the order p and outer connected monophonic

number k respectively, of an extreme outer connected monophonic graph.

Theorem 4. For every pair k, p of integers with 2 ≤ k ≤ p, there exits an extreme outer
connected monophonic graph G of order p with outer connected monophonic number k.

Theorem 5. For every pair a, b of integers with 0 ≤ a ≤ b and b ≥ 2, there exists a
connected graph G with ex(G) = a and moc(G) = b.

Proof. We prove this theorem by considering two cases.

Case 1. a = 0 and b ≥ 2. Let P3 : x, y, z be a path of order 3 and C4 : u1, u2, u3, u4, u1

be a cycle of order 4. Let H be the graph obtained from P3 and C4 by identifying the

vertex y of P3 and u4 of C4. Let G be the graph obtained from H by adding b−1 new

vertices v1, v2, . . . , vb−1 and joining each vi(1 ≤ i ≤ b − 1) to both the vertices x, z

of H. The graph G is shown in Figure 3. Since no vertex of G is an extreme vertex,

ex(G) = 0. It is easy to observe that any subset S ⊆ V (G) with cardinality |S| ≤ b−1

is not an outer connected monophonic set of G. Let S′ = {u2, v1, v2, . . . , vb−1}. Since

S′ is a monophonic set of G and the subgraph induced by V − S′ is connected, S′ is

an outer connected monophonic set of G, it follows that moc(G) = |S′| = b.

vb−1 v2 v1. . . u2

z u3

y

x u1

Figure 3. A graph G with ex(G) = 0 and moc(G) = b
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Case 2. a ≥ 1 and b ≥ 2. If a = b, then the complete graph G = Ka has the

desired properties. If a < b, then we construct the required graph G as follows: let

P3 : x, y, z be a path of order 3 and the graph G is obtained from P3 by adding b new

vertices v1, v2, . . . , vb−a, u1, u2, . . . , ua and joining each ui(1 ≤ i ≤ a) to the vertex y

of P3; and joining each vi(1 ≤ i ≤ b − a) to both the vertices x, z of P3. The graph

G is shown in Figure 4. Since S = {u1, u2, . . . , ua} is the set of all extreme vertices,

ex(G) = a. By Theorem C, every outer connected monophonic set of G contains S.

It is clear that S is not an outer connected monophonic set of G. It is easy to observe

that every minimum outer connected monophonic set of G contains {v1, v2, . . . , vb−a}.
Clearly, S∪{v1, v2, . . . , vb−a} is a minimum outer connected monophonic set of G and

so moc(G) = b.

vb−a v2 v1. . .

u2

z
ua

.

..
y

x
u1

Figure 4. A graph G with ex(G) = a ≥ 1 and moc(G) = b for a 6= b

For any connected graph G, radm(G) ≤ diamm(G). It is shown in [20] that every

two positive integers a and b with a ≤ b are realizable as the monophonic radius and

monophonic diameter, respectively, of some connected graph. This theorem can also

be extended so that an extreme outer connected monophonic graph can be prescribed

when radm(G) < diamm(G).

Theorem 6. For any three positive integers r, d and k ≥ 2 with r < d, there exists an
extreme outer connected monophonic graph G such that radm(G) = r, diamm(G) = d and
moc(G) = k.

Proof. Now, let r = 1 and d ≥ 2. Let G be the graph obtained from

the cycle Cd+2 : v1, v2, . . . , vd+2, v1 of order d + 2 by adding k − 2 new ver-

tices u1, u2, . . . , uk−2 to Cd+2 and joining each vertex x ∈ {u1, u2, . . . , uk−2, v3,

v4, . . . , vd+1} to the vertex v1 of Cd+2. The graph G is shown in Figure 5. It

is easily verified that 1 ≤ em(u) ≤ d for any vertex u in G, em(v1) = 1 and

em(v2) = em(vd+2) = d. Thus radm(G) = r and diamm(G) = d. Since S =

{u1, u2, . . . , uk−2, v2, vd+2} is the set of all extreme vertices of G, ex(G) = k. By The-

orem C, every outer connected monophonic set of G contains S. It is clear that S is the

unique minimum outer connected monophonic set of G and so moc(G) = k = ex(G).

Thus G is an extreme outer connected monophonic graph.

Now, let r ≥ 2 and r < d. Let H be the graph obtained from the cycle Cr+3 :

v1, v2, . . . , vr+3, v1 of order r + 3 and the path Pd−r+1 : w0, w1, . . . , wd−r of order
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v1

uk−2

u2

u1

v2
v3

v4

vd+2
vd+1

vd

Figure 5. Extreme outer connected monophonic graph G with radm(G) = 1 and diamm(G) = d

vr+3

uk−2

u2

u1

v1
v2

v3

vr+2 w1 w2 wd−r
vr+1

vr

Figure 6. Extreme outer connected monophonic graph G with radm(G) = r ≥ 2 and diamm(G) = d

d−r+1 by identifying the vertex vr+2 in Cr+3 and the vertex w0 in Pd−r+1; and also

joining each vertex wi(1 ≤ i ≤ d− r) in Pd−r+1 with the vertex vr+3 in Cr+3. Now,

let G be the graph obtained from H by adding k−2 new vertices u1, u2, . . . , uk−2 and

joining each vertex ui(1 ≤ i ≤ k − 2) to the vertex vr+3 in H and also joining v1 to

v3 and vr+1 to vr+3. The graph G is shown in Figure 6. It is easily verified that r ≤
em(x) ≤ d for any vertex x in G, em(vr+3) = r and em(v1) = em(v2) = em(wd−r) = d.

Thus radm(G) = r and diamm(G) = d. Since S = {u1, u2, . . . , uk−2, wd−r, v2} is the

set of all extreme vertices of G, ex(G) = k. By Theorem C, every outer connected

monophonic set of G contains S. It is clear that S is the unique minimum outer

connected monophonic set of G and so moc(G) = k = ex(G). Thus G is an extreme

outer connected monophonic graph.

We leave the following problem as an open question.
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Problem 1. For any three positive integers r, d and k ≥ 2 with r = d, does there exist
an extreme outer connected monophonic graph G with radm(G) = r, diamm(G) = d and
moc(G) = k?

Theorem 7. For each triple d, k, p of integers with 2 ≤ k ≤ p − d + 1 and d ≥ 2, there
exists an extreme outer connected monophonic graph G of order p such that diamm(G) = d
and moc(G) = k.

Proof. Let Pd+1 : u1, u2, . . . , ud+1 be a path of length d. Add p−d−1 new vertices,

v1, v2, . . . , vk−2, w1, w2, . . . , wp−d−k+1 to Pd+1 and join each wi(1 ≤ i ≤ p− d− k+ 1)

to the vertices u1, u2 and u3; and join each vertex wi(1 ≤ i ≤ p− d− k) to the vertex

wj(i + 1 ≤ j ≤ p− d− k + 1); and also join each vl(1 ≤ l ≤ k − 2) to the vertex u2.

The graph G is shown in Figure 7. Then G has order p and monophonic diameter d.

v1 v2 vk−2

u1 u2
u3 u4 ud+1

w1

w2

wp−d−k+1

Figure 7. An extreme outer connected monophonic graph G with diamm(G) = d

Since S = {v1, v2, . . . , vk−2, u1, ud+1} is the set of all extreme vertices of G, ex(G) =

k. By Theorem C, every outer connected monophonic set of G contains S. It is

clear that S is the unique minimum outer connected monophonic set of G and so

moc(G) = k = ex(G). Thus G is an extreme outer connected monophonic graph of

order p such that diamm(G) = d and moc(G) = k.

In the following theorem we construct a non-extreme outer connected

monophonic graph G of order p such that diamm(G) = d and moc(G) = k.

Theorem 8. For each triple d, k, p of integers with 2 ≤ k ≤ p−d+1 and d ≥ 2, there exists
a non-extreme outer connected monophonic graph G of order p such that diamm(G) = d and
moc(G) = k.

Proof. Let Pd+1 : u1, u2, . . . , ud+1 be a path of length d. Add p−d−1 new vertices,

v1, v2, . . . , vk−2, w1, w2, . . . , wp−d−k+1 to Pd+1 and join each wi(1 ≤ i ≤ p− d− k+ 1)

to the vertices u1, u2 and u3; and also join each vj(1 ≤ j ≤ k − 2) to the vertex u2.
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The graph G is shown in Figure 8. Then G has order p and monophonic diameter

d. If d = 2, then S1 = {v1, v2, . . . , vk−2} is the set of all extreme vertices of G,

ex(G) = k−2. By Theorem C, every outer connected monophonic set of G contains S1.

It is clear that neither S1 nor S1∪{x} where x /∈ S1, is an outer connected monophonic

set of G. It is easily verified that S2 = S1 ∪ {u1, u3} is a minimum outer connected

monophonic set of G and so moc(G) = k. If d ≥ 3, then S3 = {v1, v2, . . . , vk−2, ud+1}
is the set of all extreme vertices of G, ex(G) = k − 1. By Theorem C, every outer

connected monophonic set of G contains S3. It is clear that S3 is not an outer

connected monophonic set of G. It is easily verified that S3∪{u1} is a minimum outer

connected monophonic set of G and so moc(G) = k. Since moc(G) = k 6= ex(G), G is

a non-extreme outer connected monophonic graph of order p such that diamm(G) = d

and moc(G) = k.

v1 v2 vk−2

u1 u2
u3 u4 ud+1

w1

w2

wp−d−k+1

Figure 8. A non- extreme outer connected monophonic graph G with diamm(G) = d

Next, we analyse how the extreme outer connected monophonic graphs are affected

by the addition of a pendant edge.

Theorem 9. If G
′
is a graph obtained by adding l pendant edges to an extreme outer

connected monophonic graph G, then ex(G) ≤ ex(G
′
) ≤ ex(G) + l and G′ is an extreme

outer connected monophonic graph.

Proof. Let G
′

be the graph obtained from an extreme outer connected monophonic

graph G by adding l pendant edges uivi(1 ≤ i ≤ l), where each ui(1 ≤ i ≤ l) is a

vertex of G and each vi(1 ≤ i ≤ l) is not a vertex of G. Let S be a minimum outer

connected monophonic set of G. Since G is an extreme outer connected monophonic

graph, S is the unique minimum outer connected monophonic set of G and S is the

set of all extreme vertices of G. Then it is clear that S ∪ {v1, v2, . . . , vl} is an outer

connected monophonic set of G
′
. Now, we claim that ex(G

′
) ≤ ex(G)+ l and G′ is an

extreme outer connected monophonic graph. If each ui(1 ≤ i ≤ l) is an extreme vertex

of G then each vi(1 ≤ i ≤ l) is an extreme vertex of G
′

and each ui(1 ≤ i ≤ l) is not an
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extreme vertex of G
′
. It is clear that S′ = (S−{u1, u2, . . . , ul})∪{v1, v2, . . . , vl} is the

set of all extreme vertices of G
′

and so ex(G
′
) = |S′|. Hence, we have ex(G) = ex(G

′
).

If each ui(1 ≤ i ≤ l) is not an extreme vertex of G then each vi(1 ≤ i ≤ l) is an

extreme vertex of G
′
. It is clear that S′ = S ∪{v1, v2, . . . , vl} is the set of all extreme

vertices of G
′

and so ex(G
′
) = |S′|. Hence, we have ex(G

′
) = ex(G) + l. Without

loss of generality, if each ui(1 ≤ i ≤ k, k < l) is an extreme vertex of G and each

uj(k + 1 ≤ j ≤ l) is not an extreme vertex of G, then {u1, u2, . . . , uk} ⊆ S. It is clear

that S′ = (S−{u1, u2, . . . , uk}∪{v1, v2, . . . , vk})∪{vk+1, vk+2, . . . , vl} is the set of all

extreme vertices of G
′

and so ex(G′) = |S′|. Hence, we have ex(G
′
) < ex(G)+ l. Note

that in all the above cases, it is easily verified that S′ is the unique minimum outer

connected monophonic set of G
′
, moc(G

′
) = |S′| = ex(G

′
). Thus G

′
is an extreme

outer connected monophonic graph.

Next, we show that ex(G) ≤ ex(G
′
). Suppose that ex(G) > ex(G

′
). Let S1 be

a minimum outer connected monophonic set of G
′
. Since G

′
is an extreme outer

connected monophonic graph, S1 is the unique minimum outer connected monophonic

set of G
′

and S1 is the set of all extreme vertices of G
′
. Then with |S1| = ex(G

′
) <

ex(G). Since each vi(1 ≤ i ≤ l) is an extreme vertex of G
′
, it follows from Theorem C

that {v1, v2, ..., vl} ⊆ S1. Let S2 = (S1 − {v1, v2, . . . , vl}) ∪ {u1, u2, . . . , ul}. Then S2

is a subset of V (G) and |S2| = |S1| < ex(G). Now, we show that S2 is a monophonic

set of G. Let w ∈ V (G)− S2. Since S1 is an outer connected monophonic set of G
′
,

w lies on an x− y monophonic path P in G
′

for some vertices x, y ∈ S1. If neither x

nor y is vi(1 ≤ i ≤ l), then x, y ∈ S2. If exactly one of x, y is vi(1 ≤ i ≤ l), say x = vi.

Then w lies on the ui − y monophonic path in G obtained from P by removing vi.

If both x, y ∈ {v1, v2, . . . , vl}, then let x = vi and y = vj where i 6= j. Hence w lies

on the ui − uj monophonic path in G obtained from P by removing vi and vj . Thus

S2 is a monophonic set of G. By Theorem A, every monophonic set of G contains all

the extreme vertices of G, ex(G) ≤ |S2|. Also, since G is an extreme outer connected

monophonic graph, ex(G) = moc(G). Hence ex(G) = moc(G) ≤ |S2| < ex(G), which

is a contradiction.

u5 u2

u4 u3

u5 u2

u4 u3

v2

v1
u1

u1

G G′

Figure 9. Graphs G and G′ with ex(G) < ex(G′) < ex(G) + l
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Remark 2. The bounds in Theorem 9 are sharp. Consider a tree T with number of
end-vertices k ≥ 2. Let S = {v1, v2, . . . , vk} be the set of all end-vertices of T . Then by
Theorem F, moc(T ) = k = ex(T ) and hence T is an extreme outer connected monophonic

graph. If we add a pendant edge to an end-vertex of T , then we obtain another tree T
′

with k end-vertices. Then by Theorem F, moc(T
′
) = k = ex(T

′
). Hence ex(T ) = ex(T

′
).

On the otherhand, if we add l pendant edges to a cutvertex of T , then we obtain another
tree T

′
with k + l end-vertices. Then by Theorem F, ex(T

′
) = k + l = ex(T ) + l. In both

cases, T
′

is an extreme outer connected monophonic graph. Also, all the inequalities in
Theorem 9 can be strict. For the graph G given in Figure 9, it is clear that S = {u1, u4}
is the set of all extreme vertices of G and so ex(G) = 2. Since S is the unique minimum
outer connected monophonic set of G, moc(G) = 2 = ex(G). Thus G is an extreme outer

connected monophonic graph. The graph G
′

given in Figure 9 is obtained from the graph
G by adding l = 2 pendant edges uivi(1 ≤ i ≤ 2). Since S1 = {v1, v2, u4} is the set of all

extreme vertices of G
′
, ex(G

′
) = 3. It is easy to see that S1 is the unique minimum outer

connected monophonic set of G
′

and so moc(G
′
) = 3 = ex(G

′
). Thus G

′
is an extreme outer

connected monophonic graph. Hence we have ex(G) < ex(G
′
) < ex(G) + l.

Now, we proceed to characterize graphs G for which ex(G) = ex(G
′
), where G

′
is an

outer connected monophonic graph obtained from an outer connected monophonic

graph G by adding l pendant edges.

Theorem 10. Let G
′
be a graph obtained from an outer connected monophonic graph

G by adding l pendant edges uivi(1 ≤ i ≤ l), where ui ∈ V (G) and vi /∈ V (G). Then

ex(G) = ex(G
′
) and G′ is an extreme outer connected monophonic graph if and only if

l ≤ ex(G) and {u1, u2, . . . , ul} is a subset of the minimum outer connected monophonic set
of G.

Proof. Let S be a minimum outer connected monophonic set of G. Since G is an

extreme outer connected monophonic graph, S is the unique minimum outer con-

nected monophonic set of G and S is the set of all extreme vertices of G. Hence

moc(G) = |S| = ex(G). Let l ≤ ex(G) and let {u1, u2, . . . , ul} be a subset of S of G.

Let S
′

= (S − {u1, u2, . . . , ul})
⋃
{v1, v2, . . . , vl}. Then |S′| = |S| and S′ is the set of

all extreme vertices of G
′
. We show that S

′
is an outer connected monophonic set of

G
′
. Let z ∈ V (G

′
)−S

′
. If z = ui (1 ≤ i ≤ l), then z lies on every vi−w monophonic

path in G
′
, where w ∈ S

′
, since ui is the only vertex adjacent to vi. So we may

assume that z 6= ui(1 ≤ i ≤ l). Since z is a vertex of G and S is the unique minimum

outer connected monophonic set of G, it follows that z lies on some x−y monophonic

path P in G for some x, y ∈ S. Then by an argument similar to the one used in the

proof of Theorem 9, we can show that S
′

is the unique minimum outer connected

monophonic set of G
′
. Hence ex(G

′
) = moc(G

′
) = |S′| = |S| = ex(G) = moc(G) and

so G
′

is an outer connected monophonic graph.

Conversely, let ex(G) = ex(G
′
) and G

′
is an outer connected monophonic graph.

Suppose that l > ex(G). Since G is an extreme outer connected monophonic graph,

moc(G) = ex(G). Also, since each vi(1 ≤ i ≤ l) is an end-vertex of G
′

and G
′

is an extreme outer connected monophonic graph, moc(G
′
) = ex(G

′
) ≥ l. Hence
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moc(G
′
) = ex(G

′
) > moc(G) = ex(G), which is a contradiction. Thus l ≤ ex(G

′
).

Now, let S
′

be a minimum outer connected monophonic set of G
′
. Since each ui

(1 ≤ i ≤ l) is a cutvertex of G
′
, it follows from Theorem E that ui /∈ S

′
for 1 ≤ i ≤ l.

Since each vi(1 ≤ i ≤ l) is an end-vertex of G
′
, it follows from Theorem C that

vi ∈ S
′

for 1 ≤ i ≤ l. Let S = (S
′ − {v1, v2, ..., vl})

⋃
{u1, u2, . . . , ul}. Then S is a

subset of V (G) and |S| = |S′ |. Then, as in the proof of Theorem 9, S is an outer

connected monophonic set of G. Since |S| = |S′ | = ex(G
′
) = ex(G), it follows

that S is the unique minimum outer connected monophonic set of G that contains

{u1, u2, ..., ul}.

Theorem 11. For each triple a, b and l of integers with 2 ≤ a ≤ b, 1 ≤ l ≤ b, and
a + l− b ≥ 0, there exists a connected graph G with moc(G) = a and moc(G

′
) = b, where G

′

is an extreme outer connected monophonic graph obtained by adding l pendant edges to an
extreme outer connected monophonic graph G.

Proof. Let G be a tree with number of end-vertices a. Let G
′

be a graph obtained by

adding b−a pendant edges to a cutvertex of G and also adding l+a−b pendant edges

each with different end-vertices of G. Then G
′

is another tree with b end-vertices. By

Theorem F, moc(G) = a and moc(G
′
) = b.

3. Extreme outer connected monophonic graphs and extreme
outer connected geodesic graphs

It is easy to observe that every outer connected geodetic set of G is an outer

connected monophonic set of G and by Theorem G, each extreme vertex belongs to

every outer connected geodetic set, every extreme outer connected geodesic graph is

an extreme outer connected monophonic graph. However, the converse need not be

true. For example the graph G given in Figure 10, it is clear that S = {v2, v4} is the

set of all extreme vertices of G and so ex(G) = 2. Since S is the unique minimum

outer connected monophonic set of G, moc(G) = 2 = ex(G). Hence G is an extreme

outer connected monophonic graph. It is easily verified that S is not a geodetic set

of G. Since S1 = S ∪ {v6} is a geodetic set and the subgraph induced by V − S1 is

connected, S1 is an outer connected geodetic set of G so that goc(G) = 3 6= ex(G).

Therefore G is not an extreme outer connected geodesic graph.

Remark 3. If moc(G) = goc(G) = ex(G), then the graph G is both extreme outer
connected monophonic graph and extreme outer connected geodesic graph. By Theorems
F and I, any non-trivial tree T with a end-vertices, moc(T ) = goc(T ) = ex(T ) = a. Hence
any non-trivial tree T is both extreme outer connected monophonic graph and extreme
outer connected geodesic graph. By Theorems D and H, any complete graph Kp(p ≥ 2),
moc(Kp) = goc(Kp) = ex(Kp) = p. Hence any complete graph is both extreme outer
connected monophonic graph and extreme outer connected geodesic graph.
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v1 v5

v2 v4

v3

v6

Figure 10. A graph G with moc(G) = 2 and goc(G) = 3

Theorem 12. A graph G is both extreme outer connected monophonic graph and extreme
outer connected geodesic graph if and only if every non-extreme vertex of G lies on a x− y
geodesic for some extreme vertices x and y in G.

Proof. Let S be the set of all extreme vertices of G. If every non-extreme vertex of

G lies on a x−y geodesic for some vertices x and y in S, then it follows from Theorems

C and G, S is the unique minimum outer connected monophonic set and the unique

minimum outer connected geodetic set of G and so moc(G) = goc(G) = |S| . Hence

G is both extreme outer connected monophonic graph and extreme outer connected

geodesic graph.

Conversely, let G be both extreme outer connected monophonic graph and extreme

outer connected geodesic graph. Then moc(G) = goc(G) = ex(G). Since ex(G) =

goc(G), S is the unique minimum outer connected geodetic set of G. Hence every non-

extreme vertex of G lies on a x− y geodesic for some extreme vertices x, y ∈ S.

Theorem 13. For every pair a, b of integers with 2 ≤ a < b, there exists a connected
graph G which is an extreme outer connected monophonic graph and not an extreme outer
connected geodesic graph such that moc(G) = a and goc(G) = b.

Proof. Let Pi : ui, vi (1 ≤ i ≤ b − a) be a b − a copies of a path of length one and

P : x1, x2, x3, x4 be a path of length 3. The graph H is obtained from P and Pi by

joining each ui(1 ≤ i ≤ b − a) of Pi to the vertex x2 in P ; and also joining each

vi(1 ≤ i ≤ b− a) of Pi to the vertex x4 in P . The required graph G is obtained from

H by adding a− 1 new vertices w1, w2, . . . , wa−1 and joining each wi(1 ≤ i ≤ a− 1)

to x4 in H. The graph G is shown in Figure 11. Since S = {x1, w1, w2, . . . , wa−1} is

the set of all extreme vertices of G, ex(G) = a. By Theorem C, every outer connected

monophonic set of G contains S. It is clear that S is the unique minimum outer

connected monophonic set of G and so moc(G) = |S| = a = ex(G). Hence G is an

extreme outer connected monophonic graph. By Theorem G, every outer connected

geodetic set of G contains S. Clearly, S is not an outer connected geodetic set of G. It

is easily observed that at least one of the vertex of each Pi : ui, vi(1 ≤ i ≤ b−a) must

belongs to every outer connected geodetic set of G. Since S1 = S ∪{u1, u2, . . . , ub−a}
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is a minimum outer connected geodetic set of G, goc(G) = b 6= ex(G). Thus G is not

an extreme outer connected geodesic graph.

x1 x2 x3 x4 wa−1

vb−aub−a

v2u2

v1u1

w1

. . .

. . .
···

w2

Figure 11. Example of an extreme outer connected monophonic graph and not an extreme outer connected
geodesic graph

Theorem 14. For every pair a, b of integers with 2 ≤ a < b, there exists a connected
graph G which is neither an extreme outer connected monophonic graph nor an extreme outer
connected geodesic graph such that moc(G) = a and goc(G) = b.

Proof. The required graph G1 is obtained from the graph G given in Figure 11

of Theorem 13 by removal of a vertex x1. Since S = {w1, w2, . . . , wa−1} is the

set of all extreme vertices of G1, ex(G1) = a − 1. By Theorem C, every outer

connected monophonic set of G1 contains S. It is clear that S is not an outer connected

monophonic set of G1. Since S ∪ {x2} is a minimum outer connected monophonic

set of G1, moc(G1) = a 6= ex(G1). Hence G1 is not an extreme outer connected

monophonic graph. By Theorem G, every outer connected geodetic set of G1 contains

S. Clearly, S is not an outer connected geodetic set of G1. It is easy to observe

that S1 = S ∪ {x2, u1, u2, . . . , ub−a} is a minimum outer connected geodetic set of

G1, goc(G1) = b 6= ex(G1). Thus G1 is not an extreme outer connected geodesic

graph.
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