
CCO
Commun. Comb. Optim.

c© 2022 Azarbaijan Shahid Madani University

Communications in Combinatorics and Optimization

Vol. 7, No. 2 (2022), pp.247-255

DOI: 110.22049/CCO.2021.27302.1226

Research Article

Algorithmic aspects of certified domination in graphs

Jakkepalli Pavan Kumar1∗, S. Arumugam2, Himanshu Khandelwal3†,
P. Venkata Subba Reddy3‡

1
IcfaiTech (Faculty of Science & Technology), ICFAI Foundation for Higher Education,

Hyderabad, India
jp.nitw@gmail.com

2
Director, n-CARDMATH, Kalasalingam Academy of Research and Education, Anand Nagar,

Krishnankoil, Tamilnadu, India
s.arumugam.klu@gmail.com

3
Department of Computer Science and Engineering, National Institute of Technology Warangal,

Warangal, Telangana, India
†himkha.100@gmail.com
‡pvsr@nitw.ac.in

Received: 7 June 2021; Accepted: 26 July 2021
Published Online: 30 July 2021

Abstract: A dominating set D of a graph G = (V,E) is called a certified dominating

set of G if |N(v)∩(V \D)| is either 0 or at least 2 for all v ∈ D. The certified domination

number γcer(G) is the minimum cardinality of a certified dominating set of G. In this
paper, we prove that the decision problem corresponding to γcer(G) is NP-complete

for split graphs, star convex bipartite graphs, comb convex bipartite graphs and planar

graphs. We also prove that it is linear time solvable for chain graphs, threshold graphs
and bounded tree-width graphs.
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1. Introduction

By a graph G = (V,E) we mean a finite, undirected connected graph with neither

loops nor multiple edges. The order |V | and the size |E| are denoted by n and m

respectively. For graph theoretic terminology we refer to [15].
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Let G = (V,E) be a graph and let v ∈ V . Then N(v) = {u ∈ V | uv ∈ E} is called

the open neighborhood of v. The degree d(v) of v is |N(v)|. If d(v) = 1, then v is

called a pendant vertex and the unique vertex u which is adjacent to v is called a

support vertex. A support vertex u is called a strong support vertex if the number of

pendant vertices adjacent to u is at least two. Otherwise u is called a weak support

vertex. For a subset S ⊆ V , the subgraph induced by S is defined as G[S] = (S,ES)

where ES = {uv | uv ∈ E and u, v ∈ S}. If G[S] is a complete graph, then S is called

a clique. If ES = ∅, then S is called an independent set.

A graph G is called a split graph if its vertex set can be partitioned into two subsets

C and I where C is a clique in G and I is an independent set in G. The graph G

is called a bipartite graph if its vertex set can be partitioned into two independent

sets A and B. If further every vertex of A is adjacent to every vertex of B, then G is

called a complete bipartite graph and is denoted by Kr,s where |A| = r and |B| = s.

A connected acyclic graph is called a tree. The tree K1,n−1 is called a star. The tree

obtained from a path Pn = (v1, v2, . . . , vn) by attaching a pendant vertex ui adjacent

to vi for all i, 1 ≤ i ≤ n, is called a comb. Jiang et al. [8] introduced the concept of

tree convex bipartite graph.

Definition 1. ([8]) A bipartite graph G with bipartition A,B is called a tree convex
bipartite graph if there exists a tree T = (A,F ) such that for each v ∈ B, the induced
subgraph T [N(v)] is a subtree of T . If T is a star (comb), then G is called a star (comb)
convex bipartite graph.

Definition 2. ([10]) A graph G = (V,E) is called a threshold graph if there exists a real
number t and a real number w(v) for each v ∈ V such that a subset S of V is an independent
set if and only if

∑
v∈S

w(v) ≤ t.

Mahadev and Palad [10] obtained a characterization of threshold graphs.

Theorem 1. ([10]) A graph G is a threshold graph if and only if G is a split graph
with split partition (C, I) and there is an ordering (x1, x2, . . . , xr) of vertices of C such that
N [x1] ⊆ N [x2] ⊆ . . . ⊆ N [xr] and there is an ordering (y1, y2, . . . , ys) of the vertices of I
such that N(y1) ⊇ N(y2) ⊇ . . . ⊇ N(ys).

It follows from Theorem 1 that a graph G is a threshold graph if and only if G is a

split graph with split partition (C, I) satisfying the neighborhood chain condition.

Yannakakis [13] introduced the concept of Chain graph.

Definition 3. A bipartite graph G with bipartition (V1, V2) is called a chain graph if there
exists ordering (v1, v2, . . . , vr) of the vertices of V1 such that N(v1) ⊆ N(v2) ⊆ · · · ⊆ N(vr).

A chain graph also admits an ordering (w1, w2, . . . , ws) of vertices of V2 such that

N(w1) ⊇ N(w2) ⊇ · · · ⊇ N(ws).
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The study of domination and related subset problems such as irredundance and in-

dependence is one of the major research areas within graph theory. A comprehensive

treatment of fundamentals of domination in graphs is given in [7]. For a survey of

several advanced topics we refer to [6]. Let G = (V,E) be a graph. A subset S of

V is called a dominating set of G if every vertex not in S is adjacent to a vertex

in S. The minimum cardinality of a dominating set of G is called the domination

number of G and is denoted by γ(G). More than 75 models of dominating sets are

given in the appendix of [7]. Some recent domination variants have been studied in

[1, 2, 11, 12, 14].

In a social network consisting of a set V1 of officials and a set V2 of civils where a

vertex v in V1 can serve a civil w in V2, whenever v is serving w, there exists another

civil u that observes v. Thus u serves as a kind of witness so as to avoid any abuse

from v. To model this problem Dettlaff et al. [4] introduced the concept of certified

domination.

Definition 4. ([4]) A dominating set D of G is called a certified dominating set if every
vertex v in D has either no neighbor in V \D or has at least two neighbors in V \D. The
minimum cardinality of a certified dominating set (CFDS) is called the certified domination
number of G and is denoted by γcer(G).

The following basic results on certified domination are given in [4].

Observation 1. ([4]) Every support vertex of a graph G belongs to every certified
dominating set of G.

Observation 2. It follows immediately from Observation 1 that γcer(K2) = 2.

Observation 3. ([4]) If G is a graph of order n at least 3, then γcer(G) = 1 if and only
if ∆(G) = n− 1.

Let G be a connected threshold graph of order n. Let (x1, x2, . . . , xr) and

(y1, y2, . . . , ys) be the ordering of the vertices of G as given in Theorem 1. Clearly

deg(xr) = n−1 and hence Observation 2 and Observation 3 give the following result.

Theorem 2. Let G be a connected threshold graph of order n. Then

γcer(G) =

{
2 if n = 2

1 otherwise.

Let G = (X,Y,E) be a chain graph with chain ordering X = (x1, x2, . . . , xp) and

Y = (y1, y2, . . . , yq). If p = q = 1, then G = K2 and γcer(G) = 2. If p = 1 and q ≥ 2

or if p ≥ 2 and q = 1, then it follows from Observation 3 that γcer(G) = 1. If p, q ≥ 2

then D = {xp, y1} is a γcer-set of G. Hence we have the following theorem.
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Theorem 3. Let G = (X,Y,E) be a chain graph with chain ordering X = (x1, x2, . . . , xp)
and Y = (y1, y2, . . . , yq). Then

γcer(G) =

{
2 if p = q = 1 or p, q ≥ 2

1 otherwise.

The following is the decision version of the certified domination problem.

Certified Domination Problem (CFDP)

Instance: A graph G and a positive integer k.

Question: Does there exist a CFDS D of G with |D| ≤ k?

In this paper, we prove that CFDP is NP-complete for split graphs, star convex

bipartite graphs, comb convex bipartite graphs and planar graphs. We also prove

that it is linear time solvable for chain graphs, threshold graphs and bounded tree-

width graphs.

2. Complexity Results

In this section, we prove that CFDP is NP-complete for split graphs, star convex

bipartite graphs, comb convex bipartite graphs and planar graphs. For the first three

cases, the proof is by reduction from the Exact Cover by 3-Sets (X3C) [9], which is

given below.

Exact Cover by 3-Sets (X3C)

Instance: A set X with |X| = 3q and a collection C of 3-element subsets of X.

Question: Does C contain an exact cover for X, i.e., a sub-collection C ′ ⊆ C such

that every element in X occurs in exactly one member of C ′?

Consider an instance of X3C problem with X = {x1, x2, . . . , x3q} and C =

{C1, C2, . . . , Cm}. The graph H with vertex set X ∪ C, where xi is adjacent to

Cj if and only if xi ∈ Cj , is called the incidence graph of the given instance of X3C.

Theorem 4. CFDP is NP-complete for split graphs.

Proof. Clearly, CFDP is in NP. Let I be an instance of X3C. Let H be the incidence

graph of I. Let G be the split graph obtained from H by making the induced graph

G[C] complete. Clearly G can be constructed from I in polynomial time. We now

claim that the instance I of X3C has a solution if and only if G has a CFDS of

cardinality at most q. Let C ′ be a solution of the instance I of X3C. Then D = {Cj :

Cj ∈ C ′} is a dominating set of G and every vertex of D dominates exactly 3 vertices

of X. Hence D is a CFDS of G and |D| = q.

Conversely, let D′ be a CFDS of G with |D′| ≤ q. If D′ ∩X 6= ∅, then for dominating

the vertices of X − (D′ ∩ X), at least 3q−|D′∩X|
3 vertices are needed. Hence |D′| ≥
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3q−|D′∩X|
3 + |D′ ∩X| > q, which is a contradiction. Hence D′ ∩X = ∅ and {Cj | Cj ∈

D′} is a solution of the instance I of X3C.

Theorem 5. CFDP is NP-complete for star convex bipartite graphs.

Proof. Clearly, CFDP is in NP. Let I be an instance of X3C and let H be the

incidence graph of I. Let G be the graph obtained from H by adding an edge ab

and joining a to all the vertices of C. Clearly G is a bipartite graph with bipartition

X ∪ {a}, C ∪ {b}. Let T denote the star with V (T ) = X ∪ {a} and having a as

its central vertex. Let v ∈ C ∪ {b}. Clearly a ∈ N(v) and the induced subgraph

T [N(v)] is a subtree of T . Hence G is a star convex bipartite graph. Note that the

construction of G can be carried out in polynomial time. We claim that the instance

I of X3C has a solution if and only if G has a CFDS D with |D| ≤ q + 1. If C ′ is a

solution of I, then D = C ′ ∪ {a} is a CFDS of G with |D| = q+ 1. Conversely, let D′

be a CFDS of G with |D′| ≤ q + 1. Since a is a support vertex of G, it follows that

a ∈ D′. As in Theorem 4, it can be proved that D′ ∩X = ∅ and {Cj | Cj ∈ D′} is a

solution to the instance I of X3C.

Theorem 6. CFDP is NP-complete for comb convex bipartite graphs.

Proof. Clearly, CFDP is in NP. Let I be an instance of X3C and let H be the

incidence graph of I. Let G be the graph constructed from H as given below.

(i) Add a set X ′ = {x′1, x′2, . . . , x′3q} of 3q vertices such that X ′ ∪ C is a complete

bipartite graph with bipartition X ′ and C.

(ii) Add three vertices a, a′ and b and the edges ab and aCi, a
′Ci for all Ci ∈ C.

Clearly G is a bipartite graph with bipartition X∪X ′∪{a, a′}, C∪{b}. Let T denote

the tree with V (T ) = X ∪ X ′ ∪ {a, a′} such that (x′1, x
′
2, . . . , x

′
3q, a

′) is a path in T

and xix
′
i, aa

′ ∈ E(T ) for all i, 1 ≤ i ≤ 3q. Clearly T is a comb. Now let v ∈ C ∪ {b}.
Then

N(v) =

{
X ′ ∪ {a′} if v ∈ C
a otherwise.

Clearly the induced subgraph T [N(v)] is a subtree of T . Hence G is a comb convex

bipartite graph. The proof that the instance I of X3C has a solution if and only if G

has a CFDS D with |D| ≤ q + 1 is similar to the proof given in Theorem 5.

X3C problem with the additional restriction that the incidence graph H is planar

is called the Planar-X3C problem. It has been proved in [5] that the Planar-X3C

is NP-complete. Using Planar-X3C problem and the proof similar to the proof of

Theorem 5, we get the following theorem.

Theorem 7. CFDP is NP-complete for planar graphs.
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We now proceed to prove that the certified domination number γcer(G) can be com-

puted in linear time for several classes of graphs. It follows from Theorem 2 and

Theorem 3 that γcer(G) can be computed in linear time for threshold graphs and

chain graphs. We now proceed to consider the complexity of CFDP for bounded

tree-width graphs.

Let G be a graph, T be a tree and V be a family of vertex sets Vt ⊆ V (G) indexed by

the vertices t of T . The pair (T,V) is called a tree-decomposition of G if it satisfies

the following three conditions: (i) V (G) =
⋃

t∈V (T ) Vt, (ii) for every edge e ∈ E(G)

there exists a t ∈ V (T ) such that both ends of e lie in Vt, (iii) Vt1∩Vt3 ⊆ Vt2 whenever

t1, t2, t3 ∈ V (T ) and t2 is on the path in T from t1 to t3. The width of (T,V) is the

number max{|Vt| − 1 : t ∈ T}, and the tree-width tw(G) of G is the minimum width

of any tree-decomposition of G. The following theorem due to Courcelle states that

every graph problem that can be described by counting monadic second-order logic

(CMSOL) can be solved in linear-time in graphs of bounded tree-width [3].

Theorem 8 (Courcelle’s Theorem). ([3]) Let P be a graph property expressible in
CMSOL and let k be a constant. Then, for any graph G of tree-width at most k, it can be
checked in linear-time whether G has property P .

Theorem 9. Given a graph G and a positive integer k, CFDP can be expressed in
CMSOL.

Proof. First, we present the CMSOL formula which expresses that the graph G has

a dominating set of size at most k.

Dominating(S) = (|S| ≤ k) ∧ (∀p)((∃q)(q ∈ S ∧ adj(p, q))) ∨ (p ∈ S)

where adj(p, q) is the binary adjacency relation which holds if and only if, p, q are two

adjacent vertices of G. Dominating(S) ensures that for every vertex p ∈ V , either

p ∈ S or p is adjacent to a vertex in S and the cardinality of S is at most k.

Certified(S) = (∀p)((p /∈ S) ∨ ((@q)(q ∈ V \ S) ∧ adj(p, q))∨
((∃q1)(∃q2)(q1, q2 ∈ V \ S) ∧ adj(p, q1) ∧ adj(p, q2))

Now, by using the above two CMSOL formulas we can express CFDP in CMSOL

formula as follows.

CRD(S) = Dominating(S) ∧ Certified(S)

Therefore, CFDP can be expressed in CMSOL.

Now, the following result is immediate from Theorem 8 and Theorem 9.

Theorem 10. CFDP can be solvable in linear time for bounded tree-width graphs.
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Construction of a Certified Dominating Set

The following algorithm gives a method of constructing a CFDS from any dominating

set of a given graph.

Algorithm 1 CONSTRUCTION OF CFDS
Input: A simple and undirected graph G

Output: A CFDS D1 of G.

1: D1 ← Any dominating set D of G
2: Let U ← {v : v ∈ D, |N(v) ∩ (V \D)| = 1}
3: while U 6= ∅ do

4: Let v ∈ U and w = N(v) ∩ (V \D)
5: if d(w) = 1 then

6: D1 ← D1 ∪ {w}
7: else
8: D1 ← (D1 \ {v}) ∪ {w}
9: end if

U ← {v : v ∈ D1, |N(v) ∩ (V \D1)| = 1}
10: end while

11: return D1

The above algorithm shows that given any dominating set D of G, we can find a

certified dominating set D1 of G such that D ⊆ D1. The following problem arises

naturally.

Remark 1. Which graphs G admit a γ-set D such that the certified dominating set D1

constructed by the above algorithm is a γcer-set of G?

3. ILP Formulation of CFDP

In this section, an Integer Linear Programming formulation of certified domination

problem (CFDP) is presented. Let G = (V,E) be a graph of order n and let V =

{v1, v2, . . . , vn}. Let x = (x1, x2, . . . , xn) be a binary vector. Then x determines a

subset of V given by {vi ∈ V | xi = 1}. Conversely, any subset D of V determines a

unique binary vector x = (x1, x2, . . . , xn) where

xi =

{
1 if vi ∈ D
0 otherwise.

Thus we have a bijection between the set of all binary vectors (x1, x2, . . . , xn) and

the set of all subsets of V . We now define another binary vector y = (y1, y2, . . . , yn)

as follows. Let N(xi) = {xj : vj ∈ N(vi)}.

Let yi =

{
1 if xi = 1 and |{xj : xj ∈ N(xi) and xj = 0}| is either 0 or at least 2

0 otherwise.

In other words yi is a decision variable which takes value 1 if vi belongs to the subset

D of V determined by the vector x and the number of neighbors of vi in V \ D is
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either 0 or at least 2. We observe that
n∑

i=1

xi = |D|.

The following is the ILP model for CFDP.

Minimize z =
n∑

i=1

xi

subject to:

xi +
∑

xj∈N(xi)

xj ≥ 1, 1 ≤ i ≤ n (1)

2(1− xi) +
∑

xj∈N(xi)

(1− xj) ≥ 2yi, 1 ≤ i ≤ n (2)

(1− xi) +
∑

xj∈N(xi)

(1− xj) ≤ nyi, 1 ≤ i ≤ n (3)

The number of variables in the above ILP is 2n and the number of constraints is 3n.

The objective function z is |D|, constraint (1) ensures that D is a dominating set and

constraints (2) and (3) ensure that any vertex vi in D is not adjacent to exactly one

vertex of V \D.

4. Conclusion

In this paper, we have proved that the certified domination problem (CFDP) is NP-

complete even when restricted to split graphs, star convex bipartite graphs and comb

convex bipartite graphs. On the positive side, we have shown that the problem is

linear time solvable for threshold graphs, chain graphs and graphs of bounded tree-

width. The investigation of the algorithmic complexity of CFDP for subclasses of

chordal graphs and for other bipartite classes is an interesting direction for further

research. The ILP formulation of CFDP can be used to compute the value of γcer for

small graphs in a given family F of graphs and the computed values can be used for

determining the value of γcer for all the graphs of the family F .
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